
Apple Apple II Pascal 1.3
,_

•

Copyright

This manual is copyrighted by Apple or by Apple's
suppliers, with all rights reserved. Under the copyright
laws, this manual may not be copied, in whole or in
part, without the written consent of Apple. This
exception does not allow copies to be made for others,
whether or not sold, but all of the material purchased
may be sold, given, or lent to another person. Under the
law, copying includes translating into another language.

©Apple Computer, Inc., 1985
20525 Mariani A venue
Cupertino, California 95014

Apple, the Apple logo, Disk II, Disk Ile, DuoDisk,
ProDOS, ProFile, and UniDisk are trademarks of Apple
Computer, Inc.

Simultaneously published in the United States and
Canada.

Limited Warranty on Media and Replacement

If you discover physical defects in the manuals
distributed with an Apple product or in the media on
which a software product is distributed, Apple will
replace the media or manuals at no charge to you,
provided you return the item to be replaced with proof
of purchase to Apple or an authorized Apple dealer
during the 90-day period after you purchased the
software. In addition, Apple will replace damaged
software media and manuals for as long as the software
product is included in Apple's Media Exchange Program.
While not an upgrade or update method, this program
offers additional protection for up to two years or more
from the date of your original purchase. See your
authorized Apple dealer for program coverage and
details. In some countries the replacement period may
be different; check with your authorized Apple dealer.

ALL IMPLIED WARRANTIES ON THE MEDIA
AND MANUALS, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY (90) DAYS
FROM THE DATE OF THE ORIGINAL RETAIL
PURCHASE OF THIS PRODUCT.

Even though Apple has tested the software and reviewed
the documentation, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO SOFTWARE, ITS
QUALITY, PERFORMANCE, MERCHANTABILITY,
OR FITNESS FOR A PARTICULAR PURPOSE. AS
A RESULT, THIS SOFTWARE IS SOLD "AS IS,"
AND YOU THE PURCHASER ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND
PERFORMANCE.

IN NO EVENT WILL APPLE BE LIABLE FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM
ANY DEFECT IN THE SOFTWARE OR ITS
DOCUMENTATION, even if advised of the possibility
of such damages. In particular, Apple shall have no
liability for any programs or data stored in or used with
Apple products, including the costs of recovering such
programs or data.

THE WARRANTY AND REMEDIES SET FORTH
ABOVE ARE EXCLUSIVE AND IN LIEU OF ALL
OTHERS, ORAL OR WRITTEN, EXPRESS OR
IMPLIED. No Apple dealer, agent, or employee is
authorized to make any modification, extension, or
addition to this warranty.

Some states do not allow the exclusion or limitation of
implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives you
specific legal rights, and you may also have other rights
which vary from state to state.

)

Apple II Pascal 1.3

Introduction to Pascal 1.3

Who Should Use Apple Pascal 1.3

Pascal 1.3, Apple's latest version of Apple® Pascal, is designed primarily for
software developers and advanced programmers who are using Apple II
systems to develop Apple Pascal software. This version of Apple II Pascal
can run on any computer in the Apple II family that has 64K or more of
memory. If you are an experienced programmer and you have not yet
learned Apple Pascal but are interested in serious or commercial Pascal
programming, you should have no problem using this manual and software.
If you are a beginning programmer and would like to learn Pascal or
specifically Apple Pascal, refer to the Bibliography at the back of this
manual for reading suggestions. In conjunction with these or other sources,
you may want to use this manual and Pascal 1.3 to learn Pascal
programming. On the back page of this manual, you will find a list of other
Apple Licensed Products that may interest you.

About This Manual

This manual describes the hardware configurations that can be used with
this version of Pascal; it explains the use of all Pascal program preparation
tools, the syntax and use of the Apple Pascal programming language,
advanced programming techniques, and related technical matters.

Before you read this manual, you should know how to start up your Apple
and use its configured hardware. You need to read Part I of this manual,
Getting Started, to learn about correct system configurations to use with
this version of Apple Pascal. It is particularly important that you correctly
install and configure the various storage and other devices that are part of

About This Manual iii

iv

your system. To be sure that your system is set up properly, consult the
owner's manual that came with your system and the user's manuals for any
additional equipment you are using.

Where to Find What You Need

This manual is divided into five parts, preceded by this Introduction. Each
part has its own Table of Contents and List of Figures and Tables. The first
part contains the hardware and startup information needed by everyone,
and the last part contains the Bibliography, Glossary, and Index for all
preceding parts. Each of the parts in between has its own appendixes. In
this regard, the three major parts resemble stand-alone volumes; having one
glossary and index common to all parts, however, makes each of them a
part of the larger, self-contained volume.

It is important to read this Introduction to learn whether
Apple II Pascal 1.3 is the appropriate product choice for you and to get
acquainted with this manual and how it is arranged.

Read Part I, Getting Started, to learn

o About hardware requirements and possible system configurations with
Pascal 1.3;

o How variations in hardware might affect your use of Pascal;
o How to start up your system with the Pascal disks that come with this

package;
o How to refer to I/O devices;
o How to create working disks that suit your system and your needs.

Part II, Program Preparation Tools, describes the Pascal system and the
mechanics of using each of the software tools required to prepare a Pascal
program. Each of these program preparation tools is itself a program
available on the Pascal 1.3 system disks. The major components of the
Pascal system are the Pascal Filer, Editor, Compiler, Assembler, Linker, and
Apple Pascal utility programs, most notably the Librarian program. Part II
describes all the details needed to

o Create and manipulate files;
o Enter and edit text;
o Compile Pascal source files;
o Create an assembly-language program and link it to a Pascal program;
o Create and use library files;
o Format disks;
o Configure an external terminal into your system.

Introduction to Pascal 1.3

Although the descriptions of the Pascal Compiler and Assembler summarize
the available Compiler options and Assembler directives, they do not
discuss how to implement these in programs. Part II gives no instruction in
the writing of Pascal programs or 6502 assembly-language routines. If you
are interested in integrating specific rules of Pascal syntax with this
overview, you will need to move back and forth between Part II and Part III.
If you want to learn more about 6502 assembly-language programming, see
the Bibliography in Part V. All error messages are described in the last
appendix of Part II.

Part III, the Language Manual,

o Explains the details of how to write Pascal source text using correct
syntax;

o Describes all the rules of the Apple II Pascal language;
o Explains the structure of the language and compares it briefly with other

languages;
o Defines the Apple Pascal vocabulary;
o Includes advanced programming techniques.

When you want to compile any part of a program, refer to "The Compiler" in
Part II; when you want to link program pieces, refer to "The Linker" in
Part II; to put a Program Unit into a library, refer to "The Librarian" in
Part II. Pascal programming techniques are discussed exclusively in Part III.

Part IV, the Technical Reference, describes

o The technical details of Apple Pascal memory usage;
o The internal structure of Pascal codefiles, textfiles, and disk directories;
o The structure of the Pascal P-machine;
o The P-machine instruction set.

Most users will rarely have an occasion to use Part IV, but some may be
interested in the P-machine or the internal structure of codefiles.

Part V contains the Bibliography, Glossary, and Index for all parts of this
manual. The Bibliography lists references for both Pascal and 6502 ·
assembly-language programming, as well as sources of more general but
related information. Part V concludes with a list of other licensed Apple
products.

To find out about the Apple developer relations program, see the back page
of Part V of this manual for information about whom to contact.

About This Manual v

vi

How to Read This Manual

This manual assumes that your hardware configuration for running
Pascal 1.3 is a 128K Apple Ile with an 80-column video monitor and two or
more 5;4-inch disk drives, although Pascal supports many other hardware
configurations, as described in Part I. Hardware variations are discussed in
the text wherever relevant.

Hardware Notes I Information about hardware differences and their effects on your use of
Pascal is set off like this.

..... warning

Throughout this manual you will see several other visual cues:

Important warnings alert you to situations that are potentially hazardous
to the information currently in the computer's memory, the information
stored on disks, or to your equipment.

Text Set Off With a Vertical Bar: Useful information that is incidental
to the main text is set off like this.

Messages displayed by the comput.er and in some
instances text that you type into the computer are
shown in this typeface.

To make it easier to find what you need, a tabbed divider is provided for
marking the beginning of each major part of this manual. Each of the parts
has its own Table of Contents. Don't forget to look for appendixes within
each of the parts.

Notice that page numbers start over in each part and that page numbers are
preceded by the number of that part. Thus, when you use the index, you
will be able to tell which parts are referenced for a given topic.

Introduction to Pascal 1.3

.. -

Part I Getting Started

PREFACE

GETTING STARTED

I-ii

Contents

Figures and Tables

System Possibilities With Apple Pascal 1
Recommended System Configurations 2

Recommended Configurations for Apple Ile, II Plus, and II 2
Recommended Configuration on the Apple Ile 4
Two Disk Drives Recommended 5
Formatting a ProFile as a Pascal Device 5

Starting the System 6
Starting Up With Two 51A-Inch Disk Drives 6
Starting Up With One 51A-Inch Disk Drive 7
Starting Up From a 3Y:l-Inch Disk Drive 7
Using a Pascal-Formatted ProFile 8

Using Alternative System Configurations 8
Are You Using Earlier Versions of Pascal? 8
About 51A-Inch Disk Drives 8
The Startup Protocol 8
Starting Up an Alternative Configuration 10

What Happens During Start Up 10
How Pascal Assigns Volume Numbers 12
Using System Prompts 14
Make Backups of Your System Disks 16

Formatting Disks 16
Making Backups 17

Contents

iv

v

1

System Notes 18
Using a 40-Column Video Display 18
The 128K and 64K Pascal Systems Compared 20

To Use the 128K System 20
Limits on the 64K System 20

Using an Apple II or an Apple II Plus 21
One File Replacement Required 21
Keyboard Differences 21
Control Characters 22
Using the Shift-Key Modification 23

Notes on the 514-Inch Disk Drive 24
Notes on the 3Yz-Inch Disk Drive 25
ProFile Notes 25
Two Different Disk Sizes On Line 26
Using an External Terminal 26
Line Feeds to Your Printer 26

Customizing Pascal System Disks 26
File Replacements for 128K Systems 27
Replace .MISCINFO on an Apple II or II Plus 27
Rearranging Disks and Replacing Files 28

File Replacement Example for 514-Inch Disks 28
Renaming Files on the 3Yz-Inch Disk 29
Further Changes Not Essential 29

Apple Pascal System Disks and Files 30
System Disks-As Supplied 31

Contents I-iii

I-iv

Figures and Tables

Table 1

Table 2
Table 3
Table 4
Table 5

Figures and Tables

Recommended Configurations for Apple Ile, II Plus,
and II 3
Pascal Startup Levels 11
Volume Assignments by Boot Device 13
Summary of Special Command Characters 23
Character Translations With Shift-Key Mod 24

Preface

Part I describes the steps you must take to assure that you have an
acceptable system configuration for operating this version of Apple Pascal,
that you have an arrangement of system files on your startup disks that
corresponds to your system configuration, and that you are using the
system disks correctly. To get started, you will

o Review your system configuration to be sure it is workable with Apple
Pascal;

o Start up the system using the Apple Pascal disks as they exist out of the
package;

o Check the assignment of volume numbers to your disk devices;
o Format blank or recycled disks and use one set to make backup copies of

your system disks as they are;
o Learn specifics about using your individual Apple system in the Pascal

environment;
o If necessary, replace or rearrange files on your disks so that you are using

the correct system files and most convenient system disks for your
situation.

Preface 1-v

Getting Started

System Possibilities With Apple Pascal

Apple II Pascal can be used on any computer in the Apple II family:

o Apple Ile
o Apple Ile
o Apple II Plus with at least 64K of RAM
o Apple II (original) with at least 64K of RAM

Disk devices supported by Version 1.3 of Apple Pascal include the following:

o 3Y2-inch disk drives, such as the Apple UniDisk™ 3.5
o 51A-inch disk drives, such as the Apple Disk II®, Disk Ile™, UniDisk™,

and DuoDisk™
o rigid disk drives such as the Apple ProFile®

This version of Apple Pascal also offers you the option of using

o either a 128K development system or a 64K development system, and
o either an 80-column video display or a 40-column video display.

From this selection of hardware options, you can create many system
variations that will run Apple II Pascal. You need to learn at the outset what
hardware environments are suitable and how your particular environment
affects your use of the Pascal system. First we discuss suggested system
configurations; then, in "System Notes," we discuss the details of using your
particular Apple system with Pascal 1.3.

System Possibilities With Apple Pascal I-1

1-2

To provide a focus for discussion in this manual, we have designated as the
standard hardware and software environment

o an Apple Ile
o with an Extended 80-Column Text Card
o an 80-column video monitor
o two 5~-inch disk drives
o running the 128K Pascal system

Where variations in the environment make a difference, they are discussed.
Our selection of this standard configuration does not imply that other
combinations are less suitable and certainly does not describe the limits of
what is recommended or possible. If, for example, you have chosen to use
3112-inch disk drives, your use of the Pascal system will be simplified and
you will be able to skip much of the .reading required for users with 5~-inch
disk drives. The next section gives our recommendations.

Recommended System Configurations

Version 1.3 of Apple Pascal not only runs on many different hardware
configurations, it can be started up from slots 4, 5, or 6 using either Apple
3112-inch disk drives, Apple 5~-inch disk drives, or a ProFile. Which slot
you're starting up (booting) from determines how Pascal assigns volume
numbers to storage devices. This means that Pascal must use a complex
procedure to assign volume numbers and that you will need to learn the
variations that apply to your startup sequence. Because you have more
choices with this version of Apple Pascal, you must check carefully which
hardware configuration is best for you.

If you have already decided which Apple II system to use, you can skip to
the discussion of that model.

Recommended Configurations for .Apple lie, II Plus, and !I

The following table shows you what cards to install in which slots
depending on which Apple II computer you are using. The system
arrangement provided here includes all the different-sized disk devices that
might be simultaneously configured. Your system may look quite different.
Before you configure your disk devices, be sure to read the general
recommendations that apply to disk devices and how you plan to use them
with Apple Pascal.

Getting Started

Table 1. Recommended Configurations for Apple Ile, II Plus, and II

Slot

Aux.

0

2

3

4

5

6

7

Computer

Ile

II Plus or II

Ile or II Plus or II

Ile or II Plus or II

Ile
II Plus or II

Ile or II Plus or II

Ile or II Plus or II

Ile or II Plus or II

Ile or II Plus or II

Install

*Extended 80-Column Text Card (suggested), required to use the 128K Pascal
system.

*Apple Ile 80-Column Text Card (nonextended) limits you to the Pascal 64K
system.

* 16K RAM card (Apple II Language Card), required to run Pascal 1.3.

* Firmware protocol card such as the Apple Super Serial Card (suggested) or
parallel interface card connected to a printer. Pascal recognizes a printer only in
slot 1.

*Firmware protocol card such as the Apple Super Serial Card (suggested) or
communications interface card connected to a communications device such as a
modem. Pascal recognizes a communications device only in slot 2.

*Empty.
•Third-party 80-column text card or a firmware protocol card such as the Apple

Super Serial Card connected to an external terminal. Pascal recognizes these cards
only if they are installed in slot 3.

• 3112-inch disk drives, such as the Apple UniDisk 3.5.

• ProFile dedicated exclusively to Pascal.

* 5\4-inch disk drives (required in this slot to run earlier versions of Apple II
Pascal).

* ProFile dedicated to ProDOS.
•Pascal will not recognize a disk drive in slot 7, although it can use other devices

in slot 7.

If you have only 5\4-inch disk drives, install the first two in slot 6 and the
next two in slot 4.

In general, put disk devices in the slots recommended for disk devices of
that particular size, whether or not the other slots are filled.

If you have a ProFile running ProDOS, be sure that it is in slot 7 so that you
can use Pascal disk devices in slots 4, 5, and 6.

Recommended System Configurations I-3

Enhanced lie

1-4

If you have an enhanced Apple Ile (with the 65C02 processor) and you
plan to use only Version l.S, excluding any earlier version of Apple
Pascal, it will be more convenient to put the Sliz-inch disk drives in slot 6,
moving the 51A-inch disk drives down to the next lower-numbered slot.
Or, if you are using a Pascal-formatted ProFile and always want to start
up from it, you can install the ProFile in slot 6. This arrangement saves
you from having to type a BASIC command to start up from slots other
than 6. If you use earlier versions of Apple II Pascal, this arrangement
will not work with them because those versions must start up from a
51A-inch disk drive in slot 6.

Recommended Configuration cm the Apple lie

If you have an Apple Ile, the first external disk device you add must be
connected to the external drive port and each additional device must be
connected to the previous one in daisy-chain fashion. You can have only one
external 51A-inch disk drive because there is no provision for connecting
another device to a 51A-inch disk drive. Thus, it will always be the last
device in the chain.

To be able to use a Sliz-inch disk drive on the Apple Ile, you must have the
Apple Ile enhancement that updates the ROM. Pascal can access only two
Sliz-inch disk drives installed on an Apple Ile. You can install more than two
but Pascal will ignore them. If you have Sliz-inch disk drives, they must all
precede the external 51A-inch disk drive. Connect them as follows:

1. Attach the first Sliz-inch disk drive to the external drive port.
2. Attach the second Sliz-inch disk drive to the first.
3. Attach the 51A-inch disk drive to the second Sliz-inch disk drive.

The Apple Ile does not support the ProFile.

If you are using an SO-column video monitor, set the 40 /80 switch, located
just above the Apple Ile keyboard, to 80-column mode. If you are using a
40-column display, such as a television, set the switch to 40-column mode.

The Apple Ile has no slots and does not require installation of interface
cards. It is important to remember though that the Apple Ile has a startup
protocol like any other member of the Apple II family. The startup protocol
determines how the Apple checks disk devices for a program disk to start
up when you turn on the system. For this limited purpose you can think of
the internal drive as equivalent to drive 1 of slot 6 on any other Apple II. If
you connect a second 51A-inch disk drive, either alone or at the end of a
chain, it will be considered drive 2 of slot 6. If you connect a Sliz-inch disk
drive as the first external drive, it will be equivalent to drive 1 of slot 5 on

Getting Started

any other Apple II, and a second 31/z-inch disk drive will be regarded as
drive 2 of slot 5. The following table summarizes the protocol on an
Apple He.

Devices Resident or Connected

Built-in 5~-inch disk drive
(the internal drive)

First 31/z-inch disk drive
(connected to the external drive port)

Second 31/z-inch disk drive
(daisy-chained from first 31/z-inch disk drive)

Second 5~-inch disk drive
(daisy-chained from last 31/z-inch disk drive or
connected to the external drive port if it is the only
additional disk drive)

Acts Like

Slot 6 -Drive 1

Slot 5 -Drive 1

Slot 5 -Drive 2

Slot 6 -Drive 2

I Port and Slot Numbers A re Not the Same: Do not confuse Apple He
port numbers with slot numbers. They do not refer to the same thing.

Two Disk Drives Recommended

We strongly recommend that you use at least two disk drives. Backing up is
much more convenient with two drives, and you are able to separate system
disks from data disks, which significantly simplifies most tasks you perform
with the Pascal system.

Formatting a ProFile as a Pascal Device

If you have a ProFile on line while using Pascal, you need to determine
whether or not you are going to use it as a Pascal device. You cannot use
ProDOS™ on a ProFile that is formatted as a Pascal device. Your decision
determines which slot you use for the ProFile interface card.

If you format the ProFile as a Pascal device, it can hold only 77 files. If you
require very large data files, it may be ideal to use Apple Pascal on a
Pro File. But if you require many small files, using the ProFile as a Pascal
device will limit your use of the ProFile's storage space. If you do decide to
format your ProFile as a Pascal device, we recommend that you install it in
slot 5, though it would also work to install it in slots 4 or 6.

Recommended System Configurations I-5

Enhanced lie

I-6

If you are not going to use your ProFile as a Pascal-formatted device, put it
in slot 7 and make sure that it is turned off when you start up Pascal. Pascal
ignores storage devices in slot 7. This way, the ProFile will not interfere
with your use of slots 4, 5, and 6.

You can not use the ProFile with the Apple Ile.

Starting the System

Once you have ensured that you have a disk drive arrangement that will
work with Pascal 1.3, you can start up the program from drives in slots 4, 5,
or 6. Do not expect the system to start Pascal from a device in slot 7. You
will, of course, have to use the system disks as they come out of the
package to start up the first time. There are several ways to start up,
depending primarily on what disk drives you have and are starting up from,
but to a lesser extent on which model of Apple computer you have.

These startup instructions assume that you are using the standard slot
assignments recommended in the previous section. If you installed your
drives in slots other than those recommended, see the next section, "Using
Alternative System Configurations."

If you have an enhanced Apple Ile with a ProFile in slot 7, make sure the
ProFile is turned off when you start up. Otherwise, the system will start
upProDOS.

If you want to enter Pascal from ProDOS, press CONTROL-RESET to
enter BASIC and then type PR., followed immediately by the slot number
of the device from which you want to start Pascal.

Starting Up With Two 5%-lnch Disk Drives

If you have two or more Apple 5114-inch disk drives, the system starts
automatically when you insert APPLEl: in the first drive (or the internal
drive of an Apple Ile) and turn on the system.

If the power is already on, press CONTROL-RESET on an Apple II or
Apple II Plus, or 6-CONTROL-RESET on an Apple Ile or Apple Ile.

I Remember: Always start up from drive 1 of a slot with two drives
installed in it.

Getting Started

31/2-lnch Drive in Slot 6

lie

Any Other Apple II

Starting Up With One 51/.:rinch Disk Drive

If you have only one 514-inch disk drive, you need to start up in two stages;
otherwise the procedure is the same as that for two 514-inch disk drives.

Insert the APPLES: system disk and turn on the system.

If the computer's power is already on, press CONTROL-RESET on an
Apple II or an Apple II Plus, or 6-CONTROL-RESET on an Apple Ile or
Apple Ile.

After you see the message

Insert boot disk with SYSTEM.PASCAL
on it, then press RETURN

insert the APPLEO: system disk and press RETURN.

I
Note: Even though you could start a one-drive system with the APPLE!:
disk, you would not be able to do anything once you did because there
would be no room on the disk to save a file.

Starting Up From a 3112=lnch Disk Drive

Although Apple's 3¥2-inch disk drives are usually used as storage devices,
with Pascal they can be used as startup devices as well. The 3Y2-inch disk,
IPASCAL:, contains all the Pascal system files.

If you have an enhanced Apple Ile and installed a 3¥2-inch disk drive in
slot 6, the system starts automatically when you insert lPASCAL: in the
first 3Y2-inch disk drive and turn on the system.

If you are starting up an Apple Ile from an external 3Y2-inch disk drive,
you can start up only from the first external drive. Follow these steps:

1. Be sure that the internal drive is empty or thatthe door is open.
2. Insert lPASCAL: in the first 3Y2-inch disk drive and close the door.
3. Turn on the system if it is not already on, or press

6-CONTROL-RESET.

If you have an Apple II, an Apple II Plus, or an Apple Ile, you must follow
these steps:

1. Insert lPASCAL: in the first 3Y2-inch disk drive.
2. Turn on the system if it is not already on.
3. Press CONTROL-RESET twice.
4. Type PR#4 (provided the 3Y2-inch disk drive is installed in slot 4).

Starting the System 1-7

I-8

Using a Pascal-Formatted ProFile

You cannot start up Pascal on a ProFile until you format it as a Pascal disk
and transfer system files to it from either the 3llz-inch or 51A-inch disk
drives. Do not attempt this until you have read all of Part II

Using Altemative System Configurations

Before using slot assignments that deviate from those recommended, there
are several things you need to consider. Be sure that you read the following
section, and "How Pascal Assigns Volume Numbers", which follows later, if
you use different arrangements.

If you are using recommended slot assignments, you do not need to read this
section. You can skip to "What Happens During Start Up."

Are You Using Earlier Vernions of Pascal?

We have recommended that you put only 51A-inch disk drives in slot 6
because earlier versions of Pascal required a 51A-inch disk drive in slot 6 as
the startup device. If you do not plan to use any earlier Pascal programs or
any software that must start up from a 51A-inch disk drive in slot 6, you do
not need to observe this limitation.

About 5%-lnch Disk Drives

The 51A-inch disk drives differ from other disk devices because they cannot
inform the system of their status. Consequently, when you try to start up
from a 51A-inch disk drive that does not contain a "boot" disk, the system
"hangs" with the 51A-inch disk drive spinning. Disk devices of other sizes
are able to send the system on to neighboring disk drives. Thus, you might
have to start the system in two distinct ways depending on the way you
arrange your drives and which drive you are booting from.

The Startup Protocol

When you first turn on your system, its autostart ROM (specially
programmed circuitry) tries to find and load startup information from the
disk in the first disk drive in the startup protocol. This process is

Getting Started

Enhanced lie

Other lle's, II Plus, or II

Enhanced lie

commonly called "bootstrap loading," or "booting." The startup protocol is
the order the ROM uses to check for a bootable disk in the disk drives. The
startup protocol is a little different depending on which Apple II you are
using.

In general, the startup protocol the ROM uses is to begin at slot 7, check for
a bootable disk, and if it fails to find one, check slot 6 in the same way, then
slot 5, and finally slot 4. The Apple Pascal system, however, cannot start up
from slot 7. Apple II systems differ in how they look at and respond to
various disk devices during the startup process.

In most cases, if the autostart ROM finds a 5~-inch disk drive that is empty
or one that does not contain a bootable disk, the system will either hang and
the disk drive will spin indefinitely, or it will stop and give you a message to
check your disk drive. When this happens, you must override the autostart
sequence by entering BASIC and typing a command that directs the system
to the slot containing the disk drive with the boot disk in it. See the next
section to find out how.

If you have an enhanced Apple Ile, it will try to start up from any disk
device, beginning with slot 7. Because Apple Pascal cannot start up from
slot 7, be sure that slot 7 is empty, or, if a ProFile resides in slot 7, be sure
that it is turned off. This will ensure that the autostart ROM will continue
on to slot 6 to look for a bootable disk.

Each time the autostart ROM attempts and fails to boot from a disk
device, it checks the disk device in the next lower-numbered slot, unless
it encounters a 5~-inch disk drive without a bootable disk in it. In this
case, the system will hang with the 5~-inch disk drive spinning.

If you have an Apple Ile without the 65002 processor, an Apple II Plus, or
an Apple II, the autostart ROM attempts to start up only from the first
514-inch disk drive installed in the highest-numbered slot; it does not
recognize disk devices of other sizes. If it finds a 514-inch disk drive with
a bootable disk in it, the system will start it up; if it finds a 5~-inch disk
drive that fails to start up, it hangs and the disk drive spins.

If you have an Apple Ile with the enhancement that updates the ROM so
that you can use 3Y:i-inch disk drives, your system will begin its startup
protocol by checking the internal drive for a bootable disk. If it cannot
start up from the internal drive, it will check the first 3Y:i-inch disk drive
configured. If it fails to find a bootable disk there, it will stop and display
a message asking you to check your disk drive.

Using Alternative System Configurations 1-9

Other llc's

I-10

If you have an Apple Ile without the enhancement that allows you to use
3Vz-inch disk drives, your system will check the internal disk drive for a
bootable disk. If it cannot find one or if the disk drive door is open, the
system will stop and you will see a message asking you to check your
disk drive.

Startirng Up an Alternative Configuration

Put your boot disk in the disk drive from which you wish to start up. Your
startup drive must be the first disk drive installed in its particular slot (you
cannot boot from the second disk drive installed on any controller card).
Turn on your system; or press CONTROL-RE.SET or o-CONTROL-RESET,
depending on your system. Some configurations will start up at this point,
some will hang, and others will display a message.

In general, if your system hangs with a 514-inch disk drive spinning or gives
you a message to check your disk drive, follow these steps:

o Enter BASIC by pressing CONTROL-RESET twice.
o Enter the BASIC command PR#n, where n is the slot number of your

startup drive. This command sends the system to the slot number
containing the drive with your boot disk in it.

What Happens During Start Up

The initial loading of the system software into the computer's memory is
commonly called starting up or booting the program.

The first stage of booting Pascal is the loading of the P-code interpreter,
SYSTEM.APPLE. The second stage loads the Pascal operating system,
SYSTEM.PASCAL, and the file SYSTEM.MISCINFO. Starting up with one
disk that contains all three of these files is called a one-stage boot.

If space constraints make it inconvenient to have all of these files on a
single disk, you can use a two-stage boot. If you have only one 514-inch
disk drive, you are most likely to need a two-stage boot. In this case, you
begin the startup operation with a disk that contains the file
SYSTEM.APPLE in the appropriate drive. When its part of the startup
operation is complete, you remove it and insert a disk that contains the files
SYSTEM.PASCAL and SYSTEM.MISCINFO.

Getting Started

Any disk used in a startup process may be called a boot disk. The disk
containing the file SYSTEM.PASCAL is normally kept in the startup or boot
drive during Pascal system operations and is called the system disk or the
Pascal system disk.

Starting up the system as if you had just turned on the power is sometimes
called a cold boot or a cold start. You can accomplish the same thing by
pressing CONTROL-RESET on an Apple II or Apple II Plus, or
6-CONTROL-RESET on an Apple Ile or an Apple Ile; or by invoking the Quit
command from the main Command line.

If the system performs only the second-stage of the startup process, it is
often called a warm boot or a warm start. This is what happens when
you invoke the Initialize command from the main Command line. The effect
of the Initialize command (warm start) is to initialize system variables and
reload SYSTEM.MISCINFO. The effects of these different kinds of restart
commands are summarized in the following table.

Table 2. Pascal Startup Levels

Command

POWER ON or
CONTROL-RESET or
6-CONTROL-RESET
or Quit

Initialize

Files Reloaded

SYSTEM.APPLE
SYSTEM.PASCAL
SYSTEM.MISCINFO

SYSTEM.PASCAL
SYSTEM.MISCINFO

Called

Cold start

Warm start

If you want to perform a warm or cold start on a system with two 514-inch
disk drives, you can accomplish either with APPLEl: in the startup drive.
On a system with only one 514-inch disk drive, however, you can
accomplish a warm start only after you have started the system and have
APPLEO: in the startup drive.

What Happens During Start Up 1-11

I-12

How Pascal Assigns Volume Numbers

A device is something connected to your Apple II to send or receive data or
both. Input and output devices may be either block-structured or
non-block-structured. A block-structured device is one that can have a
directory and files, such as a 51:4-inch disk drive, a 3llz-inch disk drive, or a
ProFile. Non-block-structured devices, such as keyboards or printers, simply
send or receive streams of data. Either type of device may be called a
volume. Device conveys the idea of a piece of hardware. Volume conveys
the idea of the device as something that contains information.

A volume name consists of the name given to the device in the Pascal
operating system followed by a colon. Thus, a printer's volume name is
PRINTER:. The Pascal operating system also assigns volume numbers
(sometimes called unit or device numbers) to devices. Volume numbers are
associated with certain hardware slots that are reserved for designated
types of devices. A printer, for example, has the volume number, #6:. A
block-structured device is not called by a volume name unless it has a disk
inside it; otherwise it is called by its volume number. You can always refer
to a device by its volume number. The volume number always begins with a
number sign (#)and almost always must end with a colon(:), whereas
volume names must always end with a colon. See "Volume Names and
Numbers" in Chapter 3 of Part II for more about volume names.

Pascal 1.3 always assigns volume #4 to the disk drive from which you
booted the system. If you have a second drive installed on the same
controller card, it will always be assigned volume #5. Historically, volumes
#4 and #5 have been called the first and second drives. This convention
still applies but now volumes #4 and #5 may be assigned to slots 4, 5, or, 6
instead of just slot 6.

Table 3 shows how Pascal assigns volume numbers to disk devices
depending on the slot number of the startup drive. Note that the second
volume number per slot applies only to slots containing two disk drives.

Getting Started

lie

Table 3. Volume Assignments by Boot Device

A 2nd Drive
If Yon Boot From A Disk Device In Becomes Becomes

Slot 4 Slot 4 Volume #4 Volume #5
Slot 5 Volume #ll Volume #12
Slot 6 Volume #9 Volume #10

Slot 5 Slot 4 Volume #9 Volume #10
Slot 5 Volume #4 Volume #5
Slot 6 Volume #ll Volume #12

Slot 6 Slot 4 Volume #9 Volume #10
Slot 5 Volume #ll Volume #12
Slot 6 Volume #4 Volume #5

I
Refer back to the section "Recommended Configuration on the Apple He"
to review how Pascal equates Apple Ile disk device arrangements with
slot arrangements on other models.

You can use the Volumes command in the Filer to check the assignment of
volume numbers to your disk devices without having to check this table.
Make a note of your disk drive volume numbers because you need this
information when you format disks, make backups, or whenever you want
to refer to volume numbers rather than volume names.

How Pascal Assigns Volume Numbers 1-13

Using System Prompts

As soon as you have started up Pascal 1.3, the system startup screen
appears on your display.

Command: FCile, ECdit, RCun, CComp, LCink, XCecute, A(ssem, ? [1.31

Welcome APPLE1, to Apple II Pascal 1.3

Based on UCSD Pascal 11.1

Current date is 7-Nov-84

Pascal system size is 64K

Copyright Apple Computer 1979,1980,1983,1984,1985
Copyright U.C. Regents 1979

The line of text that appears at the top of the display when you start up
Apple Pascal is the Command line. Typing the first letter (either uppercase
or lowercase) of an option on the Command line immediately invokes that
command. To use the Filer, for example, just type F. Here is what the
visible portion of the main Command line looks like:

Command: FCile, E(dit, R(un, CComp, LCink, XCecute, ACssem, ? [1.3]

40aColumn Displays If you have a 40-column video screen, you will see only the left half of the
Command line shown here. Use CONTROL-A to see the right half of the
line. Consult "System Notes" in this Part to learn more about using a
40-column display.

1-14 Getting Started

Actually, this is only the first 80 columns of the Command line. To see the
second 80 columns, type ? . Whether you have a 40- or SO-column display,
you must type ? to see the rest of the Command line. The top line of the
display now looks like this:

Command: U(ser restart, !(nitialize, S(wap, MCake exec, Q(uit [1.3l

Type another ? to return to the first half of the Command line.

Whenever the Command line is displayed, you are at the Command level of
the system. Each of the words following the word "Command" indicates the
name of a command available to you from the Command level.

In most cases, you can cancel a command by pressing ESC followed by
RETURN when responding to a prompt.

Whichever command you want to use, the file or files containing the
programs needed by that command must be in a disk drive on line. To use
the Filer, for example, the system must have access to the program file
SYSTEM.FILER; to use the Editor, the system must have access to the
program file SYSTEM.EDITOR. The files required for each of the commands
available at the Command level are listed in Appendix 2B of Part II.

Some of the options on the Command line have command lines of their own,
similar in format to the main Command line. For example, the Filer
command line looks like this:

>Filer: LCdir ECdir RCem TCrans CChng DCate PCrefix K(rnch ZCero VCols QCuit ?

Each of the words following the word Filer indicates a different command
available to you in the Filer. Thus, in the Filer you can ask the system to
List a directory, or give an Extended directory listing, or Transfer a file, or
list the Volumes on line, and so on.

Note that you always have to go back to the Command level before choosing
another command on the Command line. It is not possible, for example, to
go directly from the Editor to the Filer or from the Filer to the Linker; you
must first pass through the Command level.

Each of the commands available from the Command level is explained
further in Chapter 2 of Part II.

Using System Prompts I-15

One 5114-lnch Disk Drive

Make Backups of Your System Disks

We strongly recommend that you make copies of each system disk.

After you copy the system disks, store the originals as backups in a safe
place. If something happens to the copies, you can always use the originals
to produce another set of working disks. Don't take chances with your
originals!

You must format disks so that you can make backups of Pascal system
disks, and so that you will have blanks ready to create your own
arrangements or working versions of Pascal system disks. Check the
volume numbers of your disk drives if you have not already done so.

Formatting Disks

Before you can copy or create Pascal disks, you must format blank or
recycled disks so that they are ready to receive Pascal files and create the
proper directories. You must use the Pascal Formatter to format your disks.
The Formatter is a utility program that consists of two files found on the
APPLES: system disk. To learn more about the Formatter, see Chapter 9 of
Part II.

Before formatting, you must start up your system by using a two-stage
boot as described in previous sections. Thus, you will replace APPLEO:
with APPLES: when you are ready to format.

If you are using lPASCAL:, all the files you need for formatting will be on
that disk. Otherwise, formatting proceeds as described below.

Follow these steps:

l. Make sure that APPLES: is on line in one of your disk drives.
2. From the Command line, type x for Execute.
3. In response to the question Execute what file?, type

APPLE3:FORMATTER

4. Make sure that the disk you want to format is in a disk drive whose
volume number you have checked. (If you have a one-drive system, you
will have to remove APPLES: from the drive and replace it with the disk
to be formatted.)

5. You will see this prompt; type the volume number of the device
containing the disk you wish to format.

Format which volume II ? C4, 5, 9 .. 12, ~esc> to exit) ==>

1-16 Getting Started

6. You will see this prompt; press RETURN.

Enter new volume name for this disk.
(<ret> for default name of BLANK:, <esc> to exit) ==>

Pro File

7. Repeat steps 4 through 6 for as many disks as you are formatting.
8. Be sure that your system disk is in the startup drive and then press ESC

to return to the Command line.

I
You must format a Pro File just like any other Pascal disk if you plan to
use it with Pascal. Do not format a ProFile until you have read all of
Part I.

Making Backups

To make copies, use the Transfer command from the Filer command line.
Until you learn more about volume names, it may be easier in the following
instructions to refer to your source and destination disks by volume
numbers.

3V2-lnch Disks I If you are using !PASCAL:, all the files you need for making backups will
be on that disk. Otherwise, formatting proceeds as described below.

To learn more about convenient ways to make backups, see "Copying an
Entire Disk" in Chapter 3 of Part II. Otherwise, follow these steps:

1. Type F to enter the Filer if you are at the Command level. (Remember
that you can remove the system disk once you are in the Filer.)

2. Type T for Transfer from the Filer command line.
3. Make sure the disk you want to copy is on line. (If you have a two-drive

system, it is efficient to make sure that your destination disk is also on
line.)

4. Respond to the question Tran 5 fer What Fi 1 e? by typing the
volume name or volume number of the source disk to be copied (be sure
to include the colon at the end) and press RETURN.

5. Respond to the question To Where? by typing the volume name or
volume number of the destination disk that is to become the copy. The
destination disk must not have the same name as the source disk. (If
you have a one-drive system, follow the instructions displayed on the
screen, switching the disks back and forth until the copy is complete.)

Make Backups of Your System Disks !-17

I-18

A Warning

.&.Warning

6. Note that both disks will have the same name as soon as the copy is
complete. Remove either the copy or the original immediately.

7. Put your system disk, either APPLEO: or APPLEl:, back in the startup
drive before you Quit the Filer.

Do not allow two disks With the same volume (disk) names on
line at the same time. If you do, you are risking the contents of
both disks.

It is important that you never attempt to transfer an entire volume (disk)
to a volume of another size, for example 5~-inch to 3\12-inch. You will get
an error message warning you that the two volumes are not of the same
size. You must always transfer files, not volumes, between different-sized
disk devices.

System Notes

In this section, we discuss the ways that your hardware affects how you use
Apple Pascal. Your use of this manual and of Pascal will be affected

o If you are using a 40-column rather than an 80-column display;
o If you use the 64K Pascal system rather than the 128K Pascal system;
o If you are using an Apple II or Apple II Plus rather than an Apple Ile or

Apple Ile;
o If you have a shift-key modification;
o If you have only one disk drive;
o If you have different-sized disk devices on line;
o If you are using an external terminal.

Using a 40=Coiumn Video Display

If you are using a television set as your video display, we recommend that
you use it in 40-column mode.

lie If you have installed the Extended 80-Column Text Card in an Apple Ile
so that you can use the 128K Pascal system, but want a 40-column video
display, you must use the SET40COLS utility, described in Chapter 9 of
Part II, to change the 80-column setting. If you do not install an 80-column
card, you will automatically be in 40-column mode.

lie I If you have an Apple Ile and are using a television set as your video
display, set the 40/80 switch just above the keyboard to 40.

Getting Started

II Plus and II I If you have an Apple II or Apple II Plus, your display will automatically
be 40 columns wide unless you install an 80-column card or are using an
80-colurnn external terminal.

If you are using Apple Pascal primarily for programming, you probably
won't experience much inconvenience with a 40-column display once you
learn the two operating commands needed to control horizontal movement
on the display. For some, it may be preferable because many jobs rarely use
more than 40 columns. Limiting yourself to 40 columns is a disadvantage if
you are using Pascal for substantial word-processing tasks.

Apple Pascal uses an 80-colurnn display whether you see all 80 columns or
not. In 40-column mode, you are effectively defining a "window" on the
display that is 40 columns wide. Then you must use the CONTROL-A
command to switch back and forth between the right and left halves of
Pascal's 80-column display. CONTROL-A is a toggle command; use it from
either side to get to the other. Until you know the command lines, we
recommend that you get in the habit of using CONTROL-A to check them.

Remember: Some of Pascal's command lines are longer than 80
columns. In such cases, all users must type ? to see the rest of the options
available on these command lines and to switch back again to the first 80
columns of the line. This process is the same whether or not you are in
40-column mode. In addition, however, you must use CONTROL-A within
each of the two larger (80-column) "halves" of the line. This means there
will be times when you must type both ? and CONTROL-A to get back to
the beginning of a command line.

Remember too, when you unexpectedly see a blank screen, you probably
need to issue another CONTROL-A to get back to the left-most 40 columns
of the screen.

If you want the 40-column display to scroll right and left following the
cursor, you must use the CONTROL-Z command. Typing CONTROL-Z
initiates what is calledAuto-jollow mode, because the display window
automatically scrolls to keep the cursor within visible range. Auto-follow
mode is cancelled by the CONTROL-A command.

Because CONTROL-A and CONTROL-Z are control-character commands,
they operate at all levels of the Pascal system. Only the nature of the
CONTROL-Z function limits its application to editing tasks. Because of this
consistency throughout, you will rarely be reminded in this manual to use
these control characters.

See Chapter 4 of Part II to learn more about how to use the Editor in
40-colurnn mode.

System Notes 1-19

1-20

The 128K and 64K Pascal Systems Compared

Apple Pascal consists of both a 128K and a 64K system. If you have an
Apple Ile or an Apple Ile with an Extended 80-Column Text Card, you
should use the 128K system; if you have anything else, you must use the
64K system. It is possible to use the 64K Pascal system on a computer with
128K of memory. If you use the 64K system, you will have less space
available for developing and running programs and you will not have the
extended library capabilities of the 128K system.

To Use the 1281< System

If your Apple has 128K of memory, you must replace two files on your
system disks in order to make the extra memory available to Pascal. You
replace the files that come on the disks initially as SYSTEM.APPLE and
SYSTEM.PASCAL with 128K.APPLE and 128K.PASCAL respectively, and
rename the replacements as SYSTEM files. To learn how to replace these
files, see "Customizing Pascal System Disks" later in Part I. Once you have
replaced these files, you will see a change in the line on the Pascal startup
screen that informs you of the Pascal system size. Initially it says the
system size is 64K; after you make the 128K file replacements, it says
Pascal system size is 128K.

128K Memory Required If you try to start up by using a customized
128K system disk on an Apple with only 64K of memory, you will see the
message

128K memory required

limits on the 64K System

The 64K Pascal system allows a program to have a maximum of 32
segments as opposed to 64 segments on the 128K system. You can write a
program on the 64K system that uses segment numbers larger than 31, but
you must run it on a 128K system. Even though you can compile the
program, it won't run on the 64K system. To learn the details about this
difference, see Part III, the Language Manual.

The 64K Pascal system allows only one library file for each executable
program: SYSTEM.LIBRARY. It does not support the program libraries or
library name files described in Part III, the Language Manual.

Getting Started

To learn how to use operating-system swapping and other techniques to
increase the space available for developing and running programs on a 64K
system, read the section on the Swap command in Chapter 2 of Part II,
Program Preparation Tools, and read all of Chapter 15 in Part III, the
Language Manual.

Using an Apple II or an Apple II Pius

If you have either an Apple II or a II Plus you will need to use control
characters to accomplish some things that are done simply through the use
of additional keys on the Apple Ile or Apple Ile. If you have installed a
shift-key modification, you need to learn how to activate it from Pascal.

One File Replacement Required

The Apple II and Apple II Plus have their own special .MISCINFO files (one
for a 40-column display and one for an SO-column display). You must use
one of these to replace the standard SYSTEM.MISCINFO file that came on
your system disks, renaming the replacement SYSTEM.MISCINFO in the
process. To learn how to replace these files, see "Customizing Pascal
System Disks" later in this Part.

Keyboard Differences

When using Apple Pascal, the differences between the Apple II keyboard
and the Apple Ile and Ile keyboards mean the following for Apple II or
II Plus users:

o Lowercase characters are not directly available from the keyboard unless
you have a shift-key modification.

o The t and i keys are absent, which means that you must use control
characters to accomplish these cursor moves.

o The left and right bracket characters, [and], are absent. These
characters can be produced from the keyboard, however, by using
control characters instead.

o The DELETE key is absent but, because Pascal 1.3 does not use this key,
it is of no consequence.

o The special function 6 and Ii keys are absent. This difference is not
significant while you are using the Pascal system. (However, if you want
to write and run programs that use these special function keys, you can
attach hand controls to your system.)

System Notes 1-21

1-22

o The TAB key is absent, which means that you must use a control
character to perform the TAB function.

o The CTRL key is identical in function to the CONTROL key on the
Apple Ile and Apple Ile.

Control Chall'acters

A control character is an operating-system command that can be given at
the keyboard. Certain other special-function keys, such as SHIFT, are
sometimes used in similar command sequences and are included as control
characters. See your owner's manual for a complete discussion.

By using control characters, Apple Pascal provides alternatives to the
all-uppercase keyboard on an Apple II or Apple II Plus. You can shift the
keyboard back and forth between uppercase and lowercase as though you
were using a shift-lock key, by typing CTRL-E (Enable). This command also
turns on the reverse video mode, so that you can display uppercase
characters in reverse video to distinguish them from lowercase characters
on the screen.

You can type CTRL-W (Word) to force the keyboard into uppercase for the
next character typed, and then back into lowercase for the character
immediately following. CTRL-W also turns on reverse video. Using these
control characters, you can create a file containing both uppercase and
lowercase letters so that when you print it, true uppercase and lowercase
characters will appear.

You can turn on reverse video without changing the keyboard case by
typing CTRL-R (Reverse).

CTRL-T (Turn off) turns reverse video off and also restores the keyboard to
its normal uppercase mode. CTRL-R, CTRL-T, CTRL-E, and CTRL-W are
operative at all levels of the system. These control characters affect only
alphabetic characters.

lie or lie I The control-character commands discussed in this section are ignored on
an Apple Ile or an Apple Ile, both of which perform these tasks in more
direct ways.

Table 4 shows you what control characters to use to perform certain tasks
on an on an Apple II or Apple II Plus.

Getting Started

lie Programmers

Table 4. Summary of Special Command Characters

Use

CTRL-E

CTRL-W

CTRL-R

CTRL-T

CTRL-K

SHIFT-M

CTRL-0

CTRL-L

CTRL-I

In Order To

Turn on reverse video and shift between uppercase
and lowercase characters like the shift-lock key on a
typewriter.

Turn on reverse video and force the keyboard into
uppercase for the next character typed. After the next
character is typed, the keyboard is forced into
lowercase.

Turn on reverse video but leave the keyboard in
uppercase.

Restore normal operation by turning off reverse video
and forcing the keyboard into uppercase.

Produce the left bracket character

Produce the right bracket character.

Move the cursor up.

Move the cursor down.

Move the cursor to the next tab stop.

Using the Shift-Key Modification

If you have an Apple II or Apple II Plus with a shift-key modification, also
known as the game-paddle mod, additional character translations are
available.

If you want the shift-key modification (mod) installed on your Apple II or
Apple II Plus, see your dealer. Havmg it installed

o Allows you to shift between uppercase and lowercase characters by
using the shift key in the usual manner;

o Causes certain keyboard character translations, where, for example,
typing SHIFT-P produces an uppercase P instead of an@.

The only reason to get a shift-key mod on an Apple He is if you want a
program to be able to test to see if the user has pressed SHIFT in response
to a prompt. The shift-key mod on an Apple He does not require
activation.

System Notes 1-23

1-24

If you have an Apple II or II Plus with a shift-key mod, the modification is
not automatically activated at startup time. You must activate the shift-key
mod to take advantage of its ability to shift between uppercase and
lowercase characters in the conventional fashion. You can deactivate it
when desirable.

o To activate the shift-key mod, press either CTRL-E or CTRL-W after
starting up Pascal.

o To deactivate the shift-key mod, press CTRL-T.

You must activate the modification to use SHIFT to obtain uppercase and
lowercase characters in the conventional manner. You do not have to
activate the mod to use or test the SHIFT key as a control (using the
UNITSTATUS procedure), or to obtain character translations.

The following table shows the keyboard character translations on an
Apple II or Apple II Plus that are a direct effect of the modification and that
remain in effect before and after it is activated.

Table 5. Character Translations With Shift-Key Mod

Pressing These Keys

SHIFT-N
SHIFT-P
SHIFT-M
CTRL-SHIFT-N
CTRL-SHIFT-P
CTRL-SHIFT-M

Produces This Character

N
p
M

@
l

Notes on the 5%=1nch Disk Drive

Two disk drives are recommended because you must switch disks
frequently with one drive.

If you have only one drive, prompts in certain parts of the Pascal system
may request disks by volume name, by asking for a disk with a particular
file on it, or by asking for the disk that is to undergo a certain operation. You
will also need to read the one-drive notes in this manual.

Getting Started

One 5%-lnch Disk Drive Notes similar to these address questions one-drive users face in deciding
the right sequence of disks to use with particular system files and
commands. Some notes are specific to 5\4-inch disk drives; others apply
to one-drive systems generally.

If you have only one 5\4-inch disk drive, you must start up Pascal in two
stages, using the APPLE3: and then the APPLEO: disk. The APPLEO: disk
will be your Pascal system disk. So that you can make more task-specific
disks, you will probably want to learn all you can about which files are
needed for which system commands. Read the section "Customizing Pascal
System Disks," below, and Appendix 2B for this information.

Notes on the 3V2-lnch Disk Drive

Pascal 1.3 supports Apple 31/:i-inch disk drives. You can start up the system
with the !PASCAL: disk.

Because all the Pascal system files fit on one disk, you may skip the
discussion in the next section about creating alternate startup disks. If you
are using only 31/:i-inch disk drives, you don't need to learn which files are
required for which system commands and you need not be concerned with
two-stage startup procedures. In most other ways, however, 31/:i-inch disks
are handled just like 5\4-inch disks. They are formatted in the same way,
using the same utility program, and their directories are manipulated in the
same way in the Filer.

One-drive notes will sometimes apply to users with one 31/:i-inch disk drive.
Unless one-drive notes are specifically marked for 5\4-inch disk drives, be
sure to read them.

ProFile Notes

You can format the ProFile using the Pascal Formatter just as you can any
other disk. Do not attempt to format your Pro File as a Pascal device
until you are sure that is what you want to do!

I Remember: If you decide to make the ProFile a Pascal device, it will be
limited to storing 77 files and cannot be used with ProDOS.

After formatting, you can transfer all the files from the Pascal system disks
to the ProFile. You can transfer files only, not volumes, from either the
5\4-inch or 31/:i-inch disks.

System Notes 125

1-26

Once you transfer the system files, you can start up from the ProFile and do
not need to be concerned with system disks or file arrangements. Be sure to
read the next section, "Two Different Disk Sizes On Line."

Two Different Disk Sizes On line

Keep in mind that disk directories differ from one disk size to another. Do
not try to transfer the contents of a disk together with its directory to a
disk of another size. This will not work whether you are trying to transfer a
smaller volume to a larger volume or vice versa. If you attempt this, you will
see a message warning you that the two volumes are not the same size.

To copy the contents of a disk to a disk of another size, transfer the contents
in the form of individual files. To learn a convenient way to transfer all files
on a disk, see the discussion of the Transfer command in "The Filer,"
Chapter 3 of Part II.

Using an Extemal Terminal

An external terminal, such as the Hazeltine 1500, consists of a keyboard
and monitor console that provides an upper- and lowercase, 80-column
video display for text editing. If you want to use an external terminal with
Apple Pascal, read "Using an External Terminal" in Chapter 9 of Part II. If
you have a Hazeltine 1500, you can learn there how to use existing files to
make a boot disk for it. If you have another kind of external terminal, you
can learn in Chapter 9 how to create your own system files for it by using
the system reconfiguration utility program.

Line Feeds to Your Printer

If you have a printer that does not require a line feed after each carriage
return, see "The Printer Linefeed Utility" in Chapter 9 of Part II.

Customizing Pascal System Disks

If you have a 128K system or an Apple II or II Plus, you must replace the
specific system files discussed earlier, whether or not you change the
arrangement of files on your disks.

Getting Started

For particular tasks, it is sometimes convenient to have the 5~-inch disks
arranged differently or simply to use them differently. If you are using only
one 5~-inch disk drive, space constraints make it more likely that you will
want to create task-specific disks.

If you are using only 311z-inch disks, the process of renaming files is all that
is required to make replacements.

File Replacements for 128K Systems

As they come out of the package, the Pascal system disks are arranged so
that you can start up a 64K system. Otherwise users with 64K systems
would be unable to start up initially, even to rearrange their system files.

If you have a 128K system, you should replace the SYSTEM.APPLE and
SYSTEM.PASCAL files on your system disks with the 128K.APPLE and
128K.PASCAL files found on the APPLE3: disk. When you transfer these
files from the APPLE3: disk to your new system disk, you must rename
them as SYSTEM.APPLE and SYSTEM.PASCAL. If you are using
IPASCAL:, you simply rename 128K.APPLE and 128K.PASCAL as
SYSTEM.APPLE and SYSTEM.PASCAL. Without these replacements,
Pascal can not access the additional memory available on your system.

Read "Rearranging Disks and Replacing Files," which follows shortly, and
for further information, read Chapter 3, "The Filer," in Part II, which
describes the use of the Transfer and Change commands in depth. If you are
using only 311z-inch disks, you may skip instead to "Renaming Files on the
311z-Inch Disk."

Replace .MISCiNFO on an Apple II or II Plus

Your system disks contain three .MISCINFO files. One is the standard
SYSTEM.MISCINFO file present on the APPLEO: and APPLE I: disks. It is
used with any Apple Ile or Apple Ile. The other two are the II40:MISCINFO
and IISO:MISCINFO files found on the APPLE3: disk and used with an
Apple II or Apple II Plus. If you have either of these models you must
replace SYSTEM.MISCINFO on APPLEO: and APPLEl: with either the
II40:MISCINFO or the IISO:MISCINFO file from APPLE3:. If you are using
IPASCAL:, transfers are not necessary, but you need to rename the
appropriate .MISCINFO file as SYSTEM.MISCINFO.

Whether you select II40:MISCINFO or IISO:MISCINFO depends on whether
you are using a 40-column or an SO-column video display on your Apple II or
Apple II Plus.

Customizing Pascal System Disks I-27

1-28

If you are using an SO-column display, transfer a copy of IISO.MISCINFO
from the APPLE3: disk to APPLEO:, APPLEl:, and any other system disks
you use. Each time you transfer IISO.MISCINFO, you must change its name
to SYSTEM.MISCINFO.

If you are using a 40-column display, transfer a copy of II40.MISCINFO to
the APPLEO: disk, the APPLEl: disk, and to any other system disk you are
using. Remember to change the name from II40.MISCINFO to
SYSTEM.MISCINFO when transferring the file.

The following section details the steps you must take to replace the
standard SYSTEM.MISCINFO file with the II40.MISCINFO file. Follow that
example or see Chapter 3 of Part II to learn more about transferring files.

Rearranging Disks and Replacing Files

The following example describes the replacement of the standard
SYSTEM.MISCINFO file on APPLEl: with the proper file for an
Apple II Plus with a 40-column video display (the II40.MISCINFO file found
on APPLE3:). Use the same procedure described in this example to transfer
any other files you need to replace: IISO.MISCINFO, 128K.APPLE, or
128K.PASCAL.

A. Warning I Be sure to modify only copies of your Pascal system disks, not the
originals, which should be stored intact as backups.

File Replacement Example For 51/11-lnch Disks

To replace SYSTEM.MISCINFO on APPLEl: with II40.MISCINFO, follow
these steps:

1. Type F to enter the Filer from the Command level.
2. From the Filer command line, select the the Transfer command, which

is what you use to copy files.
3. Be sure the write-enable notch on your APPLE3: disk is covered with a

write-protect tab to ensure that you do not accidentally write over or
delete any Pascal files on that disk. Make sure, on the other hand, that
the APPLEl: disk to which you are copying does not have a tab covering
its write-enable notch.

Getting Started

4. Insert the APPLES: disk in the startup drive.

If you have a second drive, insert a copy (not the original) of the
APPLEl: disk in it.

5. Answer the question Tran 5 fer what f i 1 e? by typing
APPLE3: r r 40. MI sc INFO and pressing RETURN.

6. Users with two or more drives should answer the To Where? prompt
by typing APPLE 1 : SYSTEM.Mr sc I NFD and pressing RETURN.

Users with one drive must first replace APPLES: with APPLEl: before
answering the prompt in the same way. When the system prompts you
for the "destination" disk, press the SPACE bar ;,i:s indicated.

7. Now the system asks if it should delete the original SYSTEM.MISCINFO
before copying. Type Y for Yes, because you do want to replace that file
with the II40.MISCINFO file.

8. Repeat this procedure for any other system disks that you use regularly.

Use the same method to make any other replacements necessary.

Renaming Files on the 3112-lnch Disk

To rename the 128K.APPLE file on lPASCAL:, follow these steps:

.I.. Type F to enter the Filer from the Command level.
2. Type c to use the Change command in the Filer.
3. Whenyouseethepromptchange what file ?,type

1PASCAL:12sK. APPLE and press RETURN.
4. Whenyouseethepromptchange to what ?,typeSYSTEM.APPLE

and press RETURN.
5. When you are asked to

Remove old 1PASCAL:SYSTEM.APPLE ?

type Y for Yes.
6. You will see the message

1PASCAL:128K.APPLE -->SYSTEM.APPLE

Change the names of any other files that need to be "replaced" on your
lPASCAL: disk in the same way.

Further Changes Not Essential

If you have a 64K Apple IIe, you may not need or want to make any changes
to your system disks because the initial arrangement allows you to use
Pascal with either one or two drives. Once 128K users and Apple II and

Customizing Pascal System Disks 1-29

1-30

II Plus users have made the required replacements, they likewise may not
need or want further changes. However, the arrangement of files on your
system disks is by no means fixed.

The optimal arrangement for you may depend on how you intend to use
Pascal. If your system has only one 51A-inch disk drive, you may need to
rearrange files or create special disks. Once you learn which system files
are necessary to perform which Pascal tasks, the rest of the decision is
yours. See "System Files as Required by Pascal Commands," in
Appendix 2B, to learn which Pascal commands require which system files.

When making custom disks, you will need to use the Filer's Transfer
command to move files from one disk to another, the Filer's Remove
command to remove unnecessary files, and the Filer's Change command to
change the names of files and disks. Filer commands are explained in
Chapter 3 of Part IL

Note that SYSTEM.FILER, the file that contains the Filer program, resides
on APPLEl:, APPLEO:, and lPASCAL:. However, SYSTEM.FILER does not
need to be available to the system once the Filer command line is displayed
on the screen. Thus, when using the Filer to rearrange disk files, you can do
the following:

1. Start up your system as usual.
2. Press F to enter the Filer.
3. If necessary, remove APPLEl: (or APPLEO:) from the startup drive to

make room for other disks.
4. When you want to return to the Command level, place APPLEl: (or

APPLEO:) back in the startup drive and press a for Quit.

If you have one 51A-inch disk drive, the next section and Appendix 2B
provide the information you need to decide on the best configuration of files.

Apple Pascal System Disks and Files

The disks that contain the programs making up the Apple Pascal system
are called the system disks. The files on those disks are called system files
or program files; a distinction is often made between the files whose names
begin with SYSTEM. and the other Pascal files. The SYSTEM files are those
that are essential to run the basic programs that constitute the Pascal
system. Many of the other Pascal 1.3 files are utility programs and in the
largest sense are part of the Apple Pascal system. A few demonstration
programs account for the remaining files included with Apple Pascal.

Getting Started

This section describes the Pascal disks and files.

System Disks-As Supplied

APPLEO: contains all the files needed to edit and run Pascal programs,
especially on a one-drive system; it includes SYSTEM.COMPILER, but not
SYSTEM.APPLE, which is needed to start up the system. This is the second
of two disks used for a two-stage boot on a one-drive system.

APPLEl: contains all the files you need to edit text and to start up the
system. It is used in conjunction with the APPLE2: disk to compile or run
Pascal programs.

APPLE2: contains the Compiler, Linker, Assembler, and other program
development tools. It is used for program development.

APPLE3: contains SYSTEM.APPLE, the Formatter program, several other
utility programs, a few demonstration programs for the general user, and
the 128K.APPLE and 128K.PASCAL files needed to use additional memory.
It also contains the .MISCINFO files needed for use on an Apple II or II Plus.
This is the first of two disks used for a two-stage boot. To learn about the
the demonstration programs on APPLE3:, consult Appendix 2F of Part II.

IP AS CAL: contains all the files found on all four of the other system disks.
It is the only 3Y:i-inch system disk and performs all Pascal 1.3 functions. It is
physically smaller than the other disks, though it holds 1600 blocks and can
be used to store textfiles and codefiles as well as system files.

The following table lists the names of the files on each of the Pascal system
disks. The order of the files on any disk is unimportant. The Filer's
List-directory command will display the exact length of each file for you.
See Appendix 2B for approximate block lengths.

APPLEO: APPLEl: APPLE2:

SYSTEM.PASCAL SYSTEM.APPLE SYSTEM.ASSMBLER
SYSTEM.COMPILER SYSTEM.PASCAL SYSTEM.COMPILER
SYSTEM.EDITOR SYSTEM.EDITOR SYSTEM.LINKER
SYSTEM.FILER SYSTEM.FILER LIBRARY.CODE
SYSTEM.LIBRARY SYSTEM.LIBRARY LIBMAP.CODE
SYSTEM.MISCINFO SYSTEM.MISCINFO 6502.0PCODES
SYSTEM.CHARSET SYSTEM.CHARSET 6502.ERRORS
SYSTEM.SYNTAX SYSTEM.SYNTAX

Apple Pascal System Disks and Files 1-31

1-32

APPLE3:

SYSTEM.APPLE
FORMATTER.CODE
FORMATTER.DATA
BINDER.CODE
LINEFEED.CODE
SET40COLS.CODE
II40.MISCINFO
IISO.MISCINFO
BALANCED. TEXT
CROSSREF.TEXT
DISKIO.TEXT
GRAFCHARS.TEXT
GRAFDEMO.TEXT
HAZEL.MISCINFO
HAZELGOTO. TEXT
HILBERT.TEXT
SETUP.CODE
SPIRODEMO.TEXT
TREE.TEXT
128K.APPLE
128K.PASCAL

!PASCAL:

Contains all the files
listed on the four
APPLE: 514-inch disks

When one of these files is needed by the system, it usually doesn't matter
which disk the file is on or which drive the disk is in. The cases when a file
must be on a particular disk or in a particular drive are pointed out in the
rest of this manual and listed in "System Files as Required by Pascal
Commands" in Appendix 2B.

Apple Pascal refers to the disk containing the file SYSTEM.PASCAL as the
Pascal system disk. Thus, whenever you are prompted to insert the Pascal
system disk, you should insert the disk containing the file
SYSTEM.PASCAL. This disk must be in the startup drive each time the
system returns to the Command level.

Getting Started

Part II Program Preparation Tools

PREFACE

CHAPTER!

CHAPTER2

II-ii

Contents

Figures and Tables

An Overview
System Software Tools 2
Pascal Files 3

Creating and Editing Files 3
The Workfile 4

How Pascal 1.3 Compares With Pascal 1.2 6

The Command Level
The Command Level 10
The Command-Level Options 11

File 12
Edit 13
Run 13
Compile 14
Link 14
Execute 14
Assemble 15
User Restart 15
Initialize 16
Swap 16
Make Exec 17
Quit 17

Contents

xvii

xix

1

9

CHAPTER3

Commands Usable at All Levels 18
CONTROL-A 18
CONTROL-Z 18
CONTROL-@ 18
CONTROL-F 19
CONTROL-S 19
CONTROL-RESET or 6-CONTROL-RESET 19

The Filer
Introduction 22

Disk Files Needed by the Filer 24
How Files Are Stored 24

Using the Filer 26
Volume Names and Numbers 27

Shorthand Volume Names 28
Standard Volume Names and Numbers 29

Specifying Files 30
Directories 30
Filenames 30
File Size Specification 31
Disk File Types 32
Wildcards 32

The Filer Commands 36
Volume Information Commands 36

Volumes 36
List Directory 38
Extended Dir-ectory 40

Contents

21

II-iii

II-iv

Moving Files 41
Transfer 41
Copying an Entire Disk 47

General File Commands 50
Remove 50
Change 51
Prefix 54
Date 55
Krunch 56
Zero 57
Make 57
Quit 59

Workfile Commands 59
Get 59
Save 60
New 64
What 65

Disk Upkeep Commands 65
Bad-Blocks 65
Examine 68

File Specification Summary 70
Summary of Special Characters 70
Filename Conventions 71
Size Specifications 71

Contents

CHAPTER4 The Editor
Introduction 7 4
Disk Files Needed 7 4

Editing With Two 5Y4-Inch Disk Drives 74
Using the System Workfile 75
Editing Without Workfiles 75

Editing With One 5Y4-Inch Disk Drive 76
Using the System Workfile 76
Editing Without Workfiles 77

Editing With a 311:!-Inch Disk Drive 78
Text-Editing Only 78

A Walk Through the Editor 78
A "Window" Into the File· 78
The Editor Command Line 80
Notation in System Prompts 80
Entering the Editor 81
Starting a New File 82
Moving the Cursor 83
Inserting Text 84
Checking the Environment 86
Deleting Text 86
Saving Your Work 87
Leaving the Editor 87

Cursor Behavior in the Editor 89
Cursor Movement 89
Repeat-Factors 90
Direction Indicators 91
Cursor Moves 92
The Page Command 93

Contents

73

II-v

II-vi

The Editor Commands 93
Insert 96

Text Formats 97
Programming Mode 98
Document Mode 99
Auto-indent and Filling True 100
Auto-indent and Filling False 101

Delete 101
Copy 104

Copying From a File 104
Copying From the Copy Buffer 106

Exchange 108
Find 108

Direction 109
Repeat-Factor 109
Target String and Delimiters 110
Unease Option 110
Literal or Token Search 111
ESC Option 111
Same-String Option 111

Replace 113
Direction 114
Repeat-Factor 114
Literal or Token Search 114
Unease Option 114
Target Strings and Delimiters 114
Verify Option 115
ESC Option 115
Same-String Option 116

Contents

Jump 118
Adjust 118
Set 120

Set Marker 120
Set Environment 122

Auto-indent 123
Filling 123
Left Margin, Right Margin, Paragraph Margin 124
Command Character 124
Token Search 125
Number of Characters 126

Margin 126
Verify 128
Zap 128
Quit 130

Exit 130
Save 131
Write 132
Update 132
Return 133
Change 133

Special Commands Summary 134
Cursor Moves 134
Repeat Factor 134
Set Direction 135
40-Column Screen Commands 135
Apple II and II Plus Only 135

Special Characters 135
Upper/Lowercase Commands 135

Contents II-vii

CHAPTER5

II-viii

The Compiler
Introduction 138
Disk Files Needed 138
Using the Compiler 140

Requesting a Program Listing 141
Allocating File Space 142

Using Size Specifiers 142
Compiler Messages 143
Responding to Compiler Errors 144
Handling Stack Overflow 145

The Program Listing 145
Execution Error Messages 14 7
Compiler Options 147

Options That Do Not Affect Program Code 148
The "Swapping" Option 148
The "Listing" Option 148
The "Listing Page" Option 149
The "Codefile Comment" Option 149
The "Quiet Compiling" Option 150

Error-Checking Options 150
The "I/O Check" Option 150
The "Range Check" Option 151
The "Varstring" Option 151
The "GOTO" Option 152

Contents

137

CHAPTER6

Control of Segments and Libraries 152
The "Next Segment" Option 152
The "No Load" Option 152
The "Resident" Option 153
The "Using" Option 153

Miscellaneous Options 154
The "Include" Option 154
The "User Program" Option 155

The Assembler
Introduction 158

Files Needed 158
Allocating File Space 159

Using the Assembler 161
Responding to Assembler Errors 163
Reference Symbol Table 164
A Sample Program 165

Assembly-Language Routines 165
The Assembly Listing 168
A Pascal Host Progam 172
Using the Host Program 173

Assembler Information 175
Syntax of Assembler Source Files 175
Syntax of Assembly-Language Statements 176

Indentifiers 177
Labels 177

Contents

157

II-ix

II-x

Local Labels 178
Constants 179
Location Counter 179
Addressing Mode 179
Expressions 180

Linkage to Assembly-Language Routines 183
Conventions 184

The Assembler Directives 184
Routine-Delimiting Directives 185

.PROC 186

.FUNC 186

.END 186
Data Directives 187

.ASCII 187

.BYTE 187

.BLOCK 188

.WORD 188
Label-Definition Directives 189

.EQU 189

.ORG 189

.ALIGN 189

.ABSOLUTE 190

.INTERP 190
Macro Directives 190

.MACRO and .ENDM 191
Conditional-Assembly Directives 194

.IF, .ELSE, and .ENDC 194

Contents

Host-Communication Directives 195
.CONST 196
.PUBLIC 196
.PRIVATE 196

External-Reference Directives 197
.DEF 198
.REF 199

Listing-Control Directives 199
.LIST and .NOLIST 200
.MACROLIST and .NOMACROLIST 200
.PATCHLIST and .NOPATCHLIST 201
.PAGE 201
.TITLE 201

File Directive 202
.INCLUDE 202

Assembler Use Summaries 203
Assembly Process Summary 203
Assembler Directive Summary 203

Routine-Delimiting Directives 203
Data Directives 204
Label-Definition Directives 204
Macro Directives 204
Conditional-Assembly Directives 204
Host-Communication Directives 205
External-Reference Directives 205
Listing-Control Directives 205
File Directive 205

Contents II-xi

CHAPTER 7

CHAPTERS

II-xii

The Linker
Introduction 208
Linking Using the Link Command 209

Files Needed 209
The Host File 210
The Library Files 210
The Map File 211
The Output File 212

Linking Using the Run Command 213
Files Needed 213

The Librarian
What Is a Library? 216
The System Librarian 216

Files Needed 217
Using the Librarian 218

The Output File 218
The Input Files 219
Moving Segments Into a Library 219
Inserting a Copyright Notice 222

Library Mapping 223
Files Needed 223
Using the Library Mapper 224
Library Map Example 226

Library Use Summaries 227
The System Librarian 227
Library Mapping 228

Contents

207

215

CHAPTER9 Utility Programs
Introduction 230
Formatting New Disks 230

Disk Files Needed 230
Using the Formatter 231

Using an External Terminal 233
Requirements 233
Terminal Information 234

General Terminal Information 234
Miscellaneous Information 235
Control Key Information 235
Video Screen Control Characters 237

Setup Parameters 238
Reconfiguring the System 241
Changing GOTOXY Communication 243

Disk Files Needed 244
Example: Setup for Hazeltine 1500 244

The Printer Linefeed Utility 246
Disk Files Needed 246
Using the Linefeed Utility 247
For Frequent Use 247

Setting a 40-Column Display 247

Contents

229

II-xiii

APPENDIX2A

II-xiv

Command Summaries
All Levels (System Commands) 252
Command Level 253
Filer Command Summary 254

File Specification 254
Summary of Special Characters 254
Filename Conventions 255
Size Specifications 255

Volume Commands 256
Diskfile Commands 256
Workfile Commands 257
Disk Upkeep Commands 257
Date and Quit Commands 257

Editor Command Summary 258
Special Commands 258

Cursor Moves 258
Repeat-Factor 259
Set Direction 259

Moving Commands 259
Text-Changing Commands 259
Text-Formatting Commands 260
Miscellaneous Commands 261

Contents

251

APPENDIX2B

APPENDIX2C

APPENDIX2D

APPENDIX2E

System Files
System Files as Required by Pascal Commands 264
The System Files by Filename 266
The System Files by Disk 268

Overview of Program Preparation Stages
A Complex Sample Program 272
The Host Program 275
The Regular Unit 276
The Intrinsic Units 277
The Assembly-Language Routines 278
Putting the Pieces Together 282

Making a Turnkey Disk
Making a Turnkey Disk 288

Making and Using Exec Files
Exec Files 290

Using Exec Files 290
Editing Exec Files 292
A Sample Exec File 293

Contents

263

271

287

289

II-xv

APPENDIX2F

APPENDIX2G

APPENDIX2H

II-xvi

Demonstration Programs
Introduction 296
An Annotated Graphics Program 296
Other Demonstration Programs 304

Disk Files Needed 304
The Tree Program 305
The BALANCED Program 307
The CROSSREF Program 308
The SPIRODEMO Program 309
The HILBERT Program 310
The GRAFDEMO Program 311
The GRAFCHARS Program 311
The DISKIO Program 312

Pascal I/O Device Volumes

Error Messages
Execution Error Messages 318
I/O Error Messages 319
Assembler Error Messages 320
Compiler Error Messages 323

Contents

295

315

317

CHAPTERl

CHAPTER2

CHAPTER3

CHAPTER4

APPENDIX2C

Figures and Tables

An Overview
Figure 1-1 Creating and Editing Textfiles 4

The Command Level
Figure2-l
Table 2-1

The Filer
Figure 3-1
Table 3-1
Table 3-2

The Editor
Figure4-1
Figure 4-2
Figure 4-3
Figure 4-4

The Command Level 12
Pascal Swapping Levels 17

The Filer 24
Volume Names and Numbers for Devices 29
Disk File Types 32

Editor "Scroll Window" 79
Cursor Positioning and Action 90
The Editor 94
Cursor Action With Delete Command 101

Overview of Program Preparation Stages
Figure 2C-l Creating a Complex Program 27 4
Figure 2C-2 Overview of Program Preparation 285

Figures and Tables

1

9

21

73

271

II-xvii

Preface

Program Preparation Tools is Part II of the Apple II Pascal 1. 3 manual.
It describes each of the software tools provided by the Pascal 1.3 system
and the mechanics of using them. This volume assumes that you have
considerable "computer literacy" and offers no tutorials. However it does
not assume that you are familiar with the mechanics of these operations.

Chapter 1 gives you a brief overview of the Pascal operating system and the
stages of program preparation, and acquaints you with Pascal textfiles and
the system workfile.

Chapter 2 is a description of Pascal's outermost Command level and its
options.

Chapter 3 is an in-depth description of the Pascal Filer.

Chapter 4 is a discussion of the Pascal Editor and how it is used. It begins
with a brief walk-through that is designed to orient you to the mechanics of
the system rather than to serve as a tutorial.

Chapter 5 introduces you to the Pascal Compiler and how to use it. It also
discusses all Compiler options, though it does not address the programming
issues surrounding Compiler options. These are discussed thoroughly in
Part III, the Language Manual.

Chapter 6 is a description of the Pascal 6502 Assembler. It is a complete
accounting of assembly-language directives but does not attempt to teach
the use of assembly language.

Chapter 7 describes the use of the Pascal Linker and how it works with the
other Pascal programming tools.

Chapter 8 defines libraries and how the Pascal Librarian enables you to
create them.

Chapter 9 describes the other Pascal utility programs that enable you to
format disks, configure an external terminal, adjust your printer, and set
40-column mode.

Preface II-xix

II-xx

The appendixes to Part II include command summaries of the major Pascal
options, descriptions of system files, an overview of the program
development process, instruction on making turnkey disks and exec files, a
description of the demonstration programs that come with Pascal, and error
message listings.

Preface

Chapter 1 An Overview

II-1

11-2

This chapter briefly outlines the Pascal program preparation tools and
covers general information about moving between the Filer and Editor to
create and save files.

It is important that you read Part I, Getting Started, before beginning this
section or trying to start up your system.

System Software Tools

Apple II Pascal is a complete set of tools for developing Pascal programs and
assembly-language subroutines for the family of Apple II computers. These
tools are used together with the Pascal operating system and are provided
as files on the Pascal system disks, APPLEO:, APPLEl:, APPLE2:, APPLE3:,
and lPASCAL:. The major program components of Apple Pascal include

o the Pascal operating system-which controls input and output to your
hardware and determines program control at the most fundamental
levels between the major components;

o the Editor-for creating and modifying program files and other textfiles;
o the Filer-for moving files from place to place, copying disks, removing

files, renaming files, and other similar chores;
o the Pascal Compiler-for converting Pascal programs into executable

form;
o the Assembler-for converting 6502 assembly-language subroutines into

executable form;
o the Linker-for combining separate pieces of Pascal and

assembly-language programs.

Pascal 1.3 also includes various utility programs such as the Formatter and
the Librarian.

Each of these software tools is described in depth in later chapters of Part II.
To get an overview of the stages of program preparation and how these tools
work together in the creation of a complex program, see Appendix 2C.

The rest of this chapter covers general file handling.

Chapter 1: An Overview

Pascal Files

A file is defined as a stream of bytes. Information sent to a printer, as well
as computer programs, letters, and lists stored on disks, are all examples of
files.

Most files used by Apple Pascal are of either of two types: textfiles that
store information such as computer programs' source text, letters, and
reports; and cod.efiles containing P-code, the compiled version of a
program. You edit only textfiles, not codefiles.

Much of this manual is devoted to a discussion of disk files-files stored
on disks. When you create a file with the Editor, it is stored in the Apple's
memory. Then, when you are ready to save your file, you use one of the
Editor's commands to save a copy of the file onto a disk. To use the Editor to
change the content of a file already on a disk, you must first copy the file
into memory; then you can change the contents of the file, and again save
the file onto a disk.

Each time you create or modify a disk file, information about that file,
including the file's name, length, type, and last modification date, is placed
in the disk directory. Filer commands enable you to display and
manipulate the information contained in the disk directory.

Creating and Editing Files

In general, you will follow one of two procedures when creating and editing
textfiles.

The first method, which uses the system's workfile, is most useful when
you are using the Editor to write small computer programs and are still
fairly new to programming.

The second method, which uses the Editor's Write and Save commands, is
used both for program preparation and for editing nonprogram text such as
letters, reports, and manuals. These two methods are illustrated in
Figure 1-1.

Pascal Files II-3

II-4

Figure 1-1. Creating and Editing Textfiles

Editor entered
to begin work

Creating new
file to work

on: Press
RETURN key

Type name
of desired
textfile

Edit file

Yes

Quit Editor
Update File

Quit Editor
Save File

A more detailed description of creating and editing files is included in
Chapter 4. Information about program execution is discussed throughout
later chapters.

The Workfile

The workfile is a special file that may aid in the development or revision of
a program. It is most useful in developing smaller or "beginner" programs
whose source is contained in a single textfile. If you are working with
something like the Great American Novel (or Program), you will find it
easier not to use the system workfile.

Chapter 1: An Overview

There are two parts to a workfile: the text portion, containing
human-readable text, and the code portion, containing compiled P-code.
The text portion of the workfile is always listed in the Pascal system disk's
directory as SYSTEM.WRK.TEXT; the code portion is listed in the same
disk's directory as SYSTEM.WRK.CODE.

A workfile is usually created in the Editor. A new textfile that you create
with the Editor has no name until you save it to a disk. When you save your
new file to a disk with the Editor's Quit/Update option, the system stores
the file on the Pascal system disk under the name SYSTEM.WRK.TEXT. If,
instead, you used the Editor's Quit/Write option to save the file, it would be
saved as a textfile on the disk specified when you saved it and not as a
workfile on the system disk.

Another way to make a workfile is to use the Filer's Get command on an
existing textfile, which automatically loads it into SYSTEM.WRK.TEXT
when you enter the Editor. And you can of course change the name of a
textfile to SYSTEM.WRK.TEXT and store it on the Pascal system disk.

If, after you save the workfile onto a disk, you type R for Run, the workfile
is automatically compiled and executed (assuming the workfile is a Pascal
program). Following a successful compilation, the compiled version of the
workfile is automatically saved on the Pascal system disk, under the name
SYSTEM.WRK.CODE.

You can edit, compile, assemble, link, or run the workfile as often as you
wish without having to tell the system that the file you want it to act on is
the workfile. Each of these operations assumes that you are referring to the
workfile on the Pascal system disk.

Suppose, for example, that you have just started up the system and that you
have both a text portion (SYSTEM.WRK.TEXT) and a code portion
(SYSTEM.WRK.CODE) of the workfile stored on the Pascal system disk.
Then, with the Command line showing on the screen, you type E for Edit.
Rather than asking you to specify the name of the file you want to edit, the
system automatically gets the text portion of the workfile from the Pascal
system disk, reads it into the Editor's workspace, and displays it on the
screen. Although this is a major advantage of using the workfile, it can also
be inconvenient for some. It means that you must "clear" the Editor
workspace to make room for another file. While in the Editor, use the Quit
and Change command to load another file instead. Another way to clear the
Editor of the workfile is to use the New command while you are in the Filer.

Pascal Files 11-5

II-6

Only one workfile may exist in the system at any one time. If a workfile
already exists and you want to create a new workfile, you can use the
Filer's Save command. The Save command (in the Filer) allows you to give
the workfile its own unique filename and then saves your file, using its new
name, onto whatever disk you specified.

Then you can use the Filer's New command to destroy the old workfile,
thus making room for a new workfile. If you want to designate a file that
has been stored on disk as the next workfile, use the Filer's Get command.

Individual commands automatically act on the appropriate part of the
workfile. The Edit command, for example, only acts on the text portion of
the workfile (SYSTEM.WRK.TEXT) whereas the Execute or Run
commands (commands that execute compiled P-code) act on the code
portion of the workfile (SYSTEM.WRK.CODE).

For a description of the Filer commands you use to manipulate workfiles,
see the "Workfile Commands" in Chapter 3. See "Leaving the Editor" in
Chapter 4 to learn in a more step-by-step way what using the workfile is
like so that you can decide if you would prefer to work with it or without it.

If You Use the Work.file: Note that if you use the workfile, you need to
have the file SYSTEM.LIBRARY available on line (for the program unit
PASCALIO). The Pascal system disks are already configured so that this
is not a problem. You need to be aware of it if you create custom disks.

How Pascal 1.3 Compares With Pascal 1.2

Pascal 1.3 is the latest in a series of revised forms of Pascal for Apple II
computers. It includes many enhancements. Here are some of them:

o The system supports a variety of block-structured devices, such as
3¥2-inch disk drives, 5~-inch disk drives, and rigid disks.

o You can start up the system from slots 4, 5, or 6.
o Two new data types, BYTESTREAM and WORDSTREAM, have been

added. See Chapter 4 of Part III.
o The CASE ... OF statement now accepts an optional OTHERWISE clause.

See Chapter 7 of Part III.
o The UNITSTATUS procedure has a number of new features. See

Chapter 10 of Part III.
o It is now possible to invoke the Filer from a program, using SETCHAIN.

(See Chapter 16 in Part III.)

Chapter 1: An Overview

o On the 128K Pascal system, the space in auxiliary memory occupied by
6502 procedures is reclaimed for use by P-code. (See Chapter 1 in
Part IV.)

o IDSEARCH and TREESEARCH can no longer be called from a program.
o The REMSTATUS procedure has been removed from APPLES TUFF. The

UNITSTATUS procedure should be used instead.
o The Assembler now accepts up to 50 procedures and functions.
o The Compiler now asks where to send the listing file.
o The Compiler accepts larger procedures and functions.
o Both the Compiler and Linker have been modified to accept up to 254

procedures and functions per segment.
o Numerous improvements have been made to the Editor.
o System prompts have been improved.
o Exec files can now execute other exec files.

Most Pascal 1.2 programs will run under Pascal 1.3 and do not need to be
recompiled. There may be a few exceptions. If you are running Pascal 1.2
programs under Pascal 1.3, you need to remember that the IDSEARCH and
TREESEARCH procedures have been removed from version 1.3 and that
UNITSTATUS has been rewritten to perform all the functions formerly
performed by REMSTATUS. If your program uses REMSTATUS calls,
rewrite them as UNITSTATUS calls. You must eliminate IDSEARCH and
TREESEARCH calls from a program run under version 1.3.

How Pascal 1.3 Compares With Pascal 1.2 11-7

Chapter 2 The Command Level

ll-9

The Command Level

You reach the Command level of the system whenever you start up the
system or press CONTROL-RESET or 6-CONTROL-RESET; when the
system reinitializes itself after a nonfatal run-time error; when you quit the
Editor or the Filer; and when you finish compiling, assembling, linking,
executing, or running any program. You have already seen the Command
prompt line:

Command: FCile, ECdit, RCun, C(omp, LCink, X(ecute, ACssem,? [1.3)

When you type a ? , you see the remaining Command-level options:

Command: UCser restart, !Cnitialize, SCwap, MCake exec, QCuit [1.31

II-10

Before you specify a particular command, you should make sure that the
diSk file(s) needed by that option are available. See Appendix 2B. In most
cases, the required program file may be in any of your system's disk drives.
The system just goes through the disks in every drive until it finds a file
with the right filename.

The default workfiles (SYSTEM.WRK.TEXT and SYSTEM.WRK.CODE) and
the files SYSTEM.LIBRARY, SYSTEM.PASCAL, and SYSTEM.MISCINFO
will be found by the system only if they are on the Pascal system disk in the
startup drive.

Each time the system returns to the Command level, following the
termination of any option or program, the disk containing SYSTEM.PASCAL
should be in the startup drive. This file contains the Command-level portion
of the Pascal system. If the system disk is not in the startup drive at these
times, a prompt will appear asking you to insert it.

Most system files must be constantly available in one of the disk drives,
from the moment you select the command using that file until you quit that
command or until it terminates. This is true of the Edit, Compile, and
Assemble commands. These programs have been written so that different
portions of the program code are called in from files as they are needed,
thus taking up a minimum of the computer's memory. The Filer and Linker
commands are exceptions. The only time SYSTEM.FILER is needed is at the
moment you select the File command. When the Filer command line
appears, SYSTEM.FILER is no longer necessary and you may remove the

Chapter 2: The Command Level

..6..Waming

disk containing SYSTEM.FILER from the system to make room for other
disks. The only time SYSTEM.LINKER must be available in a drive is when
you type L to invoke the Linker. When the Linker prompt appears,
SYSTEM.LINKER is no longer necessary and you may remove the disk
containing SYSTEM.LINKER from the system to make room for other disks.

If the system needs a particular file, it will ask you to insert the appropriate
disk.

I
When you use some command options, such as the Filer, you are allowed
to insert and remove disks while you are using a program. Don't ever do
this when the "in use" light on the front of the disk drive is on!

The Command-Level Options

The following section describes each of the Command-level options. Many
of these commands are explained only briefly below. You will find complete
descriptions of the Filer, Editor, Assembler, Linker, and Compiler later in
this Part.

Figure 2-1 illustrates the Command level and its functions. All major
Command functions are reached from the Command level, and you cannot
go from any function to any other function without passing through the
Command level.

The Command-Level Options 11-11

Figure 2-1. The Command Level

Command

ll-12

X A
Execute Assemble Initialize

File -To invoke the Filer, type F while at the Command level. The Filer contains
commands for moving and deleting files. Other Filer commands tell you
what peripheral devices and disks are currently available to the system,
and what files are stored on each disk.

Still other Filer commands let you check disks for damage or recording
errors, and let you set the system's default directory name and the date. For
a complete description of these commands, see Chapter 3, "The Filer."

Chapter 2: The Command Level

Edit -Typing E while at the Command level invokes the Editor program. If
SYSTEM.WRK.TEXT is on the system disk when you invoke the Editor, the
system loads the file into memory for editing. Otherwise, the Editor gives
you the option of either editing a textfile already stored on a disk or creating
a new textfile.

Editor commands allow you to insert and delete information, find and
replace specified character strings, change the text format, combine files,
and so on. After exiting from the Editor, you may save your edited text back
to the original filename or in another specified disk file. For details, see
Chapter 4, "The Editor."

Run -Typing R from the Command level initiates the Run sequence, which
combines the Command options Compile, Link, and Execute, as needed.

To use the Run command successfully, you must have a workfile on the
Pascal system disk. If the code version of the workfile
(SYSTEM.WRK.CODE) is present, the Run command simply links and
executes your program. If only the text portion of the workfile is present,
the Run command compiles the workfile, storing the result as
SYSTEM.WRK.CODE, and then links if necessary and executes the code
portion of the workfile. If the codefile requires linkage to other routines, the
Linker is automatically invoked and looks for the specified routines in the
file SYSTEM.LIBRARY on the Pascal system disk.

The Command-Level Options 11-13

II-14

Compile

Typing c while at the Command level invokes the Pascal Compiler. The
Compiler reads a textfile containing Pascal program statements and
translates this file into P-code for the Pascal "pseudomachine," known as
the "P-machine." The P-machine is not hardware, but an interpreting
program that reads the codefile and executes the instructions given to it.

If SYSTEM.WRK.TEXT is available on the system disk, it is automatically
read into memory and compiled. Otherwise, the Compiler asks you to
specify the name of the file to be compiled and the name of the codefile that
will contain the compiled program.

When the Compiler detects a syntax error during compilation, the system
asks you whether you want to enter the Editor to correct the error, continue
compiling the program, or exit from the program. If you continue
compilation after finding errors, you won't have a usable codefile to
execute, but you will be able to see what errors have been found in your
program.

After a successful compilation, the file that has been converted into P-code
is saved in the workfile codefile unless you specified another codefile. For
more details about the Compiler, see Chapter 5.

link -Typing L from the Command level invokes the system's Linker program.
The Linker combines separate codefiles containing P-code or assembled
6502 code into a single codefile.

The Link command allows you to link previously compiled or assembled
routines into your program. Linking can be initiated automatically by using
the Run command (see the previous description). In some situations,
however, you cannot use the Run command and must explicitly link using
the Link command. For more information, see "The Workfile" in Chapter 1,
and Chapter 7, "The Linker."

Execute

To Execute a program, type x from the Command level. The Execute
command executes a previously compiled and linked codefile. After you
invoke this command, the system asks you to specify the codefile that you
want to execute. You should respond by typing the filename of the program.

Chapter 2: The Command Level

In most instances you will use the Execute command rather than the Run
command when you want to execute a program that has already been
compiled but is not currently in the workfile.

You also use the Execute command to run system utilities such as the
system Librarian or Formatter. You can find information about the Execute
command as well as complete explanations of the system Librarian and
Formatter in later chapters of this Part.

Assemble

To invoke the Assembler, type A from the Command level. The Assembler
reads a textfile containing 6502 assembly-language statements and converts
them into 6502 machine code to be run as a subroutine of a Pascal program.

If SYSTEM.WRK.TEXT is available, it is automatically read into the
computer's memory for assembling. Otherwise, the Assembler asks you to
specify the name of the file to be assembled and the name of the codefile
that will contain the assembled program.

If the Assembler detects a syntax error during assembly, it gives you the
option of calling the Editor, which points out the error and lets you correct
it. After a successful assembly, the resulting machine code is saved in the
code workfile unless you have specified another codefile. For more
information, see Chapter 6, "The Assembler."

User Restart

Typing u from the Command level tells the system to begin executing the
program or option that was last used. User restart is quicker and requires
fewer keystrokes than using Execute to rerun a program. For example, if
you have just left the Editor, the User restart option will reinvoke it; if you
have just finished executing a program, that program will be executed
again. It is a convenient "shortcut" command.

The Command-Level Options II-15

Useful on the 64K System

Il-16

Initialize

Typing 1 from the Command level causes the system to perform a warm
boot, reinitializing system variables and reloading SYSTEM.MISCINFO. See
"What Happens During Start Up" in Part I to learn more. The Prefix
directory name that has been assigned by the Filer's Prefix command
(described in Chapter 3) does not change. Be sure there is a disk containing
SYSTEM.PAS CAL in the startup drive when you choose this command.

Swap -Typings from the Command level initiates Pascal's Swapping command,
which allows you to make additional memory available for creating and
running programs. This is done by keeping part of the operating system
code on the disk and only loading it into memory when needed.

Using the Swapping command is primarily of value if needed during
linking or compiling on a 64K system. On a 64K system, the swapping
option makes available more of both code space and data space. On a
128K system, only code space is gained.

When you type s, the prompt you see offers you three choices. The first two
represent a "toggle" between swapping off and swapping on at the first
level. At the first level of swapping, a portion of the operating system must
be read in from the system disk each time a file is opened and closed.
Swapping slows down the system slightly but provides more memory space
for program use. The third choice represents a "super" swapping level that
adds 810 bytes to the first level of memory swapping. Select swapping
levels as shown in Table 2-1.

Chapter 2: The Command Level

Table 2-1. Pascal Swapping Levels

Tc Select

Swap Option Off

Level 1
Swapping On

Level 2
Swapping On

Type

0

2

To Get

Swapping set to OFF. Set automatically at
startup or by typing 0 from the Swap command.

First-level swapping set to ON to get 227 4 bytes
of additional memory.

Second-level swapping set to ON to gain 810
more bytes of memory, in addition to the
first-level memory gain.

The third choice, second-level swapping, provides more memory space by
moving the GET and PUT procedures from disk to memory only when they
are needed by your program. For this reason, using GET or PUT for files on
block-structured devices will be slow when using this swapping option.
READ and WRITE, which use GET and PUT, will also be slow. UNITREAD,
UNITWRITE, BLOCKREAD, and BLOCKWRITE will be unaffected.

One Disk Drive I When swapping is on, you must leave the system disk in the startup drive
to perform all operations except the execution of Filer commands.

For a description of how to use these swapping options from a program
when chaining to another program, see Chapter 16 of Part III.

Make Exec

The Make exec command is used to create exec files. You invoke this
command by typing M from the Command level. For a full explanation of
exec files see Appendix 2E of this Part.

Quit -Typing a from the Command level restarts the system. Before it does, you
will be asked for confirmation:

Do you wish to exit the Pascal system? CY/N)

Read "What Happens During Start Up" in Part I for more description of the
startup process.

The Command-Level Options II-17

II-18

Commands Usable at All Levels

Certain commands can be executed at any level of the system, regardless of
what the system is doing at the time. These commands are called "system"
commands and operate at an even more basic level than the major options
at the main Command level. They do not appear as options on any of the
Pascal command lines.

If you have an Apple II or an Apple II Plus, consult the "System Notes" in
Part I to learn the other system commands that operate on it but not on the
Apple Ile or Apple IIc.

CONTROL-A

40 Columns Only I CONTROL-A is operable only when you are using a 40-column video
display or an SO-column display in 40-column mode.

Typing CONTROL-A shows the alternate 40-character "page" of the Apple
Pascal's SO-character display, until CONTROL-A is issued again to switch
back.

CONTROL-Z

40 Columns Only j CONTROL-Z is operable only when you are using a 40-column video
display or an SO-column display in 40-column mode.

Typing CONTROL-Z initiates "Auto-follow" mode: the screen scrolls right
and left to follow the cursor. It is cancelled by CONTROL-A and many other
commands.

CONTROL-@

Typing CONTROL-@ causes the interruption of the current program and
the appearance of the message Program Int err up ted by User.

Press the SP ACE bar to reinitialize the system.

Chapter 2: The Command Level

CONTROl-F
iiiiilii

Typing CONTROL-F cancels subsequent program output. The program
continues to run, but its ouput is not sent to the screen or the printer.
CONTROL-Fis cancelled by another CONTROL-F.

CONSTR.Ol-S

Typing CONTROL-S stops any ongoing operating system process or
program. When the next CONTROL-Sis typed, the process continues.

CONTROL-RESET or 6-CONTROL-RESET

Pressing RESET while holding down CONTROL does a cold start of the
system, just as if you were switching the system on for the first time. On an
Apple Ile or an Apple Ile, 6-CONTROL-RESET operates just like
CONTROL-RESET on an Apple II or Apple II Plus.

This command stops any ongoing process at the expense of losing whatever
is in the computer's memory, and possibly damaging a disk directory. If a
program hangs (stops and does not respond to the keyboard), this command
will always restart the system. You should use CONTROL-RESET or
6-CONTROL-RESET only from the Command level or when the system
hangs. After you use this command, you will have to repeat the normal
startup procedure.

For a quick overview of Pascal's main operating commands, see
Appendix 2A.

Commands Usable at All Levels II-19

Chapter 3 The Filer

II-21

II-22

Introduction

The Filer manipulates files, which are the fundamental unit of permanent
storage on the Apple II. Files can contain different kinds of information
computer programs, letters, lists of data, and so on. Some Filer commands
pertain only to files stored on disks; others pertain to character device files
such as the printer and console.

Here is an overview of some Filer functions and the commands that perform
them.

List directory,
Extended-list

Remove

Transfer

Change

Date

Prefix

Krunch

Zero

Volumes

Quit

Make

What

New

Save

Get

Chapter 3: The Filer

Display detailed information about the files stored in a
directory.

Removes a file from a disk.

Copies a file or volume to another file or volume, or
sends it to a device such as a printer.

Changes the name of a disk directory or file.

Sets the date.

Changes the prefix volume name.

Consolidates free space on a disk into contiguous
blocks.

Removes all files contained in a disk directory.

Lists the devices and volumes currently on line.

Exits from the Filer and returns the system to the
Command level.

Reserves space on a disk for a file to which you later
plan to add information.

Tells the current state (saved or not) of the current
workfile.

Clears the current workfile so that a new workfile can
be created.

Saves the current workfile under a unique filename.

Designates a specified disk file as the workfile.

Bad-blocks

Examine

Tests a disk to see if it is defective.

Marks defective blocks on a disk so that information
cannot be stored on them.

The overall relationship of the Filer and its commands is shown in
Figure 3-1. Each option is entered from the Filer command line, and after
each Filer operation is completed you return to the Filer command line.

Introduction II-23

Figure 3-1. The Filer

11-24

Filer

L E
List directory Extended directory

Disk Files Needed by the Filer

The file SYSTEM.FILER must be in a disk drive before you type F to invoke
the Filer. When the Filer prompt line appears, SYSTEM.FILER is no longer
needed and you may remove the disk containing it from the disk drive.

How Files Are Stored

This section contains general information about the Filer's method of
storing disk files. Note that this information applies expressly to systems
using 280-block, 5;4-inch, flexible disks. Disk devices having greater
capacity will operate in the same general fashion, but the numbers quoted
in the descriptions below will be different for each type of drive.

Chapter 3: The Filer

I~ B X
Bad-blocks Examine

The Filer stores information on a disk in 35 concentric tracks. Each track on
the disk is divided into 16 sectors.

Each sector consists of an address field and a data field. The address fields
are written on a disk just once, when the disk is formatted. The data field is
the portion of each sector used for storing information.

The Pascal system stores information in two-sector units called blocks, each
containing 512 (Y2K) bytes of information. Each of a disk's 35 tracks can
thus store eight blocks of information, for a total disk storage capacity of
280 blocks (l 40K bytes). Although the Filer handles all information storage
automatically, low-level routines for storing and retrieving disk information
are also available. See Part III for details.

Blocks 0 and 1 are reserved for the program that starts up the system. In
addition, every disk contains a directory enabling the system to find
information stored on that disk. The directory begins on block 2 of the disk
and extends through block 5.

In general, the system begins storing a file wherever it can find enough
contiguous unused blocks on the disk. If there are not enough contiguous
blocks to contain a particular file, the system will not save any part of the
file but will display an error message informing you that there is not enough
space to write your file to the disk specified. At that point, you will have to
insert a disk with enough available space if you are to save your file.

Because files are stored in contiguous blocks, its a good idea to "crunch" or
consolidate files as they accumulate on the disk so that the remaining
blocks are available for more file storage. Contiguous storage space becomes
especially important when using the Compiler or Assembler.

Introduction II-25

I
Remember: With Pascal, you must have enough contiguous space to
store files. You may have more than enough room for a file but be unable
to save it because the space is spread in little pieces throughout the disk.

If you edit a file and then use the Update command or Write the file to the
same filename, the new version is saved and verified before the old version
is removed. Using either of these commands takes twice as much space on
the disk during the process of writing the file, but guarantees that at least
one version of your file is intact on the disk at all times during the saving
process. The only command that does not work this way is the Save
command. This command allows you the option of removing the old version
of your file before writing the new version, in case you are short on disk
space. If you do not choose this option, the new version of the file is written
first, as described above.

Using the Filer

To use the Filer, type F from the Command level. The following prompt line
will appear at the top of your screen:

Filer: L(dir ECdir R<em T(rans C{hng DCate PCrefix KCrnch ZCero VCols Q(uit ?

Typing ? in response to this prompt displays more Filer commands:

Filer: MCake W(hat H<ew S(ave GCet BCad-blks XCamine [1.31

II-26

To invoke any Filer command, type the first letter of the command that you
want to use. For example, typing s invokes the Save command.

Most Filer commands that request a file specification allow you to specify
as many files as you wish. Separate the file specifications with commas,
and terminate this "file list" by pressing RETURN.

Commands that require only one filename for each operation continue to
read filenames from the file list and use them until there are none left.
Commands using pairs of filenames (such as Change and Transfer) take file
specifications in pairs and operate on each pair until only one specification
or none remains. If one filename remains, the Filer asks you for the second
member of the pair. If the Filer detects an error at any point in the list, the
remainder of the list is discarded.

If you press RETURN when the Filer asks you for a filename, the command
is terminated and the Filer command line is redisplayed.

Chapter 3: The Filer

To erase your response to a Filer prompt while leaving the prompt on the
screen, type CONTROL-X. To cancel a Filer prompt and return to the Filer
command line, type ESC-RETURN.

Volume Names and Numbers

A volume is an input or output device of either the block-structured or
non-block-structured type, as described in Part I. A volume name is the
name given to the device in the Pascal operating system, and the volume
number is the number given to it by the Pascal operating system. Volume
names and numbers are associated with certain hardware slots, which are
reserved for designated types of devices. See "How Pascal Assigns Volume
Numbers" in Part I to learn how Pascal assigns volume numbers to
block-structured devices. The volume number always begins with a number
sign (#)and almost always must end with a colon(:), whereas volume
names must always end with a colon.

You may refer to a block device either by its volume number or by the
volume name of the disk stored in the device. When you format a disk with
the Pascal Formatter, it is assigned a volume name that you specify. To
change a disk's name, you can use the Change command in the Filer. If you
wanted to refer to a disk named MOOSE in the startup drive, you could refer
to it either as MOOSE: or as #4:. If you specify the volume name of a disk,
the Filer searches all the disk drives until it finds the specified disk. If you
specify the volume number of a disk drive, the Filer automatically converts
that specification to the volume name of the disk contained in that drive. A
disk's volume name can be composed of up to 7 characters and may not
contain an equal sign (=), dollar sign($), question mark(?), or comma(,).
Volume names are always followed by a colon(:).

The colon is very important: it tells the system that the name or number
preceding the colon is a volume specification, and not a disk file's filename.
A stand-alone disk volume name or number (not followed by a filename)
tells the Filer that it is to act in some way on the disk as a whole, and not
merely on a certain file on that disk. The colon is optional only when you
are specifying a stand-alone volume by its volume number.

Volume Names and Numbers II 27

Ji.Warning

Il-28

Never issue commands when two disks with the same name are on line.
Even if you specify the correct drives by their volume numbers, the
system may operate on the wrong disk (usually the disk in the higher
numbered drive). If the operation involves updating the disk's directory,
the system may store the wrong disk's directory onto your disk, making
the files originally on the disk inaccessible. The same thing may happen
if you replace the disk in a drive with another disk with the same volume
name. The only exception is when you copy a whole disk using the
Transfer command; this is not the same as inserting two disks with the
same name; and you should not leave them on line together after the
volume copy is complete.

Shorthand Volume Names

You can use an asterisk (")to specify the volume name of the system disk
last used to startup Pascal. This disk also becomes the prefix volume
unless otherwise set by the Prefix command. You can use a colon(:) to
specify the volume name of the prefix volume. If you specify a filename
without a volume name (null volume specification), or if you use only a
colon(:), the Apple Pascal system supplies the volume name of the Prefix
volume. You can check the current system volume and prefix volume by
using the Volumes command in the Filer.

Starting up the system sets the Prefix to the name of the system disk.
Thereafter, the prefix volume can be changed at any time by using the
Prefix command. Usually, you will set the Prefix to the volume name of the
disk with which you are currently working so that you can avoid having to
type its name repeatedly. However, the Prefix can also be set to other
volumes, such as PRINTER:.

To learn how to refer to the volume which contains a particular program
from within that program using the percent(%) prefix, see Chapter 10 in
Part III.

Chapter 3: The Filer

Standard Volume Names and Numbers

Table 3-1 shows the volume numbers and volume names assigned to
standard devices used by Apple II Pascal.

Table 3-1. Volume Names and Numbers for Devices

Volume Volume
Number Name I/0 Device Description

#0 (not used)

#l CONSOLE: Screen and keyboard with echo on input

#2 SYSTERM: Keyboard without echo on input

#3 (not used)

#4 <disk name>: 1st drive, startup drive, slot 4, 5 or 6

#5 <disk name>: 2nd drive, same slot as startup drive

#6 PRINTER: Printer, slot 1

#7 REMIN: Remote input, slot 2 (modem)

#8 REMO UT: Remote output, slot 2 (modem)

#9 <disk name>: 5th drive, slot 4, 5, or 6

#10 <disk name>: 6th drive, same slot as 5th drive

#11 <disk name>: 3rd drive, slot 4, 5, or 6

#12 <disk name>: 4th drive, same slot as 3rd drive

As Pascal assigns numbers to devices that are configured into the system, it
assigns from one of two categories: standard devices (assigned volume
numbers 1 through 12) and user devices (assigned numbers 13 through 20
and 128 through 143). User devices require a device driver and the
SYSTEM.ATTACH program. For more information, see the Device and
Interrupt Support Tools Manual.

The assignment of volume numbers to devices generally works this way: At
startup the system checks each device to see if it is standard. If it is, the
device is assigned the appropriate standard volume number, as listed in
Table 3-1. A discussion of the method used by Pascal to assign volume
numbers to disk drives depending on the startup slot is found in Part I.

If the system finds that a device is not a standard device, it considers it a
user device.

\"olume Names and Numbers II-29

II-30

Specifying Files

This section describes how filenames are specified and discusses the
structure of directories and how to use wildcard characters to specify a set
of files stored on a disk.

Directories

Every formatted disk has a directory, starting in block 2. A directory is a
"table of contents" of the files on that disk. A directory can contain a
maximum of 77 files. When you format a disk by using the Pascal
Formatter, it is given an empty directory.

Each time a file is stored on a disk, information about that file is
automatically entered into the disk directory. The List-directory and
Extended-directory-list commands make it possible to see what is stored in
a particular disk directory. These commands are explained later in this
chapter.

Filenames

Every file used by Apple Pascal has its own filename. A complete file
specification or complete filename consists of

o the volume name or number followed by a colon
o a filename (including its suffix).

For example, if you wanted to refer to a file named MYFILE. TEXT on disk
MYDISK:, the complete file specification would be MYDISK:MYFILE.TEXT.
Or, if MYDISK: were in volume #4, the complete filename could also be
#4:MYFILE.TEXT.

A local filename is distinguished from the complete file specification
because it does not include the volume name or volume number.

A legal filename, not including the volume name, can consist of up to
15 letters, numbers, and special characters, but should begin with a letter.
Lowercase letters are automatically translated to uppercase and spaces are

Chapter 3: The Filer

removed from the filename. You should not use the following characters in
your filenames:

o dollar sign($)
o left square bracket ([)
o equal sign (=)
o question mark (?)
o comma(,)
o RETURN
o control characters.

Using these illegal characters may prevent the Filer from accessing the file
whose name contains them.

Most filenames used by Apple Pascal end with a suffix (most often .TEXT
or .CODE) tltat specifies the kind of information stored in the file. If you
want to run a file with the Run command, the last five characters of the
filename must be either .TEXT or .CODE. Without one of these as a suffix,
the file may be executed but it cannot be put in the workfile. You may omit
the filename suffix with some commands when you are entering a filename.
The explanations of individual commands, later in this chapter, tell you
when you must include a suffix when specifying a filename, and when the
system automatically adds the appropriate suffix for you.

File Size Specification

In some situations, it is possible to specify the number of blocks the file will
occupy. The value of specifying a file size is that it gives you some control
over how the system will handle contiguous blocks of unused space, as
discussed in Chapter 1. You might need to control how the system handles
unused space if you are using the Make command to set aside file space that
is not yet filled, for example. A size specification is given by enclosing the
number of blocks in [brackets] immediately after the filename. There are
two shorthand file size specifications: [OJ means the file is to occupy all of
the largest unused area on the disk; this is generally the default
specification. ["]means the file is to occupy all of the second-largest area or
half of the largest area, whichever is larger. The file size specification can
be helpful when using the Transfer and Make commands in the Filer, or
when specifying the output codefile and listing file in the Assembler and
Compiler. See the chapters covering those commands to learn more about
how file size specifications work, how they save space for files, and so on.

Specifying Files II-31

II-32

Disk File Types

The system automatically assigns a file a type when it is created, based on
the file's suffix. The most common suffixes are .TEXT for files containing
text (natural language, Pascal programs, or assembly-language routines)
and .CODE for files containing the compiled or assembled version of a
program. A file's type is displayed by the Extended-directory command.

Here is a list of the file types recognized by the system, the suffix associated
with each type, and the way each type is referred to in the display created
by the Extended-directory listing.

Table 3-2. Disk File Types

Suffix File Type Extended Directory Listing

.TEXT Readable text Textfile

.CODE Executable code Codefile

.BAD See the Examine command in Bad file
this chapter.

For more information concerning the internal format of different types of
files, see Part IV.

Sometimes (after you use the Change command to change a file's name, for
example) a file's actual type may not agree with its filename suffix. You can
always determine the actual type of the file by examining the file-type
column of the Extended-directory display.

Wildcards

Wildcard characters, the equal sign (=) and the question mark (?), enaple
you to specify a whole set of files at once. The Filer performs the requested
action on all files whose filenames are included in the set specified. The
form of a wildcard specification is as follows:

<stringl>=<string2> or <stringl>?<string2>

where <stringl> and <string2> are set-specifying strings. Either string
may be a null string. The set-specifying strings indicate the portion of a

Chapter 3: The Filer

filename that may not be ignored. The wildcard characters, equal sign (=)
and question mark (?), stand for any sequence of characters in a filename
that can be ignored. For example, the wildcard specification

MYDISK:DOC=TEXT

tells the Filer to perform the requested action on all files on disk MYDISK:
whose filenames begin with the string DOC and end with the string TEXT.
You can use a question mark instead of an equal sign:

MYDISK:DOC?TEXT

Then the Filer pauses and requests verification before acting on each file in
the specified set. At each pause, you may type v for Yes, or N for No, or
press ESC to return to the Command level of the Filer.

You may use wildcards only when specifying filenames with the
List-directory, Extended-directory, Transfer, Change, and Remove
commands. A command requiring two filenames demands that both use
wildcards if one of the filenames does, except when you are transferring the
file or files to a non-block-structured device, such as PRINTER:.

The dollar sign($) is a specialized wildcard that can be used only with the
Transfer command, described later in this chapter. You can use it to give
the new file on the destination disk the same local filename as the file on
the source disk. In this case, you use the ($) wildcard only in the second file
specification.

I Be Aware: You cannot use wildcards to refer to volume names.

Example
Suppose the directory for the disk named MYDISK: contains the following
files:

o NEW
o MEADOW. TEXT
o USELESS.CODE
o MEADOW.CODE
o NEVERMORE.TEXT
o GURUS

After typing R for Remove, you will see this message:

Remove what file ?

Response#l: MYDISK:N=

Specifying Files II-33

Il-34

Typing this response generates this message:

MYDISK:NEW
MYDISK:NEVERMORE.TEXT
Update directory ?

--> removed
--> removed

At this point you can type v to remove all the files listed, or you can type l'f,

in which case the Remove command will be cancelled and the files will not
be removed from the disk directory. This gives you one last chance to
change your mind before removing the files permanently from your disk.

Response #2: MYDISK: N?

Typing this response generates this message:

Remove NEW ?

After you type a response (v or N), the Filer asks

Remove NEVERMORE.TEXT ?

Again you may type a response (v or N), and if you have given any v
responses, the Filer asks

Update Directory ?

As with the previous pattern, this gives you one last chance to change your
mind before the files are finally removed.

Example
Again, suppose you have a disk MYDISK: with the same directory as in the
previous example. After typing L for List-directory, you will see this
message:

Directory listing of what volume ?

Response: MYDISK:=TEXT

Typing this response causes the Filer to list the files MEADOW.TEXT and
NEVERMORE.TEXT because these are the only files on the disk ending in
TEXT.

Chapter 3: The Filer

You may use only one wildcard in a filename specification. The
specifications

MYDISK:DO?TE?T

or

*'4:=TE=

result in the message

Illegal wildcard

The Filer commands Transfer and Change both require two file
specifications. If the first specification contains a wildcard, the second
specification must also contain a wildcard; and if the first does not contain a
wildcard, the second specification must not. If you try to enter a wildcard in
the second specification only, you will see the message

Wildcard not allowed

The only legal exception to this rule occurs when you give the character $
as the second filename specification for the Transfer command. The $
character saves the most recently entered local filename for use as a
wildcard. After the prompt

Transfer what file?

the specifications

MYDISK:MYFILE.TEXT,#5:$

are legal and result in the transfer of MYFILE. TEXT to volume #5, where
MYFILE.TEXT is supplied as the second filename.

You may omit either or both of the set-specifying strings. For example, a
local filename set specification such as =TEXT or DOC= or even just = is
valid. If you omit both set-specifying strings, the Filer performs the
requested action on every file in the specified disk's directory.

I
By the Way: You can sometimes use this feature to act on a file whose
filename is not "recognized" by Filer commands because of illegal
characters in the filename, or a slightly damaged directory.

Set-specifying strings may not "overlap." If a character appears in the
set-specifying string, that same character must appear in the target string in
the same relative position, or no match occurs. The = or ? characters allow
any character or sequence of characters to be considered a valid match. For
example, the specification GOON=NS would not include the local

Specifying Files 11-35

II-36

(pointless) specification for the file GOONS. The specification GOON= NS
contains an explicit (non-wildcard) character, in this case an extraN, that
does not occur in the filename GOONS.

The Filer Commands

The rest of this chapter includes detailed descriptions of each of the Filer's
commands listed by function. The section "Volume Information
Commands" describes the Filer commands that allow you to see what
devices are connected to your system and to examine the contents of
directories. The section on the Transfer command explains how to move
files from one part of the system to another. The section "General File
Commands" includes a discussion on creating and removing files. The final
sections describe commands you use to manipulate workfiles and to check
disks for damage.

Filer commands requiring you to enter a filename or some other information
can be cancelled by pressing RETURN instead of typing the requested
information. If you have started typing the information called for by the
command, you can still cancel the command by pressing CONTROL-X and
then pressing RETURN.

Volume information Commands

This group of commands gives you information about volumes, directories,
and files resident in your system.

Volumes

The Volumes command lists the volume numbers and volume names of all
devices, and the number of 512-byte blocks on all blocked devices
configured into the system. Type v from the Filer command line to invoke
this command.

Chapter 3: The Filer

A system with two 5~-inch disk drives and a 3\12-inch disk drive, a printer,
a modem, and standard hardware would give a Volumes display like this:

Volume # - Volume Name - # Blocks

1
2
4
5
6
7
8

11

CONSOLE:
SYSTERM:
APPLE1:
APPLE2:
PRINTER:
REM IN:
REMOUT:
DATADSK:

System volume is - APPLE1:
Prefix volume is - DATADSK:

280
280

16flil

In this example, the Pascal system disk is APPLE I:, in volume #4. Usually
the prefix will be the name of the Pascal system disk. In this example, the
prefix has been changed by the Prefix command to DATADSK:, the name of
the disk in volume# 11, a 3\12-inch disk drive.

If you have an empty block-structured device configured into the system, its
volume number and the number of blocks it is designed to store will be
reported. Instead of the volume name, the phrase <no di r > will appear. If,
for example, you had an empty 3\12-inch disk drive in the same example as
above, its line on the Volumes display would show

11 <no dir>

Be Aware: Occasionally the presence of an empty 5~-inch disk drive is
not shown on the Volumes display. Don't be concerned; your disk drive is
still available for use with Pascal. It will be shown on the Volumes
display when you insert a disk.

If you also had an attached user device, an additional line on the Volumes
display might look like this:

128 <driver>

When the system reads from volume #l, characters are echoed to the
screen as they are read. When the system reads from volume #2, characters
are not echoed. These volumes are the console and keyboard and are
always available. More information on reading from the console and
keyboard is included in Part III.

The Filer Commands ll-37

APPLEf/J:
SYSTEM.PASCAL
SYSTEM.MISCINFO
SYSTEM.COMPILER
SYSTEM. ED !TOR
SYSTEM.FILER
SYSTEM. LIBRARY
SYSTEM.CHARSET
SYSTEM.SYNTAX
TUNAFISH. TEXT
SYSTEM. WRK. TEXT
SYSTEM.WRK.CODE

36
1

71
45
28
36

2
14

4
4
2

list Directory

The List directory command lists the contents, or part of the contents, of
the directory of a specified source disk to a specified destination volume.
The destination specification usually is not given because the default
destination is CONSOLE:. All files are listed along with their block length
and last modification date. Type L from the command level of the Filer to
invoke this command.

A directory listing to CONSOLE: stops when it has filled the display. Press
the SPACE bar to continue the listing, or press ESC to abandon the listing
and return to the Filer command line.

The List command is most often used to list an entire disk directory on the
screen. The following display shows a sample directory listing for a disk
named APPLEO:.

In response to the question,

Directory listing of what volume ?

type APPLEllJ:

to see the following display:

4-May-84
4-May-84
2-Jan-84

31il-Mar-84
29-Jan-84

8-May-84
17-Jul-84
HJ-Jun-84
5-Jun-84

21-Jul-84
19-Jul-84

11/11 files ~listed/in dir>, 249 blocks used, 31 unused, 23 in largest

11-38

The bottom line of the display informs you that 11 files out of a total of 11
files on the disk have been listed; that there are 31 out of a total of 280 disk
blocks left to use; and that there are 23 contiguous blocks in the largest
unused area on the disk. The first ratio shows that you are looking at a
complete listing of the disk's directory and not a partial listing, to be
discussed later. The last number shows the size of the largest file you could
store on the disk at the present time. Even though there are 31 unused
blocks available on the disk, the largest file you could store would be 23
blocks because a file must be stored in contiguous blocks.

Chapter 3: The Filer

APPLEl'J:
TUNAFISH.TEXT
SYSTEM.WRK.TEXT

4
4

You can list any portion of a directory with the wildcard option. For
example, suppose that you want to list only the text files included in the
directory APPLEO:.

Tothequestion,Directory listing of what volume?

respond by typing APPLEl'J: =.TEXT:

which results in the following display:

5-Jul-84
21-Jul-84

2/11 files <listed/in dir>, 14 blocks used, 33 unused, 33 in largest

APPLE!!:
SYSTEM.COMPILER
SYSTEM.EDITOR
SYSTEM.FILER

Block Counts Inaccurate for Partial Listings: A partial listing of a
directory assumes that the last file listed is the last file on the disk, and
uses that assumption in calculating the number of used and unused
blocks on the disk. This faulty assumption often results in an incorrect
calculation of used and unused blocks and an incorrect size for the largest
unused area. This inaccuracy is a problem only on a partial listing. You
can always find out the correct information by using a complete listing.

A source file specification consists of a volume name and optional
subset-specifying strings containing wildcards. A destination file
specification consists of a volume or file name. If the volume is a disk, you
must include a filename. The destination file specification cannot include a
wildcard. Separate the source file specification from the destination file
specification with a comma. Here's an example of a List directory
specification that sends a subset of a directory to a printer.

Tothequestion, Directory listing of what volume ?

respond by typing APPLE 0: S=R' PR l NTER:

which, assuming that you have a printer that is turned on and ready to
receive data, results in the following printout:

71 2-Jan-84
45 30-Mar-84
28 29-Jan-84

3/11 files <listed/in dir>, 150 blocks used, 93 unused, 93 in largest

The Filer Commands 11-39

11-40

This List-directory example involves writing the directory to a disk file.

Prompt: Directory listing of what volume ?

Response: #5: '#4: DI RECTORY. TEXT

After you type this response, you will see the message

WRITING .•.•••••.

as the Filer lists the directory of the disk in volume #5 onto a file called
DIRECTORY.TEXT on the disk in volume #4.

Extended Directory

The Extended-directory command lists the directory of a disk, giving more
detail than the List directory command. All files and unused areas are listed
along with their block length, last modification date, the starting block
address, and the file type. To invoke this command, type E from the
command level of the Filer.

The prompts, syntax, and wildcard options are exactly the same for this
command as for the List directory command just discussed. Refer back to
that discussion for those details.

You would most frequently use the Extended-directory command to list an
entire disk directory because it gives important extra information about the
distribution of files on your disk. The following example refers to the same
disk directory used in the List directory examples in the previous section.

Chapter 3: The Filer

APPLEr.l:
SYSTEM.PASCAL
SYSTEM.MI SC INFO
SYSTEM.COMPILER
SYSTEM.EDITOR
SYSTEM.FILER
SYSTEM.LIBRARY
SYSTEM.CHARSET
SYSTEM.SYNTAX
< UNUSED >
TUN AF I SH. TEXT
< UNUSED>
SYSTEM.WRK.TEXT
SYSTEM.WRK.CODE
< UNUSED >

36
1

71
45
28
36

2
14

4
4
4
4
2

23

Prompt: Directory listing of what volume ?

Response: APPLE 0:

4-May-84
4-May-84
2-Jan-84

30-Mar-84
29-Jan-84

8-May-84
17-Jul-84
Hl-Jun-84

5-Jul-84

21-Jul-84
19-Jul-84

6 512
42 512
43 512

114 512
159 512
187 512
223 512
225 512
239
243 512
247
251 512
255 512
257

Datafile
Datafile
Codefile
Codefile
Codefile
Datafile
Datafile
Text file

Text file

Textfile
Codefile

11/11 files <listed/in-dir>, 249 blocks used, 31 unused, 23 in largest

The last column of numbers gives the number of bytes used in the last block
of each file. This number is almost always 512, the maximum number of
bytes per block.

Moving Files

You use the one Filer command, Transfer, to do all file-moving tasks. Note
that the file itself is never actually moved from the disk: a copy of the
contents of the file is made, either on another part of the disk or on another
volume in the system, leaving the original file just as it was.

Transfer

You can use the Transfer command for

o Copying individual files from one disk to another;
o Copying the contents of an entire disk;
o Copying files to and/or from a device such as a printer or the console.

To use the Transfer command, type T from the command level of the Filer.

The Transfer command requires that you supply two file specifications, one
for the source file (the file being copied) and one for the destination file (the
place the file is being copied to), separated by either a comma or a RETURN.
Wildcards are permitted in file specifications for the Transfer command.

The Filer Commands II-41

11-42

Once the Filer has been summoned, it resides entirely in the computer's
memory. Thus, you can invoke the Filer, and then remove all system disks
from the drives in order to use both drives (on a two-drive system) for
source and destination disks during a transfer. Just remember to replace the
Pascal system disk in the startup drive before using the Quit command to
exit from the Filer.

A. Warning I You should avoid having two disks on line at the same time with the same
volume name. Change the name of one of them if you want to transfer
files between them. You can change the name back again later.

We can hardly overemphasize the importance of making backup copies of
all your files: It should never be necessary for you to have to spend hours or
weeks recreating some piece of work that was lost to spilled coffee on a
disk. The Transfer command makes backing up too easy for you to risk
having no backups. Here's an example of making a backup file.

Example
Suppose you want to transfer the file STARGAZER.TEXT from disk
MYDISK to disk BACKUP .

Prompt: Transfer what file ?

Response: MYD! SK: STARGAZER. TEXT

When you press RETURN, the system checks to be sure that the specified
source disk is in one of the disk drives. If MYDISK: is not in any drive, you
will see the message

MYDISK: - No such volume on-line <source>

If the source disk is found in a drive, the system then checks to be sure the
specified file is on that disk. If the disk MYDISK contains no file named
STARGAZER.TEXT, you will see the message

MYDISK:STARGAZER.TEXT - File not found <source>

In either case, you will be returned to the outer Filer level. Just insert the
correct source disk in any drive and type T again.

Let's assume the system succeeds in finding the source disk and file. The
Filer asks you to specify the destination for the transfer:

Prompt: To where?

Response: BACKUP: TEMP. TEXT

You could also have given both source and destination specifications in the
first response, separated by a comma.

Chapter 3: The Filer

When you press RETURN, the system checks to be sure the destination disk
is in a disk drive. If it is, the transfer begins. If it is not, there is a pause;
then you are advised

Put in BACKUP:
Press <space> to continue

Put the correct destination disk in any available drive and press the SPACE
bar. If, at this or any other point in the Transfer process, you want to return
to the Filer command line, press ESC.

When the transfer is complete, the Filer gives you the message

MYDI~K:STARGAZER.TEXT --> BACKUP:TEMP.TEXT

The Filer has made a copy of STARGAZER.TEXT as found on the disk
named MYDISK:, and has stored that copy on the disk BACKUP: under the
filename TEMP.TEXT.

If, in the above example, you had wanted to save the file
STARGAZER. TEXT on disk BACKUP: under the same filename,
STARGAZER.TEXT, you could have done the following:

Prompt: Transfer what file?

Response: MYDI SK: STARGAZER. TEXT' BACKUP:$

If you give the same volume number for both source and destination file
specifications, the system assumes you are doing a single-drive transfer and
are going to change disks in that drive. You will see the message

Insert destination disk
Press <space> to continue

If you use the same volume name for both source and destination file
specifications, the system assumes that you want to relocate the file on the
same disk. You can do this either by using the same filename (as well as
volume name) or a different filename.

If you use a different filename, the system writes the file to the largest
unused portion of the disk and leaves the original copy "as is." If you want
to exercise more control over where the file will be written, you can specify
the number of blocks needed at the end of the filename and the Filer will
write the copy in the first (lowest-numbered block) area on the disk that is
unused and of at least that size.

I
Use Only for Relocating: Do not use this feature for renaming a file.
The Change command is designed for that purpose and is much easier
and less risky.

The Filer Commands II-43

II-44

If you specify the same filename (as well as the same volume name), the
Filer rewrites the file to the size-specified area (or, if unspecified, the largest
unused area) and then removes the originaljile.

Example
Prompt:Transfer what file?

Response:MYDISK:QUIZZES.TEXT,MYDISK:$C2el

Typing this response causes the Filer to rewrite QUIZZES. TEXT on
MYDISK: in the first area of at least 20 blocks (looking from block 0) and
then to remove the previous version of QUIZZES.TEXT.

You can transfer files to a device other than a disk by specifying a device
such as CONSOLE: (for a quick screen listing of a file) or PRINTER: (to print
a file) as the destination volume.

Example
Prompt: Transfer what file ?

Response: HS: STARGAZER. TEXT

Prompt: To where ?

Response: PR r NT ER :

Typing this response causes the file STARGAZER.TEXT, on the disk in
volume #5, to be sent to the printer (assuming a printer is properly
connected and turned on). Make sure that when you Transfer to a
non-block-structured device it is on line (configured and turned on) to
prevent the system from hanging.

You can also transfer from an input device other than a disk, such as the
keyboard. A filename following the volume name or number of a
non-block-structured device is ignored.

Example
Prompt: Transfer what file?

Response: CONSOLE:

Prompt: To where ?

Response: PRINTER:

After these responses, you can use your keyboard as a typewriter. Nothing
will appear on the printer until you type the "End-of-File" character,
CONTROL-C. (Note that some printers may accept a CONTROL-C as a
command; if yours does, you will have to press RETURN before pressing
CONTROL-C.) Then all you have typed will be sent to the printer.

Chapter 3: The Filer

You can use wildcards with the Transfer command. When you use
wildcards, the set-specifying strings in the source filenames are replaced by
the respective strings (called replacement strings) in the destination
filenames. The portion of each source filename accounted for by the = or ?
wildcard character is reproduced unchanged in the corresponding
destination filename. Remember that the Filer considers the one-character,
wildcard-alone file specification (= or ?) to be equivalent to specifying all
files in the directory.

Example
Suppose the Prefix volume MYDISK: contains these files:

PAUCITY
PARITY
PENALTY

Further, suppose the destination disk is named ODDNAME:.

Prompt: Transfer what file?

Response: p =TY' ODDNAME: V= s

Typing this response would cause the Filer to reply

MYDISK:PAUCITY --> ODDNAME:VAUCIS
MYDISK:PARITY --> ODDNAME:VARIS
MYDISK:PENALTY --> ODDNAME:VENALS

Example
Suppose the Prefix volume MYDISK: contains these files:

CHAPll.TEXT
CHAP12.TEXT
CHAPTER13. TEXT
CHAP14.TEXT

Prompt: Transfer what file?

Response: C=XT

Prompt: To where ?

Response: BACKUP: OLDC=XT

The Filer Commands 11-45

11-46

Typing these responses would cause the Filer to reply:

MYDISK:CHAP11.TEXT --> BACKUP:OLDCHAP11.TEXT
MYDISK:CHAP12.TEXT --> BACKUP:OLDCHAP12.TEXT
MYDISK:CHAPTER13.TEXT --> not processed
MYDISK:CHAP14.TEXT --> BACKUP:DLDCHAP14.TEXT

On the third attempted transfer, the destination filename would have been
OLDCHAPTER13. TEXT, which exceeds the 15-character limit for local
filenames. Therefore, that file was "not processed."

Using the single character= as the destination filename specification has
the effect of replacing any set-specifying strings in the source specification
with nothing.

A brief reminder: in any wildcard specification, the single character ? may
be used in place of = . The only difference is that a ? in either specification
(or both) causes the Filer to ask you for verification before each file is
transferred.

A source or a destination file specification may contain only one wildcard
character. A specification such as

MYDISK:?UGH?

is not a legal specification. If you try to use such a specification as either the
source or the destination of a transfer, you will get the message

UGH? Scan string - Illegal format

If the source file specification contains a wildcard character, and the
destination device is a disk, then the destination file specification must also
contain a wildcard character.

Example
Suppose the disk MYDISK: contains the following files:

CHAPTERl.TEXT
CHAPTERl 4B. TEXT
INTRO.TEXT

Further, suppose you want to transfer the files CHAPTERl.TEXT and
INTRO.TEXT to the disk BACKUP:, retaining the same filenames on the
backup disk.

Prompt: Transfer what file ?

Response: MYD I SK:?. TEXT' BACKUP:$

Chapter 3: The Filer

The display clears, and then the following message appears:

Transfer CHAPTER1.TEXT?

Because you want to transfer CHAPTERl.TEXT, type av for Yes. A copy of
the file CHAPTERI. TEXT is then transferred from MYDISK: to BACKUP:.
The Filer then asks if you want to transfer the next file whose name ends in
.TEXT. The complete dialogue might appear as follows:

Transfer CHAPTER1.TEXT? Y
MYDISK:CHAPTER1.TEXT --) BACKUP:CHAPTER1.TEXT
Transfer CHAPTER14B.TEXT ? H
Transfer INTRO.TEXT? Y
MYDISK:INTRO.TEXT --> BACKUP:INTRO.TEXT

Instead of a Y or N response, you may press ESC to return to the c0mmand
level of the Filer.

Copying an Entire Disk

You can use the Transfer command to copy the contents of an entire disk.
The file specifications for the source and for the destination should each
consist of a disk volume name or number only. This method of transferring
the contents of a source disk onto a destination disk erases any content
previously on the destination disk. It becomes an exact, literal copy of the
source disk and has the same name as the source disk.

Example
Suppose you want an extra copy of the disk MYDISK: and you are no longer
interested in keeping the contents of disk EXTRA:.

Prompt: Transfer what file ?

Response: MYDISK: ,EXTRA:

Prompt: Transfer 28il blocks? CY/N)

Response: v

Each disk used by the system contains at least 280 blocks. Some flexible
disks, as well as rigid disks, hold more information. A 3Y2-inch disk contains
1600 blocks. To copy an entire disk you will always type the response v. If
your system ever gives a message other than 280 blocks, the disk's directory
is either damaged or missing or you have a higher-capacity disk or rigid

The Filer Commands ll-47

Two Disk Drives

11-48

disk. It is helpful to know what the capacity of your disk is so that you can
tell if there is a problem!

Prompt: Destroy EXTRA:?

If you type v, the directory, and therefore your access to the contents of
EXTRA:, will be destroyed. The disk named EXTRA: then becomes an exact
copy of MYDISK:, even having the same volume name. This is often
desirable for making a backup copy of a disk. It is an easy way to make a
copy and the volume name can be changed using the Change command if
you want to leave both on line.

When you use the Transfer command to copy the contents of an entire disk,
the Filer transfers each block of information on the source disk to the same
location on the destination disk.

If you do not wish to destroy the contents of EXTRA:, type N and you will
return to the command level of the Filer.

To copy a disk with a two-drive system, invoke the Filer and then remove
all system disks from the disk drives. You can then use one drive for the
source disk and one drive for the destination disk.

Remember This Exception: If you are using two different drives for
the source and destination disks while performing a full-disk
transfer, you can refer to them by their volume numbers rather than
their names and the Filer will be able to tell them apart even if their
names are the same. Once you leave the Transfer command, the rule
forbidding two disks on line with the same name is back in force!

Chapter 3: The Filer

One Disk Drive

Om:H:>rive Note

To copy a disk with a one-drive system, invoke the Filer and then replace
the system disk with the source disk. Type T for Transfer. In response to
the transfer prompt, type

#4' #4

Do not remove your source disk until you are prompted to insert the
destination disk. When it is time to exchange disks, you will see the
following message:

Insert destination disk
Press <space> to continue

Remove the source disk and insert the correct destination disk, and press
the SPACE bar. Soon, you will see this message:

Put MYDISK: in unit #4
Press <space> to continue

You will see these messages alternately until you have exchanged the
source and destination disks about 8 times on a 128K system and about 20
times on a 64K system if you are copying a 5Jr.:1-inch disk. Finally, the Filer
will give you the welcome message:

MYDISK: --> EXTRA:

Be sure to insert the system disk before Quitting the Filer.

We recommend that you copy an entire 3Yz-inch disk on a two-drive
system, because you must exchange the source and destination disks so
many times to make such a copy.

If you have only one drive, you cannot make a volume-to-volume copy
onto a destination disk that has the same volume name as the source
disk. First use either the Change command to change the name of the
destination disk, or the Zero command to rename the destination disk
while erasing its directory.

A second method of transferring the contents of an entire disk is to use the
= wildcard option to transfer each file on the disk. With this method, each
file is moved as a unit.

Notice that this method does not destroy the contents of the destination
disk. Before executing this command, you may want to check the
destination disk to make sure that there is adequate space to copy the
contents of the source disk. Note that the transfer of files continues until

The Filer Commands 11-49

IJ-50

there is no room on the destination disk. Then the Filer displays the
message

No room on volume

next to the name of the file that it unsuccessfully attempted to transfer.

Example
Suppose you want to transfer all of the files on disk THIS: to disk THAT:.

Prompt: Transfer what file ?

Response: TH Is:=' THAT:=

Sequential messages will appear, verifying each file that has been copied.

General File Commands

The following sections describe several commands that you can invoke
from the Filer's command level.

Remove

You use the Remove command to remove file entries from a directory. To
invoke this command, type R when the Filer command line is at the top of
the screen.

Once files have been removed, they are no longer accessible to the user.
Although a Removed file's contents are still stored on disk, the system acts
as if the file has been erased from the disk and considers the area of the
disk where the file was stored to be free for storage of other files.

The Remove command requires one file specification for each disk file that
you wish to remove. Wildcards are legal.

I
Use New to Remove Current Workfile: You should not use the
Remove command to remove the current workfile. Instead, use the Filer's
New command, described later in this chapter.

Example
Suppose the prefix disk contains these files:

AARDVARK.TEXT
ANDROID.CODE
QUINT.TEXT
AMAZING.CODE

Chapter 3: The Filer

Prompt: Remove what file ?

Response: AMAZING. CODE

Typing this response tells the system to remove the file AMAZING.CODE
from the prefix disk's directory.

Before actually removing the filenames of any files specified by the Remove
command, the Filer asks if you want to

Update directory ?

Typing N cancels the command: You return to the Filer command level and
no files are removed from the disk.

Example
Suppose your prefix disk contains the files shown in the example above.

Prompt: Remove what file ?

Response: A=CDDE

Typing this response causes the Filer to remove AMAZING.CODE and
ANDROID.CODE from the prefix disk directory.

If you use the? wildcard character, the Filer checks with you before
removing each file. A response of N causes the system to pass on to the next
filename in the directory without acting on the previous one. A response of
ESC causes the system to pass directly to the up d a t e Di r e c t 0 r y?
prompt.

Change

You use the Change command to change the name of any file or disk
(volume). Only the names are changed; the files and disks are left
unchanged.

This command requires two file specifications. The first specifies the name
of the file or volume whose name you want to change; the second specifies
the new name. You separate the first specification from the second either
with a comma or by pressing RETURN.

The system will not allow you to change a volume name to the name of
another volume currently on line.

A Warning I Do not change the names of the two system files, SYSTEM.PASCAL and
SYSTEM.FILER on the system disk you are currently using.

The Filer Commands II-51

11-52

If you change the name of the Pascal system disk with the Change
command while it is being used as the system disk, the name the system
supplies when the asterisk " volume specifier is used is also changed. If you
change the name of the prefix volume, the volume name that the system
supplies as the prefix is also changed.

Example
The file MICKEY.TEXT is stored on disk PLUTO.

Prompt: Change what file ?

Response: PLUTD:MICKEY. TEXT

When you press RETURN, the dialogue continues:

Prompt: Change to what ?

Response: MINN IE. TEXT

Typing this response changes the name of the file in the directory of disk
PLUTO: from MICKEY.TEXT to MINNIE.TEXT. Note that in the second file
specification, you only have to include the filename, as opposed to the
complete file and volume name.

File types (such as TEXTFILE or CODEFILE) are originally determined by
the filename's suffix (such as .TEXT or .CODE). The Change command does
not affect the file type, but it also does not automatically place any suffix
after the new filename. Consider the following example:

Prompt: Change what file ?

Response: PLUTD:MICKEY. TEXT

Prompt: Change to what ?

Response: M I N N I E

In this case, PLUTO:MINNIE is still shown in an Extended-directory list as
type TEXTFILE and named as MINNIE without the suffix. However, the
Get command (described later in this chapter) searches for the suffix
.TEXT in order to identify a textfile as the workfile. You would have to
change the name of the file from MINNIE to MINNIE. TEXT in order to use it
as the workfile.

Wildcard specifications are legal with the Change command. If you use a
wildcard character in the first file specification, then you must use a
wildcard in the second file specification. The set-specifying strings in the
first file specification are replaced by the analogous strings (referred to here

Chapter 3: The Filer

as replacement strings) given in the second file specification. The Filer will
not change the filename if the change will result in the creation of a file
whose name is too long (more than 15 characters).

Example
The disk MYDISK: contains these files:

CHAP14.TEXT
CHAP12.TEXT
CHAPTER13. TEXT
CHAP14.TEXT
APPNDX.TEXT

Prompt: Change what file ?

Response: MYDISK:C=XT,DLDC=XT

After you type this response (the two parts of the response were separated
by a comma this time, but you could also press RETURN to separate the
responses), the Filer indicates the following name changes.

MYDISK:CHAP11.TEXT --> DLDCHAP11.TEXT
MYDISK:CHAP12.TEXT --> DLDCHAP12.TEXT
MYDISK:CHAPTER13.TEXT --> not processed
MYDISK:CHAP14.TEXT --> DLDCHAP14.TEXT

In the third attempted name change, the destination filename would have
been OLDCHAPTER13.TEXT, which exceeds the 15-character limit for
filenames. Therefore, that file was "not processed." If all the destination
filenames exceed 15 characters, an additional message is displayed:

Bad destination for files found

The set-specifying strings may be empty, as may be the replacement
strings. The Filer considers the one-character file specification= (where
both set-specifying strings are empty) to specify every file on the disk.

Example
Prompt: Change what file ?

Response #1: PLUTO:=, Z=Z

Typing this response causes every filename on disk PLUTO: to have a Z
added before the first character and after the last character unless the
filename was longer than 15 characters.

Response #2: PLUTO: Z=Z, =

Typing this response causes the initial and terminal Z to be removed from
each filename on disk PLUTO: that contains both an initial and a terminal Z.

The Filer Commands II-53

II-54

You can change a disk's volume name by specifying the current disk
volume name or volume number followed, after a comma or RETURN, by a
new volume name.

Example
Prompt: Change what f i 1 e ?

Response: OLDNAME:, NEWNAME:

Typing this response causes the system to give this message:

OLDNAME: --> NEWNAME:

showing that the disk named OLDNAME: has been renamed NEWNAME:.

When a disk cannot be operated on because another volume of the same
name is on line, you can change the name of the duplicate volume with the
Change command to some unique name and then use the disk normally. For
example, if volumes #4 and #5 both contain disks named WORK: and the
Filer is being operated from #4:, the volume in #5: will be inaccessible. If
you type

#5:,TMPNAME:

the volume in #5: will be changed to TMPNAME: and will then be
accessible.

Prefix

The Prefix command allows you to change the prefix volume name from the
current default to the volume name you specify. Thereafter, when you
specify a filename for some operation (such as a Transfer or Remove), that
prefix is attached unless a volume name is given at the time. When you
specify a volume name in a particular context, it overrides the prefix. When
you specify only a local filename, the Filer attaches the prefix to that
filename before acting on it.

Basically the prefix is a time-saver; it prevents your having to type in a
volume name each time you specify a file. And if you want to specify just
the prefix volume you can do so by typing a colon(:) alone. When you start
up the system, the prefix is set to the name of the Pascal system disk in the
startup drive. You can restore the prefix to that disk any time by typing an
asterisk * in response to the prefix prompt.

If you specify a disk as the prefix volume, the prefix is set to the name of
the designated disk. Setting the prefix to the volume number of a disk drive
causes the the prefix to follow the name of the disks in the drive. You may
specify devices other than disk drives, such as PRINTER:.

Chapter 3: The Filer

You do not need to put a volume on line to specify it as the prefix volume. If
you use the Change command to change the name of the volume already
specified as the prefix volume, the prefix will change to reflect the new
name.

To check or change the prefix, type P from the Filer command level. You
will see the following prompt.

Prefix is APPLE1:
Prefix filenames by what volume ?

If you press RETURN or ESC, the current prefix is retained.

To save a lot of typing, use the* to refer to the startup disk. Then set the
prefix to the other disk you use most often and use the : to refer to it.

Date

The Date command allows you to set the correct date each day so that a
record may be kept of work performed on the system. Each time you create
or update a volume or file, the date believed to be current by the system is
included in the directory entry.

When you invoke the Date command by typing D, you see the prompt

Today is 27-Apr-85
Date format: dd-mmm-yy (month, year optional)
New date :

Pressing RETURN leaves the date unchanged; entering any part of the new
date changes the system's stored date. The month and year are optional,
and only have to be changed as needed. In most cases you will only have to
change a single character to set the new date. The hyphens are delimiters
for the day, month, and year fields and it is possible to affect only one or
two of these fields by using the delimiters; the year could be changed by
typing - -as, the month by typing -Mar. The slash(/) is also accepted as a
delimiter when entering the date, but you can never change the
day-month-year order.

After you press RETURN, the date just set is displayed. If the new date is
incorrect, type D to invoke the Date command again and reenter it.

The Filer Commands Il-55

..t..Waming

Il-56

Kmm::h

The Krunch command consolidates unused space on a disk. You use this
command when you run out of space or seem about to because the unused
space on the disk is fragmented. Using the Extended directory list command
will show you how the unused space is distributed on the disk. After
Krunching, all the unused space will be together at the end of the disk
(unless you specify another location).

This command requires that you type a disk volume name or number. The
specified volume must be on line. To avoid writing files over bad areas of
the disk, you can perform a bad block scan of the disk before Krunching. If
bad blocks are found, they should be fixed or marked beforeKrunching. See
"Disk Upkeep Commands" later in this chapter.

As each file is moved, its name is displayed on the screen. If
SYSTEM.PASCAL is moved the system must be reinitialized.

I
Do not touch the RESET key, the power switch, or the disk drive door
until Krunch informs you that it is finished. Otherwise you may make the
information on your disk inaccessible.

Example
Suppose you type K because you wish to Krunch the system disk:

Prompt: Crunch what volume ?

Response:"

You could also have responded with the volume number, #4, or the volume
name of course.

Prompt: From end of volume, block 28fl ? CY/10

Typing v initiates the normal Krunch. Typing N elicits the question

Starting at block # ?

If you type a block number in response to this prompt, the•Filer will attempt
to make room for new files in the area surrounding the block number that
you specified. It does this by moving files forward (toward lower block
numbers) that are below the specified block, and moving files backward
(toward larger block numbers) that are above the block. The feature allows
you to rearrange files by placing them somewhere other than the end of the
disk.

I
By the Way: If you specify a Krunch starting block that is within an
existing file, but the Filer tells you the disk is already Krunched, try a
starting block in the filewith the next higher block number.

Chapter 3: The Filer

Zero

The Zero command "erases" a specified directory by removing all files
contained in it. You can use the Zero command to "recycle" an entire disk.
The system forgets anything previously stored on the disk and the disk is
ready to be used again. The Zero command does not format disks. Before
they can be Zeroed, disks must have been already formatted using the
Pascal Formatter utility program.

To invoke the Zero command, type z from the Filer command level.

Example
Suppose you want to forget all information stored on a disk named
OLDDISK:, in volume #5, so that you can reuse it as a blank disk.

Prompt: Zero directory of what volume ?

Response: ., s

Prompt: Remove all files on OLDDISK: ? CY/N)

Response: v

Prompt: Are there 280 blocks on the disk ? CY/10

Response: v

If your system ever gives a message other than 280 blocks, the disk's
directory is either damaged or missing or you have a higher-capacity disk or
rigid disk. You need to know what the capacity of your disk is so that you
can tell if there is a problem.

Prompt: Enter new volume name (<ret> for no change) :

Response: NEWDISK

or any other valid volume name. You are asked to verify it.

Prompt: NEWDISK: correct?

Response: v

Typing v results in the message

NEWDISK: zeroed

Make

The Make command is used to reserve an area on a disk for a file of a
specified name. To invoke this command, type M from the Filer's command
level.

The Filer Commands Il-57

II-58

The Make command requires you to type a file name specification and gives
you the option of typing a file size specification. You specify the file size by
following the filename with the number of blocks that the file will occupy
enclosed in square [brackets J.

There are two generic file size specifiers, [OJ and [* J. [OJ says the file
reservation is to cover all of the largest unused contiguous area on the disk,
whereas [" J means that the file reservation is to cover either the
second-largest contiguous area or half of the largest area, whichever is
larger. Using the [OJ specifier is equivalent to omitting the size specification
because this is the command's default condition.

The Make command is commonly used to reserve an area on the disk for
some future use because it prevents other files from occupying the space.

Files with filenames ending in . TEXT must occupy at least four blocks, and
must occupy an even number of blocks. See Chapter 1 of Part IV for details.
If you attempt to use the Make command to create a .TEXT file with fewer
than four blocks, you will get the message No room on volume. If you
use Make to create a . TEXT file and specify an odd number of blocks, the
file will actually be made with one less block.

Example
Prompt: Make what file?

Response: MYDI SK: DAFFDDI L. TEX TC 281

This response reserves the first unused 28-block area encountered on the
volume MYDISK for the dummy file DAFFODIL. TEXT.

When you make a file, you simply create a disk directory entry, without in
any way changing the actual information stored on the portion of the disk to
which that directory entry refers. If the filename ends with .TEXT, you can
attempt to read into the Editor whatever information may have been stored
in that location. Usually, this would be of no value. The only occasion when
it might be useful is if you removed a file but then wanted to retrieve it.

Suppose you have just removed a 19-block file, which started at block 134.
An Extended-directory listing of the disk might show the "hole" where that
file used to be, as a 19-block <unused> area starting at block 134. If you
then Make a file of any name that exactly occupies the blocks the removed
file occupied, the new file will contain exactly the same information. Thus,
if you know enough about the location of a file before it was removed, and if
nothing has been written over that area since the removal, you can
sometimes recover the file by using the Make command.

Chapter 3: The Filer

Quit

The Quit command, which is invoked by typing a from the Filer, causes the
system to exit from the Filer and return to the main Command level.
Remember to have your Pascal system disk in the startup drive when you
issue this command.

Worldile Commands

The following commands are used only with the workfile. If you are not
using workfiles, you do not need to read this section. More information
about using workfiles is included in Chapters 1 and 4.

Get

The Get command, which you invoke by typing G from the Filer, identifies
the specified disk file as the current workfile and saves it in SYSTEM.WRK
everytime you make an update or save the file. The next time you attempt
to Edit, Compile, or Run, the designated file is used.

When you use the Get command, although you are told that the specified
file has been "loaded," the Get command does not actually transfer the
specified file to any other file; it just notes that a workfile has been specified
and saves the name of the new workfile.

If there is already a workfile present on the Pascal system disk when you
issue the Get command, you are prompted:

Throw away current workfile ?

Typing v for yes will clear the workfile, removing all files SYSTEM.WRK
from the Pascal system disk (if they exist), whereas N for no returns you to
the outer level of the Filer.

One Disk Drive I With only one drive, the system disk must be in the drive to Edit,
Compile, and Run the designated workfile so that you can only effectively
get files you previously transferred to the system disk.

You need not type the filename's suffix in the file specification. Wildcards
are not allowed.

The Filer Commands 11-59

II-60

Example
Suppose the prefix disk contains the following files:

FILERDOC2. TEXT
ABSURD.CODE
HYTYPER.CODE
FLIM.TEXT
FILER.DOC. TEXT
FLIM.CODE

Prompt: Get what file ?

Response: F LI M

The Filer responds with the message

Text & code file loaded

because both textfile and codefile exist. Had you typed FLIM.TEXT or
FLIM.CODE, the result would have been the same: both text and code
versions would have been identified for later use as the workfile. If only one
of the versions exists, as in the case of ABSURD.CODE, then that version is
identified for later workfile use, regardless of whether text or code was
requested. Typing ABSURD.TEXT in response to the prompt would
generate the message: Code f i 1 e 1 oaded.

I
By the Way: The textfiles and codefiles themselves are not actually
loaded at this time; the system loads their complete filenames into
memory for use when the files themselves have to be loaded.

Working with the workfile can generate a number of files whose names
begin SYSTEM.WRK., as parts of the workfile. These files will disappear
when the Save command is used to save the contents of the workfile under
their original filename or a new one. If the system is restarted before the
Save command is issued, the original name of the workfile as specified by
the Get command will be lost.

Save

This command saves both components of the Pascal system disk's workfile
(both .TEXT and .CODE, if both exist) under the filename you originally
specified with Get or under a different filename if you so specify. You
invoke this command by typing s from the Filer command line.

I
Two Save Commands: Do not confuse the Filer level Save command
with the Editor level Save command. These two commands serve totally
different functions.

Chapter 3: The Filer

Observing filename conventions, you must enter a filename of 10 or fewer
characters because the Filer will add a five-letter suffix for you.

If a file already exists with the specified filename, the Filer saves the
workfile under the specified name after removing the old file.

If you are saving the workfile as a file on the Pascal system disk, the
workfile (which is already on that disk) is simply renamed. When you save
the workfile on a disk other than the Pascal system disk, the system is
actually performing a Transfer of the workfile. Thus the workfile is
unchanged after the Save is completed.

If saved to the directory of the same disk, files beginning with
SYSTEM.WRK disappear when the Filer's Save command is used to save
the contents of the workfile under an original filename or under a new
filename. If you restart the system before you use the Filer's Save
command, the original name of the workfile's contents (as specified by the
Get command) will be forgotten, but the file itself will not be affected.

If the disk volume name or number is not given, the prefix disk is assumed.
Wildcards are not allowed.

You do not need to include a .TEXT or .CODE suffix when specifying the
filename to be used when you save your workfile; the system will add the
appropriate suffix for you. If a codefile has been compiled or assembled
since the last update of the workfile, that codefile will be saved in the same
process that saves the text part of the workfile.

Example
Suppose that you used the Get command to access the file OLDFILE on disk
MYDISK:. After editing and recompiling this file, you decide to save it under
the filename NEWFILE. After typing s you are prompted

Prompt: Save as MYDISK:DLDFILE ?

Response: N

Prompt: Save as what file ?

Response: MYDISK:NEWFILE

When you type this response, the Filer asks you for verification, removes
any old file named MYDISK:NEWFILE, and then saves the workfile under
that name.

The Filer Commands II-61

II-62

Example
Prompt: Save as what file ?

Response: RED:EYE

RED: EYE constitutes a file specification, and this response tells the Filer to
attempt to transfer the workfile to the specified volume and file (see the
Transfer command).

If one of your disk drives contains a disk named RED:, you soon see the
message

APPLE1:SYSTEM.WRK.TEXT ---> RED:EYE.TEXT

This message tells you that the workfile named SYSTEM.WRK.TEXT, on
the Pascal system disk named APPLEl:, has been successfully transferred
to the file named EYE. TEXT, on the disk named RED:. If there is no disk
named RED: in any disk drive, you see the message

Put in RED:
Press <space> to continue

This gives you the chance to insert a disk named RED:, if you have one, into
a disk drive.

Two-Drive Method
On multiple-drive systems, you can Save all the versions of the workfile
(usually .TEXT and .CODE) directly onto another disk, using a filename of
your choice. Then New erases the workfile from the system disk. This is the
process.

When the Updated workfile contains your finished product, or when you
need to start a new file for another project, type F from Command level to
enter the Filer. From the Filer, type s for Save and you are prompted:

Save as what file ?

When you respond by typing any valid disk file specification (without any
. TEXT or .CODE suffix), the system saves all versions of the workfile under
the filename which you have specified. For example, if you respond by
typing

MYDISK:PRDGRAM1

the system saves SYSTEM.WRK.TEXT as PROGRAMl.TEXT, and
SYSTEM.WRK.CODE (if it exists) as PROGRAMl.CODE, on disk MYDISK:

You can now type the Filer command New, which erases all versions of the
workfile on the system disk, and the creation or editing process can begin
again.

Chapter 3: The Filer

One-Drive Method
On one-drive systems, you can only save one version of the workfile
(usually . TEXT) onto another disk. To save more than one workfile version
(usually .TEXT and .CODE), you must first save all versions onto the
system disk, and then transfer each version to the other disk. Then you can
remove the saved files from the system disk. Here is how it might be done.

When the updated workfile contains your finished product, or when you
need to start a new file for another project, type F from the Command level
to enter the Filer. From the Filer, type s for Save and you are prompted

Save as what file ?

You should respond by typing a valid file specification (without any . TEXT
or .CODE suffix). The system then renames all versions of the workfile to
the filename that you have specified. For example, if APPLEO: is your
system disk, you might respond by typing

APPLEltl:PRDGRAM1

The system renames SYSTEM.WRK.TEXT as PROGRAMl.TEXT, and
SYSTEM. WRK.CODE (if it exists) as PROGRAMl. CODE, on the system disk.
This step makes the former workfile safe from being accidentally erased by
a New command, and tells the system that the workfile is gone.

Now type T for Transfer. The system prompts

Transfer what file ?

You should respond by typing the complete file specification (including the
suffix, this time) for one version of your saved file. In the example, you
might type

APPLE0:PRDGRAM1.TEXT

When you press RETURN, the system asks

To where ?

Now type the complete file specification for the destination file. If you wish
to save your PROGRAMl files on disk MYDISK: , for example, you would
type

MVDISK:$

The Filer Commands 11-63

II-64

The disk drive whirs, and soon this message appears:

Put in MYDISK:
Press <space> to continue

Follow the directions, putting MYDISK: in the disk drive and pressing the
SPACE bar. When PROGRAMl. TEXT has been successfully transferred to
MYDISK:, you can put APPLEO: back in the disk drive.

Now, repeat the Transfer command, this time saving the file
PROGRAMl.CODE (if it exists) onto MYDISK: . When that transfer is
complete, again put APPLEO: back in the disk drive.

To prevent your system disk from becoming cluttered up with files that you
have already saved elsewhere, you may wish to remove the PROGRAMl
files from APPLEO: at this time. Type R for Remove, and when the Filer
prompts

Remove what file ?

type the complete file specification (including the .TEXT or .CODE suffix)
of one file that you wish removed from the system disk. For example, you
might respond by typing

APPLE0:PROGRAM1.TEXT

The Filer soon says

APPLE0:PROGRAM1.TEXT --> Removed
Update directory ?

This gives you a last chance to avoid removing the specified file by typing
an N response. If you type a response of v , the file PROGRAM!. TEXT is
removed from APPLEO:'s directory, and the system forgets that file's
existence. You can repeat the Remove command as often as you wish, of
course, until all unnecessary files have been removed.

New

The New command, invoked by typing N from the Filer command level,
clears the workfile, so that there is no default file to be used automatically
by Edit, Compile, Assemble, and Run . The last file specified as the workfile
by the Filer's Get command is no longer so designated. All versions of the
workfile saved on the Pascal system disk are removed from the directory.
There will be no workfile on the Pascal system disk until you create a
workfile with the Editor's Update command.

Chapter 3: The Filer

If there is already a workfile SYSTEM.WRK present on the Pascal system
disk when you issue the New command, you are asked

Throw away current workfile ?

If you respond with v, the Filer clears the workfile, removing all files
SYSTEM.WRK from the Pascal system disk; if you respond with H, you
return to the outer level of the Filer.

Use the New command to clear away the automatically loaded workfile so
that you can create a new file in the Editor or compile any file other than
the workfile.

What

This command identifies the name and state (saved or not) of the workfile.
To invoke it, type w from the Filer.

If you have saved the workfile onto any disk other than the Pascal system
disk, the What command continues to report the workfile as not saved. This
is because the workfile still exists on the system disk. You see the message

Workfile is not named (not saved)

Disk Upkeep Commands

The Bad-blocks and Examine commands are used to check the physical
status of your disks to determine whether all blocks are functional.

Bad~Blocks

This command identifies damaged blocks on a disk. You invoke it by typing
B from the Filer.

The Bad-blocks command requires that you type a volume number or
volume name. The specified disk volume must be on line (currently
available to the system). If the disk drive or disk is not there, you see the
message

Volume not found

The Filer Commands II-65

11-66

Example
Prompt: Bad block scan of what volume ?

Response: APPLE3:

Prompt: Scan 280 blocks ? <YIN>

In response you will normally type v for Yes, telling the Filer you want to
scan the entire disk. If you wish to check only a smaller portion of the disk
(a very unusual case), type N and you will be asked to type the number of
blocks you want the Filer to scan. Because the number of blocks to scan
depends on the type of storage device in use, check the number of blocks
available on your disk. If your system gives a message other than 280
blocks, the disk's directory is either damaged or missing, or you have a
higher-capacity disk or rigid disk.

Once the system knows how many blocks to check, it goes ahead and
checks each block on the indicated disk for errors, and lists the block
number of each bad block. In most instances you will see the message

!! bad blockCs)

after the bad-blocks scan has been completed. If the disk has bad blocks the
disk drive will buzz and clatter, and you will see a message similar to this:

Scan 28il blocks ? CY /tD y

Block 23 is bad
Block 24 is bad
Block 25 is bad
3 bad blocks
File(s) endangered:
THISFILE.TEXT 18 24
THATFILE.CODE 25 29

The last two lines tell you that the three bad blocks are contained partly in
the file THISFILE.TEXT, which is stored in blocks 18 through 24, and partly
in the file THATFILE.CODE, which occupies blocks 25 through 29.

The system always asks you if you want to continue the scan after it has
found three bad blocks. Then, it asks you if you want to continue after
every 9th bad block (for example, after the 9th bad block, the 18th, the
27th, and so on). Blocks reported as bad can often be fixed by using the
Examine command. Those that cannot be fixed can be marked so that they
are not used. See the discussion of the Examine command, which follows.

Chapter 3: The Filer

If you see that one of your disks contains bad blocks, you can play it very
safe if you are concerned about the condition of the disk: You can use the
Transfer command to copy each of the files that do not contain any bad
blocks to a healthy disk; you can use the Examine command on the bad
blocks to see if the files containing them can be recovered and, if not, you
can see if you can reformat the disk with the Pascal Formatter.

The most common cause of reported bad blocks on a disk is bad data
written to the disk. Over-writing the information on the block usually cures
the problem. If the bad-block error is caused by actual, physical damage or
other problems with the disk's recording surface, that particular data is
usually unrecoverable.

Dirt and fingerprints are also common culprits. An attempt to store
information in such a bad block may result in the loss of that information,
and may render the entire file unreadable. To guard against this kind of
problem, you should always do the following:

o Handle your disks very carefully, and keep them clean.
o Do a bad-blocks scan of every disk whenever you use the Zero command

to erase its directory to reuse it, and at any time you have suspicions
about the disk.

A less common cause of bad blocks is opening the disk drive door or
otherwise disturbing the recording process while the system is trying to
store information on the disk in that drive. Doing so sometimes creates an
error in the data field of a disk sector. The disk is not damaged physically
and so probably can be "fixed" with Examine. The information in the block
may be faulty; if so, it cannot be fixed with Examine.

Occasionally, the address field of a disk sector may be rendered unreadable
by something you or the system does. This problem is reported as a bad
block by the Bad-blocks command, but it cannot be fixed by the Examine
command. When you attempt to read or transfer the file containing the
damaged address field, the system will report I/O ERROR #64. To correct
this problem, you must reformat the disk. Or you can simply mark these
blocks to avoid using them. Reformatting the disk will erase everything on
the disk, so be sure to save the undamaged files first.

If a directory contains a bad block, the Filer cannot report on the validity of
the files contained in it.

The Filer Commands 11-67

11-68

Examine

The Examine operation attempts to "fix" bad blocks found by the
Bad-blocks command. The Examine command is invoked by typing x from
the Filer command line.

Using this option requires that you specify a volume name or number. The
specified disk volume must be on line.

Example
Suppose you have just done a bad-blocks scan of the disk named MYDISK:,
and the Filer has given you the following report:

Scan 280 blocks ? CY/H) Y

Block 23 is bad

Block 24 is bad

Block 25 is bad

3 bad blocks
File(s) endangered:

THISFILE.TEXT 18 24

THATFILE.CODE 25 29

You type x to invoke the Examine command.

Prompt: Examine blocks on what volume ?

Response: MYD I SK:

Prompt: Block-range ?

Enter the block number or block range returned by the block scan just
performed. Indicate a range of blocks as follows:

Response: 23-25

If files are stored in those blocks on the disk you are about to Examine, the
name of each such file and its beginning and ending block numbers are
shown:

File(s) endangered:

TH!SFILE.TEXT 18 24

THATFILE.CODE 25 29
Fix bad blocks ?

The files shown are endangered merely by their containing bad blocks, not
by the Examine process.

Chapter 3: The Filer

&.Warning

An N response to this prompt returns you to the Filer command level. If you
respond v, the Filer examines the blocks in the specified range and
frequently returns a report something like this:

Block 23 may be OK

Bloc~ 24 may be OK

Block 25 may be OK

In this case the bad blocks are probably fixed. Occasionally, however, the
report may be something like this instead:

Block 23 may be OK

Block 24 is bad

Block 25 is bad

File(s) endangered:

THISFILE.TEXT 18 24

THATFILE.CODE 25 29

Mark bad blocks ? (Files will be removed !) CY/N)

In this case the Filer is offering you the option of marking the block(s) it
could not fix. If you respond with v to this question, the Filer first removes
all files containing those bad blocks that could not be fixed and then
creates a file on the disk named BAD. BAD exactly covers the bad blocks. If
the bad blocks are not contiguous, more than one BAD file will be created.
Once this is done, you are advised:

Bad blocks marked

and the Filer command line reappears on your screen. On the disk directory,
you will find a new entry which says

BAD. !Hl024. BAD

Blocks in a file marked .BAD will not be used to store any of your files, and
will not be shifted during a Krunch operation. These dangerous areas on
your disk are thus rendered effectively harmless.

When you first format or zero a disk, it is a good idea to do a bad-blocks scan
so that you can conveniently mark any bad blocks and save yourself a lot of
trouble in the future.

A block which has been "fixed" may still contain useless garbage. The
message MAY BE OK should be translated as "is probably physically
OK." Examining a block means that the information stored in the block is
read into memory, stored again at the same spot, and then read again. If
both readings are the same, the block is probably all right physically and
is not declared BAD. This says nothing about the information contained
in the block.

The Filer Commands Il-69

II-70

File Specification Summary

Refer to Appendix 2A for a complete summary of Filer commands available
from the Filer command line. The review here covers special characters
and conventions used in the Filer to specify Apple Pascal files.

Summary of Special Characters

*

?

$

Chapter 3: The Filer

Specifies the system disk volume name

Specifies the prefix volume name

Wildcard used to specify a subset of filenames. For
example, BR= XT specifies all filenames beginning
with BR and ending with XT

Same as = except the Filer requests verification
before acting on each filename. Example: BR?XT

Used with the Transfer command to specify a
destination filename that is the same as the source
filename

Separates any number of Filer command response
fields. Some commands use response fields in pairs.

Filename Conventions -Volume name with no filename

Filename with no volume name

Specifies the entire named disk

Specifies the named file on the
prefix disk

#4: or MYDISK:

#4:MYFILE.TEXT or
MYDISK:MYFILE. TEXT

Typical volume specification

Typical file specification (suffix
required unless otherwise noted)

MYDISK:MYFILE. TEXT[25] File specification, with size
specification

Size Specifications

[OJ

[*]

[number]

Specifies that the file is to occupy all of the largest
unused area on the disk (generally the default
specification)

Specifies that the file is to occupy all of the
second-largest unused area or half of the largest
unused area, whichever is larger

Specifies that the file is to occupy the first unused
area that contains at least the specified number of
blocks

File Specification Summary II-71

Chapter4 The Editor

II-73

II-74

Introduction

The Pascal Editor helps you prepare programs and text. It lets you

o Insert and delete text;
o Move part of a document from one position in the textfile to another;
o Merge all or part of one file into another textfile;
o Move the cursor to a specified point in the file;
o Find or replace strings of text throughout the textfile;
o Adjust the margins and indentation of paragraphs of text thoughout the

file.

The first part of this chapter describes some of the general characteristics of
the Editor, such as which disk files you need to use the Editor, how to read
the Editor command line and other prompts, how the cursor moves, and
briefly how to use the Editor in its different modes. The remainder of the
chapter describes each of the Editor's commands in detail.

Disk files Needed

When you use the Editor, the disk file SYSTEM.EDITOR must be available
to the system. SYSTEM.EDITOR is normally provided on disk APPLEl: and
onAPPLEO:.

Files that are being edited may be on any disk in any drive.

The Apple Pascal system will retrieve the workfile from the system disk,
and store the workfile onto the system disk, no matter which disk drive the
system disk is in. However, because other files on the system disk must be
found in the startup drive, it is recommended that you keep your system
disk in the startup drive while editing.

Editing With Two 5%ulnch IOisk Drives

On two-drive systems, "non-startup drive" means volume #5 (the "startup
drive" is volume #4). On systems with three or more drives, "non-startup
drive" means any drive except volume #4. Systems with three or more
drives can leave APPLEl: and APPLE2: in volumes #4 and #5.

Chapter 4: The Editor

Using the System Worldile

In general, two-drive users using the system workfile will follow this
procedure when editing:

1. With your system disk (APPLEl: or APPLEO:) in the startup drive, put
into the other drive the disk that has the file you wish to Edit.

2. Enter the Filer, and Get the textfile you wish to Edit. Then Quit the
Filer, and enter the Editor. The file designated by Get is automatically
read into the Editor as the system workfile.

3. Edit the file. From time to time, Quit, Update the workfile, and Return to
the file. When you are through editing, Quit and Update the workfile
one last time, and then Exit the Editor.

4. If you are editing a program, you can Run the program now to check its
operation and also to generate a code version (SYSTEM.WRK.CODE) of
your latest workfile. If your startup disk is APPLEl:, you should put
APPLE2: in the non-startup drive before attempting to Run your
program.

5. Enter the Filer, and Save the workfile onto a disk that you have put in
the non-startup drive.

You can keep the original copy of the file being edited in another drive, so
that only the workfile SYSTEM.WRK.TEXT appears on the system disk in
the startup drive, or you can avoid using the system workfile.

Editing Without Workfiles

If you are editing with two 514-inch disk drives without using workfiles, you
will generally follow these steps:

1. With your system disk (APPLEl: or APPLEO:) in the startup drive, put
in the other drive the disk that has the file you wish to Edit.

2. Enter the Editor and specify the filename of the file you wish to Edit.
You may need to enter the Filer to check the filename if you are
uncertain.

3. Edit the file. From time to time, Quit, Save the file under the original
name or Write a new file, and Return to the file. When you are through
editing, Quit and Save the file one last time, and then Exit the Editor.

Disk Files Needed ll-75

Il-76

4. If you are editing a program, you can Run the program now to check its
operation and also to generate a code version of the textfile. If you use
the Run command, your file will become the current workfile. You
might also choose to Compile your program instead, without generating
a workfile. If your startup disk is APPLEl:, you should put APPLE2: in
the non-startup drive before attempting to Run or Compile your
program.

5. If you used the Run command, enter the Filer, and Save the workfile
onto a disk that you have put in the non-startup drive. Otherwise, you
can save your file onto another disk when you compile it.

Editing With One 51/4mlnch Disk Drive

The procedure you will follow when editing files with one 5~-inch disk
drive differs depending on whether or not you are using the system
workfile.

Using the System Workfile

In general, if you have only one drive and want to use the system workfile,
you need to follow this procedure when editing:

1. If you wish to Run a program you are editing, you must use APPLEO: as
your system disk. With your system disk (APPLEl: or APPLEO:) in the
drive, enter the Filer.

2. Transfer onto your system disk a copy of the textfile you wish to Edit.
Start the Transfer with the source disk in the drive, and wait until
prompted before putting the destination disk (your system disk) into the
drive.

3. With your system disk in the drive, Get the textfile you have just
Transferred. Then Quit the Filer, and enter the Editor. The file
designated by Get is automatically read into the Editor as the system
workfile.

4. Edit the file. From time to time, Quit, Update the workfile, and Return to
the file. When you are through editing, Quit and Update the workfile
one last time, and then Exit the Editor.

5. If you are editing a program, you can Run the program now to check its
operation and also to generate a code version (SYSTEM.WRK.CODE) of
your latest workfile. Repeat steps 4 and 5 until the program runs as it
should.

Chapter 4: The Editor

6. Enter the Filer and use the Save command to rename the workfile on
the system disk. Then Transfer the Saved file or files, one at a time,
onto any other disk. Start each Transfer with the system disk in the
drive, and wait until prompted before putting the destination disk in the
drive.

7. You may also wish to Remove the Saved files from your system disk at
this time, to leave more room on that disk for future editing jobs.

8. Before you Exit the Filer, put your system disk back in the drive.

Editing Without Workfiles

Working without workfiles with one 514-inch disk drive is similar to the
process just described, but there are a few important differences.

1. If you wish to Run or Compile a program you are editing, you must use
APPLEO: as your system disk. With your system disk (APPLEl: or
APPLEO:) in the drive, enter the Filer.

2. Transfer onto your system disk a copy of the textfile you wish to Edit.
Start the Transfer with the source disk in the drive, and wait until
prompted before putting the destination disk (your system disk) into the
drive.

3. With your system disk in the drive, enter the Editor. Give the name of
the textfile you have just Transferred.

4. Edit the file. From time to time, Quit, Save the textfile with the same
filename or Write a new file, and Return to the file. When you are
through editing, Quit and Save file one last time, and then Exit the
Editor.

5. If you are editing a program, you can Run the program now to check its
operation and also to generate a code version of the textfile. If you use
the Run command, whatever file you specify will become the current
system workfile. You might also choose to Compile your program
instead, without generating a workfile. Repeat steps 4 and 5 until the
program runs as it should.

6. Enter the Filer and use the Save command to rename the workfile on
the system disk if you used the Run command. Transfer the file or files,
one at a time, onto any other disk. Start each Transfer with the system
disk in the drive, and wait until prompted before putting the destination
disk in the drive.

7. You may also wish to Remove the files from your system disk at this
time, to leave more room on that disk for future editing jobs.

8. Before you Exit the Filer, put your system disk back in the drive.

Disk Files Needed Il-77

II-78

Editing With a 31/2-lnch Disk Drive

If you are using a 3\!2-inch disk drive, you can put all the files you need on
one disk and edit with or without workfiles. If you have two drives, it will
be convenient to put your files on a separate data disk rather than on the
Pascal system disk.

Text-Editing Only

When you are handling large textfiles, the amount of unused space on the
system disk is important. If you use workfiles, the file being worked on is
usually stored again and again in the workfile on the system disk. To be on
the safe side, the contiguous unused space available for storing the workfile
should be at least three times the size of the largest workfile you will store.

Note that textfiles always use disk space in two-block increments.

If you are only editing text, you may wish to remove all unnecessary files
from a copy of APPLEl:, in order to leave room for large textfiles on your
system disk. The following example, EDITl:, shows a list of files that could
be used on a 514-inch disk designed only for text-editing.

EDITl:
SYSTEM.APPLE
SYSTEM.PASCAL
SYSTEM.MISCINFO
SYSTEM.EDITOR
SYSTEM.FILER

A Walk Through the Editor

This discussion explains and briefly demontrates the basic concepts and
terms involved in using the Pascal Editor. The purpose is to give you an
overview of how the Editor operates. Following this section is a full
discussion of all Editor commands.

A "Window" Into the File

The Editor is designed for use with the Apple's video display. After a file
has been read into the Editor, the Editor displays the beginning of the file on

Chapter 4: The Editor

the second line of the screen. If the file is too long for the screen, only the
first portion of the file is displayed. The displayed portion is a window into
your file.

Figure 4-1. Editor "Scroll Window"

Although the whole file is accessible to you through the Editor, you can see
only part of the file through the "window" of the screen. When any Editor
command takes you to a position in a file that is not displayed, the
"window" is moved to show that portion of the file.

The cursor marks the position in the file where actions performed by the
Editor have their effect. It is the white rectangle that is displayed on the
screen and indicates your position in the file. The window shows a part of
the file near the cursor and moves as you move the cursor through the file.

Although the cursor appears to move over characters on the display, it is
actually between the character that appears to its left and the character
that the cursor seems to be on. (Don't forget that a space is a character too.)

Some of the Editor's commands permit additions, changes, or deletions of
such length that the screen cannot display all of the text that has been
changed. In those cases, the screen shows the portion of the file where the
cursor was positioned after the change.

A Walk Through the Editor II-79

As you have already learned if you have a 40-column video screen, you
need to use CONTROL-A to switch between the right and left halves of
Pascal's 80-column display. In the Editor, however, you can use the Set
Environment command to change the Right margin to 39. If you do this,
you will be able to work conveniently in 40-column mode without having
to use CONTROL-A and CONTROL-Z continually. See the "Set" command
later in this chapter to learn how to set the Right margin. Otherwise,
when you work in the Editor, use CONTROL-Z to scroll back and forth
automatically tracking the cursor's movement.

The Editor Command line

The Editor command line lets you know that you are in the Editor rather
than in some other part of the system. The command line also reminds you
of the options you have at this point in the program.

Here is the complete Editor command line:

>Edit: ICn5rt DClete CCpy XCchng FCnd RCplce JCmp ACdjst SCet MCrgin ZCap Q(uit

11-80

Notation in System Prompts

You need to know how to interpret the notation used in Editor prompts and
in prompts throughout the operating system. The conventions described
here are consistent with those in other parts of the Pascal system. It is in
the Editor that you first encounter them. In prompts displayed on the
screen, a word enclosed between angle brackets <like this> indicates
that you can press a particular key; < re t > means that you can press
RETURN, <es c > means that you can press ESC, and <ctr l c > means that
you can press CONTROL-C. However, <de l >means that you can cause a
deletion by typing CONTROL-X, not by pressing the DELETE key.
CONTROL-X deletes one line at a time. The DELETE key is not used in
Apple Pascal.

In the broadest context, RETURN is used to continue through a process to
its logical completion, ESC is used to cancel an action or escape to the
next-higher level in the program, and CONTROL-C is used to accept an
action. The use of these keys varies according to context and it is important
to read each prompt to see how to proceed. You can use either lowercase or
uppercase characters when responding to prompts that require you to type
alphabetic characters.

Chapter 4: The Editor

>Edit:

Entering the Editor

When the main Command line is on the screen and your Pascal system disk
is in the startup drive (volume #4:), press E for Edit. If the system already
has a text workfile (see the section on workfiles in Chapter 1), that file is
automatically read into the Editor, ready for work. If the system does not
have a workfile yet or if only a code workfile exists, this prompt appears
when you first enter the Editor:

Edit what file? (<ret> for new file, <esc-ret> to exit editor>
-->

There are three ways to answer this opening question.

1. You can answer by typing the complete filename of any text file that
already exists on disk.

For example, you might enter

HOHUMM:PROGRAM1

When you press RETURN, the file named PROGRAM I. TEXT is
retrieved from disk HOHUMM:, and the text of that file appears on the
screen. Note that you do not need to enter the .TEXT at the end of any
of your textfiles. However, be sure to type a period (.)at the end of any
files whose filenames don't end in .TEXT.

2. You can answer by pressing RETURN.

This tells the system that you are starting a new file. The only thing
visible on the screen after doing this is the normal Edit command line.

You have started a new file that currently has nothing in it. Type 1 for
Insert to begin inserting your program. No permanent version of this
new file exists until you use the Quit command to exit from the Editor,
then the Write or Update command from Quit to copy the file onto a
disk.

3. You can answer by pressing ESC and then pressing RETURN.

The Editor returns you to the system Command level, a useful option
when you didn't mean to press E to Edit.

Let's suppose then that you want to begin a brand new file.

A Walk Through the Editor II-81

>Edit:

Starting a New File

If a workfile is present, you must clear it by using the Filer's New command
(see Chapter 3). Otherwise the workfile will be loaded every time you try to
enter the Editor to create your new file.

Now that the workfile has been cleared, press E for Edit from the Command
level. Soon, this prompt appears:

Edit what file? (<ret> for new file, <esc-ret> to exit editor}
--)

To start a new file, instead of reading an existing file from disk, press
RETURN. This command line appears at the top of the screen:

>Edit: I<nsrt DClete CCpy XCchn9 F(nd RCplce JCmp ACdjst SCet MCrgin Z<ap QCuit

You can now press 1 for Insert. The following prompt appears at the top of
the screen:

>Insert: <Text>, <bs> a char, a line, <ctrlC> accepts, <esc> escapes

11-82

The prompt tells you what you can do while typing in text in insert mode. If
you type in a wrong character, backspacing over the character with.,____ will
remove it. After you remove the offending character, continue typing again
with your text. If an entire line offends you, typing CONTROL-X will
remove that line. The cursor will then appear at the end of the preceding
line.

If you decide it was all hopeless anyway, press ESC to throw out all the text
that you have typed since last entering insert mode. Otherwise, after you
have entered all the text you want, type CONTROL-C to save the text and
leave insert mode.

When you wish to add more text, press I again and the insert prompt
reappears. Further typing inserts text at the cursor position, until you
terminate the latest insertion by pressing CONTROL-C.

Chapter 4: The Editor

For example, you might press I for Insert, and then type

PROGRAM EXAMP;
BEGIN

WRITEC'AN APPLE A DAY'>
END.

ending each line by pressing RETURN. Accept this insertion by pressing
CONTROL-C.

Moving the Cursor

To edit, you must move the cursor. There are four "arrow keys" on the
keyboard that move the cursor up and down, left and right. You can move
the cursor only when one of these prompt lines is at the top of the screen:
Edit, Delete, or Adjust.

Apple II or II Plus I If you have an Apple II or an Apple II Plus, see "Cursor Moves" in the next
section to learn the cursor moves equivalent to the t and i keys on the
Apple Ile and Ile.

The cursor moves vertically without regard to the text on the page;
otherwise the cursor will remain in the text of the program. For example,
suppose the cursor appears after the Nin BEGIN.

PROGRAM EXAMP;
BEGIN

WRITEC'AN APPLE A DAY')
END.

(Actually, the cursor is "between" the invisible RETURN character that
ends every line and the Nin BEGIN.) If you press_,,., the cursor moves to
the win WRITE:

PROGRAM EX AMP;
BEGIN

WRITEC'AN APPLE A DAY'>
END.

Similarly, pressing+-- now moves the cursor back after the Nin BEGIN.

If you want to change the third line, WR I TE c 'AN APPLE A DAY'>, to
WR r TEC 'AN ORANGE A DAY'>, you must first move the cursor to the
correct spot.

A Walk Through the Editor 11-83

For example, if the cursor is on the Pin PROGRAM EXAMP;, move down
two lines by pressing i twice. After you press i once, the cursor is on the B
in BEGIN; after you press i a second time, the cursor is in front of the Win
WRITE.

PROGRAM EXAMP;
BEGIH

WRITEC'AH APPLE A DAV'>
EHD.

Now, using____.., move the cursor until it appears on theA inAPPLE.

By the Way: Note that the cursor may at times appear to be outside the
text when you move it downward and upward. In the last illustration, the
cursor appears to be in the blank space before the Win WRITE. As far as
the Editor knows, however, the cursor is actually on the Win WRITE. So
do not be surprised when you first press __.. and the cursor jumps to the R
in WRITE. When the cursor appears to be outside the text, from the
Editor's viewpoint it is actually on the character nearest the cursor.

Refer to "Cursor Behavior in the Editor" following this section to learn in
detail about cursor movement.

Inserting Text

The Edit command line shows the Insert command. To insert text, first
move the cursor to the correct position, and then type I. Always move the
cursor to the correct position bej ore you type I. Earlier, you moved the
cursor to theA in APPLE. Now, when you type I, an insertion is made just
to the left of the A. The rest of the line, starting with the A, moves to the
right-hand side of the screen.

If the insertion is lengthy, the right-hand portion of the line (beginning with
A) moves down to allow room on the screen for more inserted text to
appear. After you have pressed r, you should see the following prompt:

>Insert: <Text>, <bs> a char, a line, <ctrlC> accepts, <esc> escapes

II-84

If that prompt does not appear at the top of the screen, you cannot insert
characters. You might have pressed a wrong character. If so, press ESC to
bring up the Edit command line, then type I for Insert.

Chapter 4: The Editor

If the cursor was at theA inAPPLEwhen you pressed I, the Insert prompt
appeared and the remaining portion of that line (beginning with A) was
pushed to the right-hand edge of the display. You can insert ORANGE by
typing those six letters. They will appear on the display as you type them.

One step remains: accepting or rejecting the final result of your editing. The
choice at the end of the prompt indicates that if you press CONTROL-C you
accept the insertion; if you press ESC you reject the insertion, leaving the
text as it was before you began the insertion.

(Portion of screen before typing r)

PROGRAM EXAMP;
BEGIN

WRITEC'AN APPLE A DAV')
END.

(Portion of screen after typing r for Insert)

PROGRAM EXAMP;
BEGIN

WRITEC'AN
END.

APPLE A DAV')

(Portion of screen after typing ORANGE)

PROGRAM EXAMP;
BEGIN

WRITEC'AN ORANGE
END.

APPLE A DAV')

(Portion of screen after insertion followed by CONTROL-C)

PROGRAM EXAMP;
BEGIN

WRITEC'AN ORANGEAPPLE A DAV')
nm.

(Portion of screen after insertion followed by ESC)

PROGRAM EXAMP;
BEGIN

WRITEC'AN APPLE A DAV'>
END.

A Walk Through the Editor 11-85

Apple II or II Plus

It is legal to insert a carriage return. To do so, press RETURN while the
Insert prompt is at the top of the screen.

For a full discussion of text insertion, see "Insert" in the command section
later in this chapter.

Remember that you use CONTROL-E to shift between uppercase and
lowercase characters, and CONTROL-W to force the keyboard into
uppercase for the next character typed. If you want to type the left
bracket character ([), you must type CONTROL-K and if you want to type
the right bracket character (]), you must type SHIFT-M. In addition, if you
have a shift-key modification, check "System Notes" in Part I to review
the character translations available with that modification.

Checking the Environment

When you are editing text, there are certain format and operation
parameters that are set in the Editor's environment. You need to be
aware of what these are because many commands are influenced by how
these parameters are set. To see how the Editor's environment is set, type s
for Set from the Editor command line and E for Environment from the Set
prompt that appears. You will see a list of parameters that largely determine
how your text is formatted. To learn more about margins, indentation,
filling mode, and so forth, see the detailed discussion of the Set command
later in this chapter.

Deleting Text

Making deletions is similar to making insertions. Now that you have
inserted the word ORANGE into the EXAMP program and have pressed
CONTROL-C, you must delete APPLE. Move the cursor so that it is placed
directly on the first character that you wish to delete. Then press D for
Delete. The following prompt appears:

>Delete: <Moving keys>, <ctrlC> accepts, <esc> escapes

II-86

Each time you press___,,, the character on which the cursor is positioned
disappears. Pressing +--erases the character to the left of the cursor. In this
example, pressing~ five times causes the word APPLE to disappear. To
terminate the deletion, you have the same choice you had with Insert. Press
CONTROL-C to make the proposed deletion permanent. Press ESC to cancel
the proposed deletion and restore the original text.

Chapter 4: The Editor

It is legal to delete a carriage return. When the cursor is at the end of the
line, press D for Delete. Then press __,..until the cursor moves to the
beginning of the next line. After completing the deletion by pressing
CONTROL-C, you may find that the line extends beyond the end of screen
with a I at the rightmost position in the line. The text is not lost, but is not
displayed. The I indicates that there are characters in the line extending
beyond the 79th position.

Refer to "Delete" later in this chapter for a full discussion of text deletion.

Saving Your Work

Finally, when the text is the way you want it, press Q for Quit and then
press w for Write. The system asks you for a filename by which to store
your new file on a disk. For example, if you named your new file

MYFIRST:PROGRAM

your file would be saved on the disk named MYFIRST: in a file named
PROGRAM.TEXT.

If you wish to leave the Editor, press E to Exit and return to the Pascal
Command line. If you wish to change your file for any reason, simply press
E to Edit again. The system asks you for a filename. Type

MYFIRST:PROGRAM

and the editor reads in the file PROGRAM.TEXT from your disk named
MYFIRST:, ready for more editing.

Leaving the Editor

It is a good idea to exit temporarily from the Editor and then use either the
Update, Save, or Write commands about every 15 minutes or so. This way,
in case of accident (if the power goes out or you mistakenly delete an
important part of your file, for example), you won't lose more than 15
minutes' worth of text entry.

When you edit files, you use the Write option to create a new file, the Save
option to replace the last version of a file with the present version, and the
Update option to save changes to the system workfile.

A Walk Through the Editor 11-87

To leave the Editor, press G for Quit. The following menu appears:

>Guit:
To leave Edi tor, type

ECxit to main command line

To store Text file on disk, type
SCave as MYFIRST:PROGRAM.TEXT
WCrite to a new file name
UCpdate *SYSTEM.WRK.TEXT

To continue editing, type
RCeturn to same file
CChange to another file

If you choose the Exit option, any changes you have made to the file since
the last time it was saved to a disk file will be thrown away forever. The
Editor courteously asks

Are you sure you want to throw away changes since last update?

II-88

if any such changes exist. You have the option of either saving changes
made since the last time you saved the file (type H for No), or of not saving
them and exiting to the Command level (type v for Yes).

One way to save a copy of your present file is to press u for Update. Using
this command saves your file on the Pascal system disk under the filename
SYSTEM.WRK. TEXT.

If you use Update, you should also use the Filer's Save option to save the
system workfile under its own filename before using the Editor to modify or
create another file. See Chapter 3.

Remember that when you use the Filer's New command, it erases the
workfile SYSTEM.WRK.TEXT, and that the Editor's Update command
always stores the just-edited file under the same filename
SYSTEM.WRK.TEXT. You will not want SYSTEM.WRK.TEXT to be your
only copy of a file once you are through working on it.

Another method of saving your present file onto disk is to use the Editor's
Write command. Assume that you have created a new file in the Editor that
you want to save. After pressing G to Quit the Editor, you press w for Write.
When the filename prompt appears, you enter the file's filename, which, of
course, includes the name of the disk on which the file will be stored (for
example, as MYDISK:PROGRAM2). If you currently have no file by that
name on the designated disk, the file is stored as whatever filename you

Chapter 4: The Editor

enter. However, if you have a file by the same designated name on that
disk, you see the prompt

MVDISK:PROGRAM2.TEXT already exists. Remove it?-->
V<es to replace old file with new one.
NCo to return to the editor.

Entering N cancels the Write command and returns the Quit menu to your
display.

If you type v the old version of the file stored on disk is replaced by the new
version.

The Quit menu reappears after the Write finishes. You can then enter E to
Exit entirely from the Editor to the Command level, R to Return to the
Editor to continue editing the same file, or c to Change to another file. This
last choice allows you to begin working on another file.

Note that when the Quit menu appears after you have specified the name of
the current file, the Save option appears in the second set of options headed

To store Text file on disk, type

You can now press s to Save your current file under the same name during
each editing session. This saves you the trouble of having to enter the entire
filename every time you want to store more information in the same file.

The Save command operates like the Write command, except that you don't
need to specify the filename each time you write to a disk.

For a complete discussion of Quit options in the Editor, see the section
"Quit" later in this chapter.

Cursor Behavior in the Editor

You spend almost all of your editing time either following or directing the
movement of the cursor. These sections describe how to make the cursor do
what you want it to do.

Cursor Movement
MM m

In general, you use special cursor moves (see below) in the Editor to move
the cursor through the text and place it just where you want the next
command to have its effect.

Cursor Behavior in the Editor 11-89

Notice that not all commands affect the character on which the cursor
actually appears to be placed.

As you can see in Figure 4-2, the actual position of the cursor is between the
character is appears to be on and the character to its left. If the cursor
movement (see "Direction Indicators") is toward the end of the file, which is
toward the lower right corner of the screen, most Editor commands can act
on characters following the character the cursor appears to be on as well as
the character it appears on. If the cursor direction is set toward the
beginning of the file, commands will act on characters to the left and above
the character the cursor appears on.

Figure 4-2. Cursor Positioning and Action

{ cursor appears

.---.~~r---.

R.epeatmFactors

Some of the command options (and the cursor moves) allow you to use
repeat-factors. A repeat-factor is a number that you enter immediately
before issuing a cursor move or command, which causes the cursor move or
the command option to repeat for the number of times indicated by the
repeat-factor.

For example, if you type 2 and then press i, the cursor move is executed
twice, moving the cursor down two lines. Cursor moves and commands
allowing a repeat-factor assume the repeat-factor to be 1 if you don't type a
number.

Explicit repeat-factors may range from 0 to 9999. Typing a slash (/)before
a cursor move or a command indicates an infinite repeat-factor, and causes
the move or command to be repeated as many times as possible in the file.

Apple II or II Plus On an Apple II or Apple II Plus, you can hold down the REPT key so that
cursor moves are automatically repeated.

Apple lie or lie On an Apple Ile or Apple Ile, holding down any key causes it to
automatically repeat.

II-90 Chapter 4: The Editor

.&.Warning Be careful if you are using the automatic repeat feature with a cursor
move: Cursor moves can occur faster than they can be updated on the
screen. You may overshoot your intended destination.

Direction Indicators

The first character displayed on most Editor prompt lines is a direction
indicator showing the set direction. A greater than(>) character
indicates forward direction. A less than (<)character indicates backward
(or reverse) direction. When the Adjust, Edit, or Delete prompt lines are
showing, you can type > or < (with or without the SHIFT key) to change the
direction that the cursor moves. Because you can use these keys whether
you are in uppercase or lowercase, it might be most convenient to think of
them as the comma(,) and period(.). You can also type a plus sign (+)to
set the direction forward and a minus sign (-)to set the direction in
reverse. In summary,

To set the direction forward, type any one of these:) +

To set the direction backward, type any one of these: <

Forward operations begin at the current cursor position and proceed toward
the end of the file. When the set direction is set to the reverse direction,
operations begin at the current cursor position and proceed toward the
beginning of the file. Commands whose operation is affected by the set
direction are noted as such in the detailed command description.

The set direction does not affect the operation of the cursor-moving t, t,
_.., and..,..__ keys.

Cursor Behavior in the Editor 11-91

II-92

Cursor Moves

You can use repeat-factors with all cursor moves. The cursor moves are
outlined below.

If You Press Onan Apple The Cursor Moves

t Ile, Ile up bylines

CONTROL-0 II, II Plus up bylines

i Ile, Ile down by lines

CONTROL-L II, II Plus down by lines

---+ any right by characters

+--- any left by characters

SPACE any in the set direction by characters

TAB Ile, Ile in the set direction, to the next tab
stop*

CONTROL-I any in the set direction, to the next tab
stop*

RETURN any in the set direction, to the beginning of
the next line

Page any in the set direction, one full screen

=(equal) any to the beginning of the last text
Inserted, Found, or Replaced

* Tab stops are set every eight spaces across the screen.

If the cursor appears to the right of a line of text, the Editor acts as though
the cursor is positioned immediately after the last character in the line.

If the cursor appears to the left of a line of text, the Editor acts as though
the cursor were on the first character in the line. When you type a
command, the cursor immediately moves over to the character at the
nearest end of the line and begins performing the operation.

Chapter 4: The Editor

The Page Command

Because it is a cursor-moving command, the page command in the Editor
does not exist anywhere on a command line, but it is very useful for moving
through files. The Page operation is executed whenever you type P from the
Editor command line. The Page operation moves the cursor one full screen
(24 lines) in the set direction. Repeat-factors can be used with the Page
command.

The Editor Commands

The following sections describe, in detail, each of the commands available
in the Editor.

The relationship of all the Editor commands to each other and to the Editor
command level is shown in Figure 4-3.

The Editor Commands 11-93

Figure 4-3. The Editor

Command

Editor

11-94 Chapter 4: The Editor

r---.,
Same I L ___ _J

J
Jump

Beginning

End

Marker

s
Set

Auto indent

Filling

Left margin

Right margin

Paragraph margin

Command character

Token search

The Editor Commands

Q r-p -1 r---< ---, r---> ---1 r-v -1
__ Q_u_it _ _, L~~~J L~!.~:_e~t~!:J l~e_!~i:_e~~oEJ L~E!!IJ

Exit

Save

Write

Update

Return

Change

II-95

Insert -The Insert command allows you to enter new text in the file you are
creating or editing.

To insert text, position the cursor where you want to insert and type 1 for
Insert while at the Edit level. The following prompt line appears:

>Insert: <Text>, <bs> a char, a line, <ctrlC> accepts, <esc> escapes

Il-96

When the Insert prompt appears at the top of the screen, the characters that
you enter are inserted between the character on which you placed the
cursor and the character that was immediately to the cursor's left.

If you attempt to enter control characters into your text, they will be
translated into question marks (?).

The Insert prompt also reminds you how to correct errors while you are
entering text: The < b s > stands for+--- (BACK SPACE), used to delete text a
character at a time, and< de 1 > stands for CONTROL-X, used to delete text
back to the most recent RETURN character.

To save time, the Editor does not constantly rewrite the entire screen as you
insert each new character. Instead, it makes a gap in the text, just where
your insertion will appear, and then waits for you to enter.

If you want to see exactly how the insertion will look in its final form, you
can accept your insertion by pressing CONTROL-C.

If you make a mistake while inserting, just use ..,._ to backspace over your
inserted characters. To delete the entire line that you are in the process of
inserting, back to and including the previous RETURN character, press
CONTROL-X. You can erase only the text that you have added during the
current insertion.

The set direction does not affect the Insert command.

At any time during an insertion, you can cause the Editor to accept the
insertion as it stands (making it a part of your file) by pressing CONTROL-C.
Until you press that CONTROL-C , you can cause the Editor to discard
everything you have entered since beginning the insertion by pressing ESC.

Whether you accept an insertion (by pressing CONTROL-C) or reject it (by
pressing ESC), that insertion is still available, in the copy buffer, until the
next insertion or deletion. To retrieve it, use the Copy command. You can
use the copy buffer to duplicate your last insertion as many times as you

Chapter 4: The Editor

wish. Remember that all of the text may not be available if there is not
enough room in the copy buffer for all of it. See the section on the Copy
command later in this chapter for more information.

I Remember: If you have mistakenly rejected the insertion by pressing
ESC, you can still recover the text using the Copy Buffer command.

The maximum size of a file that you can edit using the 64K Pascal system is
17,920 characters, or 35 disk blocks. The maximum size of a file that you
can edit using the 128K Pascal system is 32,256 characters, or 63 disk
blocks. When your file can hold only about 1000 more characters, you will
receive this warning as you begin entering more text:

ERROR: Please finish up the insertion. Please press <space> to continue.

When you respond by pressing the SPACE bar, the Insert prompt line will
still be at the top of the screen. You can continue your insertion, but you
have been warned that your file is almost full. You should start a new file
right away or split the present file into two parts. If you continue inserting,
you will eventually receive this more urgent message, when your file has
exceeded the amount of text it can hold:

ERROR: Buffer overflow!!!! Please press <space> to continue.

The Editor accepts your insertion, and any further attempts to insert text
cause this message:

ERROR: No room to insert. Please press <space> to continue.

The Edit prompt line reappears on the top of the screen, and you are not
able to add any more text to your file.

Text Formats

Text formats are primarily determined by the settings of two options in the
Environment: Auto-indent and Filling. (See "Set Environment" in the
section on the Set command, later in this chapter). There are two standard
ways that text can be formatted as you insert it: programming mode and
document mode. Programming mode consists of setting Auto-indent to True
and Filling to False. Document mode consists of setting Auto-indent to False

The Editor Commands II-97

11-98

and Filling to True. For example, this text was written in document mode,
and the programming examples found in Part III were written using
programming mode.

We will discuss each of the four possible text formats as determined by the
Auto-indent and Filling settings.

Programming Mode
In this mode, Auto-indent is set to True and Filling is set to False. It is the
usual Environment setting when you are writing computer programs,
building tables, writing outlines, or writing poetry. During an insertion, the
Editor ignores the margins set in the Environment. Instead, you must
terminate each line yourself, and start a new line, by pressing RETURN.
Each new line automatically starts at the same indentation as the first
nonspace character of the preceding text line.

When you first create a document in the Editor, the Environment for that
document is set for programming mode. If the document Environment
settings have been changed to document mode and you wish to set them
back to programming mode, type

SEFFAT

followed by CONTROL-C. SE allows you to Set the Environment options, FF

selects Filling and sets it to False, and AT selects Auto-indent and sets it to
True.

You can change the indentation of a line by typing spaces or tabs (to indent
farther) or by pressing .,__ as the first character in a line (to indent less).
Pressing CONTROL-Q as the first character of any new line sets the
indentation of that line to zero. Press CONTROL-X to discard a line and
return to the end of the previous line. You can also use the Adjust command
to create a new indentation for a line after you leave Insert mode. (Adjust is
described later in this chapter).

The Editor allows you to insert new lines of text into a file without
disturbing the indentation of existing lines. Beginning an insertion at the
start of a line and ending with a RETURN followed by CONTROL-C will not
change the indentation of that line.

If you try entering text beyond position 71, your Apple II beeps to warn you
that you are approaching the right margin. If you enter text beyond
position 79, an exclamation mark(!) appears at the rightmost position on
the display. This character at the end of any line indicates that the line
contains more than the 79 characters that can appear on the display.
Additional characters entered into that line are not lost, but they are not
displayed.

Chapter 4: The Editor

To see the hidden characters, you can insert a RETURN character
anywhere in the visible portion of the line, or set Auto-indent to False and
Filling to True, and Margin the paragraph. The Margin command cannot be
used when Auto-indent is set to True.

Example
In programming mode, type r for Insert and then type the following
sequence:

o Type the word ONE and press RETURN.
o Press the SPACE bar three times, type the word TWO and press RETURN.
o Type the word THREE and press RETURN.
o Press~, type the word FOUR and press RETURN.

This should create the indentations shown at the left below:

ONE

TWO

THREE

FOUR

Document Mode

Original indentation
Indentation changed by SPACE SPACE SPACE
RETURN causes indentation to level of line above
......... changes indentation from level of line above

In this mode, Auto-indent is set to False and Filling is set to True. Document
mode is the normal setting of the Environment when you are writing text
such as letters, user manuals, or other documents. The Editor forces all
insertion to be between the margins set in the Environment. As you are
typing a new word, the instant it exceeds the right margin, a RETURN
character is automatically inserted before the word, and the entire word (or
as much of it as you have entered at that point) is placed beginning at the
left margin defined in the Environment.

In the Editor, a word is any text character or characters bounded by any
two word delimiters, where a word delimiter is a space, a RETURN
character, the beginning or end of the file, or the beginning or end of the
current insertion (before you press CONTROL-C). The hyphen is not a
recognized word delimiter. If you enter two or more RETURN characters in
succession, the next text begins at the set Paragraph margin.

This setting of the Environment also causes the Editor to adjust the margins
on the portion of the paragraph following an insertion (but not the
paragraph portion preceding the insertion). The Editor considers a
paragraph to be any text bounded by any two paragraph delimiters, where a
paragraph delimiter is a blank line (created by two RETURN characters), a
line beginning with the Command character (set in the Environment), or
the beginning or end of the file.

The Editor Commands II-99

II-100

.A Warning The automatic remargining following an insertion can sometimes cause
you much grief. If you are editing in or near a diagram, table, or other
carefully formatted portion of text, it is a good precaution to set Filling
temporarily to False Uust enter s E FF CONTROL-C). Setting Filling to
False prevents an insertion from scrambling your beautiful diagram into a
paragraph of meaningless text.

Example
In document mode, the Left margin set at 0, and Right margin set at 13, type
r for Insert and then enter the following:

WISH I WEREN'T A WASH-AND-WEAR WARRIOR

This should create the text format shown at the left, below:

w 1 SH r Auto-returned when next word would exceed
margin

WEREN'T A Auto-returned when next word would exceed
margin

WASH-AND-WEAR Auto-returned at first possible break, even though
WARR r OR beyond margin

Auto-indent and Filling Tme
With this setting of the Environment, Auto-indent controls the left margin,
ignoring the settings of the Left margin and Paragraph margin. Filling
inserts RETURN characters as before, to keep lines from exceeding the set
Right margin.

However, Filling operates only to keep the current insertion from
exceeding the Right margin. Any text on the same line, but to the right of
the cursor, may extend beyond the Right margin or even beyond the 79
characters visible on the Apple's display. The existence of char.11cters
beyond position 79 is indicated by an exclamation mark (!) displayed at the
rightmost position on the screen. To see the hidden characters, insert a
RETURN character anywhere in the visible portion of the line, or set
Auto-indent to False so that you can Margin the paragraph.

You can change the indentation as before, by pressing the SPACE bar or---,
but only as the first character in a new line (not likely, because Filling
generally begins a line with the last entered word). You can delete a line
and indent to the left margin by using CONTROL-Q. This setting of the
Environment is not usually very helpful, as you can better obtain its effects
in other ways.

Chapter 4: The Editor

Auto-indent and Filling False
With this setting of the Environment, the Editor ignores the margins set in
the Environment. You must enter into the text all margins, indentations,
and RETURN characters.

As in programming mode, if you attempt to enter text beyond position 71,
the computer beeps to warn you. If you attempt to enter text beyond
position 79, an exclamation mark(!) appears at the rightmost position on
the display. This character at the end of any line indicates that the line
contains more than the 79 characters that can be displayed on the screen.
Additional characters entered into that line are not lost, but they are not
displayed.

To see the hidden characters, you can insert a RETURN character
anywhere in the visible portion of the line; or you can set Filling to True and
use the Margin command.

Delete -The Delete command removes text from the file.

To delete text, make sure that the cursor is in the correct position to begin
the deletion, and then type D for Delete while at the Edit level. After you
type o, the following prompt appears:

)Delete: <Moving keys>, <ctrlC> accepts, <esc> escapes

If you position the cursor at the middle of a line of text, moving the cursor to
the right will delete characters beginning with the first character that the
cursor appeared on. Moving the cursor to the left will begin deleting text
with the first character to the left of the cursor. (See Figure 4-4.)

Figure 4-4. Cursor Action With Delete Command

!/cursor

~-ffiHIHI}D o
I
I
I

-<--1--------v-
set Delete mode
and move cursor

Remember, the cursor is always between the character it appears to be on
and the next character toward the beginning of the file.

The Editor Commands 11-101

The Editor remembers where the cursor is when you enter D for Delete.
This position is called the anchor. As the cursor moves away from the
anchor in any direction, using the normal cursor moves, all text between
the cursor and the anchor disappears. When you move the cursor toward
the anchor, the erased characters reappear. You can also use the
repeat-factor to delete or undelete several lines at once, by prefacing any
cursor move with a repeat-factor while the Delete prompt is displayed.

To accept the deletion at any point, press CONTROL-C. To undo the entire
deletion at any time before pressing CONTROL-C, press ESC.

Unlike inserting text, deleting text does not cause remargining of the
portion of the paragraph following the deletion, even if the Environment's
Filling option is set to True and Auto-indent is set to False.

If your deletion included a RETURN character, the line containing the
cursor may extend beyond the 79-character limit of the system's display.
The invisible portion of the line is indicated by an exclamation mark (!) in
the last visible character-position of the line. To see the rest of the line,
insert a RETURN character anywhere in the visible portion of the line, or
use the Margin command to reformat the entire paragraph.

All the text between the cursor and the anchor position is stored in the copy
buffer, ready for use by the Copy command, not only after you accept the
deletion with CONTROL-C, but also after you reject the deletion by pressing
ESC. This last fact is useful when you want to duplicate some text in
another location, or when you are moving some text to another location but
wish to keep a backup copy of the text until the move is successfully
completed.

The copy buffer may be unable to hold all the deleted text if you attempt to
delete too much text at one time. The maximum amount of room in memory
for the copy buffer varies somewhat, depending on how large your file is at
the moment. If you try to delete more text than will fit in the copy buffer,
this message appears:

There i5 no room to copy the deletion. Do you wi5h to delete anyway? Cy/n)

II-102

If you type v for Yes, the text between the cursor and the anchor position is
deleted, but only as much text as will fit goes into the copy buffer and you
will not be able to tell how much that is. If you type H for No, the deletion is
not performed, and the text is not placed in the copy buffer, but the
previous contents of the copy buffer are lost. If you reject a deletion that is

Chapter 4: The Editor

too large for the copy buffer, by pressing ESC, no message is given at that
time. However, if you then attempt to Copy from the buffer this message is
given:

ERROR: Invalid copy. Please press <spacebar> to continue.

Example
Suppose you are editing the following text:

PROGRAM STRING2;
BEGIN

WRITEC'TOO WISE '>;
WRITELNC'TO BE.'>

END.

1. Move the cursor onto theEmEND.
2. Type D for Delete.
3. Type < . This changes the set direction to backward.
4. Press RETURN twice. After the first RETURN the line

WR ITELN< 'TO BE.'> disappears. After the second RETURN, the lme
WR !TE ('TOO w I SE,>; disappears.

5. Now press CONTROL-C. The program after deletion appears as shown:

PROGRAM STRING2;
BEGIN
END.

The two deleted lines have been stored in the copy buffer, and the cursor
has returned to the anchor position. Now type CB to place the contents of
the copy buffer back in the file, then type CB again several times to write
multiple copies of the deleted lines to the file.

PROGRAM STRING2;
BEGIN

WRITEC'TOO WISE '>;
WR!TELNC'TO BE.')
WRITEC'TOO WISE ');
WR!TELNC'TO BE.'>
WRITEC'TOO WISE ');
WR!TELNC'TO BE.')
WRITEC'TOO WISE ');
WRITELNC'TO BE.')

END.

The Editor Commands Il-103

11-104

This leaves you with something like the example above, depending on how
far you want to go with this command.

Note: after you have pressed CONTROL-C, if you immediately copy the
deletion without moving the cursor, the deleted material is just replaced.
This gives you one more chance to recover from a mistaken deletion.

I CONTROL-X: CONTROL-X deletes the current line in Insert mode; it is
unrelated to the Delete command.

Copy -This command copies text from the copy buffer or from a disk file. When
using the Copy command, you may have to use markers previously set in a
file to be copied. To learn how to set markers, see the section on the Set
command later in this chapter. To use the Copy command, type c for Copy
from the Edit command line. When you enter Copy mode, the following
prompt appears:

>Copy: BCuffer, FCile portion, <esc> escapes

Copying From a File

Type c for Copy and then F for File portion, to copy text stored in a file and
insert it in your file. When you type c F, the following prompt appears:

~Copy: From what fileCmarker,markerl?

Now you can remove the disk containing SYSTEM.EDITOR and replace it
with the disk containing the file you want to copy. When copying from a
file, do not remove the disk containing SYSTEMEDITOR until after
you type F. Now specify any on-line file. Using the Copy command does not
change the contents of the file you are copying from. You may enter the
filename's .TEXT suffix or not, as you wish, because .TEXT is
automatically supplied if you do not enter it. If you do not want the Editor to
add . TEXT (when you are copying from a file whose name does not end in
. TEXT), type a period following the complete filename.

To copy only part of a file, you must have already set two markers (from
the Editor) to bracket the desired text. (See the section "Set Marker" under
"Set" later in this chapter.) In brackets, enter the name of the first marker
set during an earlier editing session in the file you are copying from, insert a
comma, and enter the second marker set in the file, within the same
brackets. Only the portion of the file between the markers will be copied
into your file.

Chapter 4: The Editor

If you follow the filename with just a RETURN, rather than marker names
enclosed in brackets, the entire file will be copied into your current file.

If you want to copy from the beginning of the file to a marker, enter the
specification in the form [,marker]; and if you want to copy from a marker to
the end of the file, use the form [marker,] where the comma signifies the
beginning or end points of the file.

You can cancel the Copy operation by pressing ESC at any time before you
press the final RETURN.

If you have not placed the markers that you thought you had, you see the
following message:

ERROR: Marker not there. Please press <space> to continue.

Pressing the SPACE bar returns you to the Edit command level.

On the completion of the Copy command, after text has been copied from
the specified file, the Editor places the cursor on the first character of the
text that you copied.

If your present file cannot contain all the additional text that you are
attempting to copy into it, the Editor copies in as much of the additional text
as it can. Then it gives this message:

ERROR: Buffer overflow. Please press <space> to continue.

When you press the SPACE bar, the copy is complete, and your file now
contains as much of the additional text as the Editor could fit into your file.
Remember that none of the target file's Environment information is brought
over with the copied text.

Example
Suppose the disk named MYDISK: contains a file named
SUPERMART.TEXT, which has two markers placed in its text: ALPHA and
BET A. Further suppose that you are now in the Editor, editing a file, and
you wish to insert the text of SUPERMART.TEXT, bounded by markers
ALPHA and BET A, at the current cursor position.

To enter Copy mode from the Editor command line, type c and then type F

to select copying from a File portion. This prompt appears:

>Copy: From what file[marker,marker]?

The Editor Commands II-105

To c0py the text, type

MYDISK:SUPERMARTCALPHA,BETAl

and press RETURN.

When the Copy is completed, the cursor rests on the first character of the
text that was copied and the following message is displayed:

Be sure original SYSTEM.EDITOR di5k is in same drive: {Return to continue}

11-106

Copying From the Copy Buffer

Each time you insert or delete text, you are also storing that text in the copy
buffer, sometimes called the insert-delete buffer. To use the text in the copy
buffer, type c to enter Copy mode and then type B for Buffer. The Editor
immediately copies the contents of the copy buffer into the file at the
current location of the cursor (that is, between the character on which the
cursor sits and the first character to the cursor's left). Use of the Copy
command does not change the contents of the copy buffer.

Upon completion of the Copy command, after text has been copied from the
copy buffer, the Editor places the cursor on the first character of the text
that you copied.

Unlike inserting text, copying text does not cause remargining of the
portion of the paragraph following the Copy, even in document mode. After
copying, some lines may extend beyond the 79-character limit of the
Apple II's display.

After you make an insertion, you can use the Copy command to duplicate
the section of text just inserted as many times as you desire. Use the Copy
command, too, to move text from one location in the file to another. Delete
the text from its present location, then move the cursor, and copy the
deleted text into its new location.

Chapter 4: The Editor

The following commands affect the contents of the copy buffer:

o Delete: When you accept a deletion (with CONTROL-C), the copy buffer
is loaded with the deleted text. When you reject a deletion (by pressing
ESC), the copy buffer is loaded anyway, with the text that would have
been deleted had you accepted the deletion. However, if you type D to
Delete some information, but then press ESC before you move the cursor
over any characters, you will lose the previous information stored in the
copy buffer (from the last insertion, deletion, or zap). Similarly, if you
enter D to Delete and actually move the cursor through several
characters but then backspace to your point of origin and press ESC,
your previous copy buffer will be lost.

If there is not enough room in memory to copy the deletion, the copy
buffer may not be loaded.

o Insert: When you accept an insertion with CONTROL-C, the copy buffer
is loaded with the inserted text. When you reject an insertion (by
pressing ESC), the copy buffer is loaded anyway, with the text that
would have been inserted had you accepted the insertion. However, if
you type r to Insert some information, but then press ESC before you
type any characters, you will lose the previous information stored in the
copy buffer (from the last insertion, deletion, or zap). Similarly, if you
enter 1 to Insert and actually enter several characters but then
backspace to your point of origin and press ESC, your previous copy
buffer will be lost.

If there is not enough room in memory to copy the insertion, the copy
buffer may not be loaded.

o Zap: When you use the Zap command to delete text, the copy buffer is
loaded with the deleted text.

o Margin: Using the Margin command destroys the contents of the copy
buffer.

If you have used most or all of the available file workspace and attempt to
Copy, you will see one of these messages:

ERROR: Invalid copy. Please press <spacebar> to continue.

or

ERROR: No room. Please press <spacebar> to continue.

It is probably time either to begin a new file or to split the file you are
working on into two parts.

The Editor Commands 11-107

Exchange

You use the Exchange command to replace characters in a line by typing
new characters over the old.

Press x to use the Exchange command. When you do, you see this prompt:

>eXchange: <text>, <bs> a char, <right arrow> copies, <ctrlC>, <esc>

II-108

As you type characters from the keyboard, the cursor moves to the right
along the line of text and replaces existing characters with the characters
you are typing. After finishing your change to a line of text, you can accept
the changes by pressing CONTROL-C or reject them by pressing ESC. You
can use---+ to copy over existing text without changing it, and use -- to
back up and restore old characters one by one. Exchange is not affected by
the set direction, and can be used for only one line at a time. The Exchange
command does not allow you to type beyond the end of a line of characters
and it does not allow you to replace a character with a RETURN.

If you enter control characters into your file in Exchange mode, they will be
translated into question marks.

Apple lie or lie The Exchange command allows you to use the t and i keys to change
the case of your text without retyping it. If you want to change lowercase
characters into uppercase characters, use the t key to type over them;
and if you want to change uppercase characters to lowercase, use the i
key to type over them.

Apple II or II Plus If reverse video is turned on (use CTRL-R), the Exchange command
allows you to use the CTRL-0 and CTRL-L characters to change the case
of your text without retyping it. If you want to change lowercase
characters into uppercase characters, use CTRL-0 to type over them; and
if you want to change uppercase characters to lowercase, use CTRL-L to
type over them.

Find -The Find command searches through a file for a specified string of
characters (target string), finds the specified number of occurrences of that
string, and places the cursor at the end of the string (if the Set direction is
forward). If the Set direction is reversed, the cursor will be placed at the
beginning of the string.

Chapter 4: The Editor

To use the Find command, press F for Find while at the Edit level. One of
the following prompt lines then appears, depending on the setting of the
Environment's Token default option (see the "Set Environment" section).

You see this prompt if the Environment's Token default option is set to
True:

>Find[1J: LCit <target> =>

You see this prompt if the Environment's T(oken default option is set to
False:

>Find[1J: TCok (target> =>

Direction

The Find command searches for the specified occurrence of the target
string, starting at the present cursor position and scanning through the text
in the set direction (indicated by the arrow at the beginning of the prompt
line).

A target string can be found only if it appears in the text between the cursor
and the end of the file toward which the search is progressing.

If you wish to search in the reverse direction, you must set the direction
indicator before typing F to find something. See the section on the direction
indicators (under "Cursor Behavior in the Editor" earlier in this chapter) for
information about setting the direction. If the required occurrence of the
target string is not found by searching through the text in the set direction,
this message appears:

ERROR: Pattern not in the file. Please press <spacebar> to continue.

Notice that the search does not "wrap around." There is no search in the
portion of the file between the cursor and the end of the file in the direction
opposite the set direction.

Repeat-Factor

You may specify a repeat-factor just before you type the F for Find. It
appears on the prompt line in square brackets: [l], for example. If you enter
a repeat-factor of 6, the cursor appears after the 6th occurrence of the target
string. If there are only four occurrences of the target string in the file, you
get this message:

ERROR: Pattern not in the file. Please press <spacebar> to continue.

The Editor Commands 11-109

After you press the SPACE bar, the cursor will be positioned after the fourth
occurrence of the target string.

If you don't enter a repeat-factor, a repeat-factor of one is assumed. A repeat
factor of/ finds, and stops after, the last occurrence of the target.

Target String and Delimiters

You can search for strings containing any characters, including control
characters. The target string must be set off by delimiters. If you attempt
to use a delimiter that occurs in the target string, the Find executes
immediately, and you search for only part of your intended target string.

The Editor allows you to choose any character that is not a letter or a
number to be a delimiter so long as the character is not in the target string.
The most common choice is the slash (/) because it is a character that is
not often searched for in the text, and is easy to type. Here are examples of
delimiter usage:

/UNLI KEL VI

/An honest man/

!2/3!

You may use multiline targets and targets containing control characters,
except for the control characters ESC, NULL, and BS; control characters
that operate in the Editor, such as CONTROL-A, CONTROL-Z, CONTROL-F,
CONTROL-@, and CONTROL-S; and, on an Apple II or Apple II Plus,
CONTROL-E, CONTROL-W, CONTROL-R, and CONTROL-T.

If you forget to precede the target string with a correct delimiter character,
you see the message

ERROR: Invalid delimiter. Please press <spacebar> to continue.

11-110

Just try again, this time beginning with a correct delimiter.

Unease Option

Normally, Find will only count target string matches as good if the potential
target matches the specified target string exactly as typed. Unease allows
you to find any string having the proper sequence of characters, regardless
of their case.

If you type u immediately after bringing up the Find prompt line, all
occurrences of the target string will be found, regardless of case.

Chapter 4: The Editor

literal or Token Search

The Editor treats the target string differently, depending on whether you
select Literal search or Token search. When you select Literal search, the
Editor looks for the occurrences of a string of characters that exactly match
the target string, even if it occurs within a word. When you select Token
search, the Editor looks for isolated occurrences of the target string,
ignoring spacing.

The default setting of the search option is set in the Environment. The Find
prompt line displays the alternative search mode, either L c i t or Tc o k. If
you do not specify a search option, the Editor uses the default search option
(the one not mentioned on the prompt line).

To use Token search when the default is Literal search (prompt line says
Tc o k), press T after the prompt line and before you type the target string.

To use Literal search when the default is Token search (prompt line says
L c i t), type L after the prompt line and before you type the target string.
Nothing will happen when you press L or r; the letter just appears where
you are about to type the target string. See "Set Environment" for more
information about Literal and Token search options.

ESC Option

At any point during your response to the Find prompt, you can abandon this
command and return to the Edit level by pressing ESC.

Same-String Option

If you press s instead of typing a delimited target string, the Editor uses the
same string you last specified for the target string (the target string may
have been specified either in Find mode or in Replace mode). From the
Editor, type the command

FS

The previously specified target string is used again and is displayed at the
top of the screen when you type the s.

Note: If you have forgotten what target string would be invoked by pressing
s as a string response, you can find the current target string in the
Environment display. (See "Set Environment.")

The Editor Commands 11-111

11-112

Example
Suppose you have Token search selected, and you are editing a file
containing the following text:

PROGRAM STRIHG1;
BEGIN

WRITEC'TOO WISE ');
WRITEC'YOU ARE'>;
WRITELHC',');
WRITEC'TOO WISE '>;
WRITELHC'YOU BE.'>

END.

In the STRINGl program, with the cursor at the Pin the line

PROGRAM STRING1;

type F to select Find. When the Find prompt line appears, type

/WRITE/

You must enter the two slashes (or two of some other delimiter).

The prompt line should now look like this:

>FindC1J: L>it <target> z>/WRITE/

When you type the last slash, the cursor jumps immediately to the first
character following the E in the first occurrence of the Token target string
WRITE.

Example
Again in the STRINGl program, with the cursor at the E of EHD. , type

<2F

This prepares the system to find the second pattern (you entered a
repeat-factor of 2) in the reverse direction (you changed the set direction by
entering <). When the prompt line appears, type

/WR ITELH/

The prompt line should look like this:

<Find[2l: L>it <target> •>/WRITELH/

When you type the last / , the cursor moves immediately to the Win the
second-nearest occurrence (searching backward through the file) of the
Token string WRITELN (the fifth line of the program).

Chapter 4: The Editor

Type JB to Jump to the Beginning of the file, then type

>F/WRITE/

This changes the set direction to forward again, and locates the first
occurrence of the Token string WRITE, by searching forward (to the third
line). Now, typing

FS

makes the prompt line flash

>Find[1J: L{it <target> ~>/WRITE/

and the cursor appears at the next occurrence of WRITE.

Replace

The Replace command replaces a specified target string with a specified
substitute string. Its operation is very similar to Find, except that the target
string can be replaced with a substitute string after being found.

To use the Replace command, type R for Replace while at the Edit level.
One of the following two prompt lines will then appear, depending on the
setting of Token default in the Environment. (See "Set Environment" under
"Set" later in this chapter.)

This prompt appears if the Environment's Token default is set to True:

>ReplaceC1l: L<it V<fy <targ> <sub> •>

This prompt appears if the Environment's Token default is set to False:

>Replace[1J: TCok V<fy <targ> <sub>=>

The Replace command searches through a file in the set direction to find
the specified number of occurrences of the specified target string of
characters, and replaces each of those occurrences (after verification, if you
choose that option) with the specified substitute string of characters. When
finished, it places the cursor at the end of the last string found and/ or
substituted if you are working in the usual left-to-right direction; if you are
working in the reverse direction, the cursor will be resting at the beginning
of the last string found. The Verify option is described shortly.

I
Replace Control Characters: If you are editing a file containing
control characters, you can use the Replace command to replace the
control characters with carriage returns or spaces.

The Editor Commands II-113

II-114

Direction

The Replace command operates exactly like the Find command in response
to the set direction.

Repeats Factor

You can use the repeat-factor with the Replace command in exactly the
same way as you can with the Find command.

Literal or Token Search

Replace uses the Literal and Token search modes exactly as does the Find
command.

Unease Option

The Unease option works with the Replace command in exactly the same
way as with the Find command.

Target Strings and Delimiters

The Editor has two string storage variables. The first string variable, called
<target> or <targ> by the prompt line, contains the target string, and
is used both by the Find command and by the Replace command. The target
string is the sequence of characters that will be searched for by the Find
command, or searched for and replaced by the Replace command. The
second string, used only by the Replace command, is called <sub> by the
Replace prompt line and is the substitute string. In the Replace command
only, the substitute string is the sequence of characters that will replace the
target string when the target string is found.

To allow the target and substitute strings to contain almost any characters
(including RETURN characters), there are special rules for typing each
string. In particular, you must set off each string with characters called
delimiters. Both delimiters of a string must be the same character. One
delimiter must precede the first character of the string, and the same
delimiter must follow the last character of the string.

The Editor allows almost any normal printing character that is not a letter
or a number to be a delimiter as long as it does not occur in the string
delimited. Thus you can choose the delimiter. The most common choice is
the slash (/)because it is a lowercase character that is not commonly found
in text, and it is easy to type.

Chapter 4: The Editor

Once you have typed the initial delimiter character for either the target or
the substitute string, you cannot backspace (using +--) to erase that
character or any of the preceding characters in your response. If you forget
to precede either the target string or the substitute string by a correct
delimiter character, the Editor will tell you

ERROR: Invalid delimiter. Please press <spacebar> to continue.

You will get the same message if you try to backspace (by pressing .,_)
immediately after you type the target string's final delimiter. Just try the
whole command again, and this time use correct delimiters.

Remember: You can use the Replace command to eliminate control
characters from a file. Potential difficulties in editing caused by the
presence of control characters can be avoided by replacing control
characters with carriage returns or spaces.

Verify Option

The Verify option (shown as v c f y on the Replace prompt line) permits you
to examine each target string as it is found, before the replacement is
carried out. You can then decide whether this occurrence of the target
string is to be replaced or not. To select the Verify option when using
Replace, type v before you type the target string. If you have requested
Verify, the following prompt appears whenever the Replace command has
found an occurrence of the target string in the file:

>Replace: <esc> aborts, 'R' replaces, ' ' doesn't

Type R if you want the specified replacement to be carried out; press the
SPACE bar if you want the Editor to search for the next occurrence of the
target string, provided the specified repeat-factor (or the end of the file) has
not been reached. Press ESC to cancel the Replace operation. The
repeat-factor specifies the number of times an occurrence of the target
string will be found, not the number of times you actually cause its
replacement. Use / as the repeat-factor to examine every occurrence of the
target string in the set direction.

ESC Option

At any time during your response to the Replace prompt, you can abandon
this command and return to the Edit level by pressing ESC.

The Editor Commands II-115

II-116

Same-String Option

If you type s in place of the delimited target string, the Replace command
uses the target string that you last specified. The target string may have
been specified when you used either the Find command or in a previous use
of the Replace command. Similarly, typing s in the place of the delimited
substitute string tells the Replace command to use the same substitute
string that you last specified in a previous use of the Replace command. For
example, with the Replace prompt line at the top of the screen, typing

S/<any-string>/

causes the Replace command to use the previous target string (and a new
substitute string), whereas typing

/<any-string>/S

causes the previous substitute string to be used (and a new target string).
From the Editor, entering the command

RVSS

says "Do it again"; it causes the next occurrence of the previously specified
target string to be replaced (after verification) with the previously specified
substitute string.

If you have not previously specified a substitute (or target) string, the Editor
informs you

'no old target'

or

'no old substitute'

I
Remember: The Environment (see "Set Environment" under "Set")
shows you the current <target> and <substitute> strings that will
be invoked by typing s as a string response.

Example
Suppose you wish to replace the next three occurrences of the target string
APPLE with the substitute string BANANA, assuming that the set direction
is >, and Literal search is true.

With the Edit prompt line showing, you would type

3R

to indicate a repeat-factor of 3 and then to select the Replace command.

Chapter 4: The Editor

In response to the Replace prompt line

>Replace[3J: TCok VCfy <targ> (sub> =>

you could type

/APPLE I >BANANA)

In this example, first the character / is used as the beginning and ending
delimiter for the target string, and then the character) is used as the
beginning and ending delimiter for the substitute string. In the example, we
used two different delimiters for pedagogical purposes. In practice you
would be more likely to use

/APPLE//BANANA/

If you now wish to Replace five more occurrences of the target string
APPLE, but this time with the substitute string PAPAYA, just enter, with
the Edit prompt line showing,

SRS?PAPAYA?

After a brief flash of this prompt line

>ReplaceCSJ: TCok VCfy <targ> <sub> =>/APPLE/?PAPAYA?

the requested replacements will be carried out.

Example
Now assume that Token mode is true; if you enter

RL/QX/ /YZ/

when the Edit prompt line is showing, this prompt line should appear:

>ReplaceC1J: LCit VCfy <targ> <sub> =>L/QX//YZ/

If the cursor is before the v in VAR, this command will change the program
line

VAR SIZEQX:INTEGER;

to

VAR SIZEYZ:INTEGER;

You must select the nondefault Literal search option (by typing L before
you type the target string) because the string QX is not a Token but is part
of the Token SIZEQX.

The Editor Commands Il-117

Jump -The Jump command moves the cursor to the beginning of the file, to the
end of the file, or to a marker that you have placed in the file.

To use the Jump command, press J for Jump while at the Edit level. The
following prompt appears:

>Jump: BCeginning, ECnd, MCarker, <esc> escapes

Typing B for Beginning moves the cursor to the beginning of the file and
displays the Edit prompt line and the first page of the file. Typing E for End
moves the cursor to the end of the file and displays the Edit prompt line and
the last page of the file. Typing M for Marker causes the Editor to display
this prompt line:

Jump to what marker? <esc-ret> escapes

If you respond by typing the name of a marker (described under "Set
Marker" later in this chapter) that exists in the file, when you press
RETURN, the cursor moves to the marker position in the text. Pressing ESC
followed by RETURN cancels the jump. If you enter a marker name that
does not exist in the file, you see this message:

ERROR: Marker not there. Please press <spacebar> to continue.

and the cursor does not move. Placing markers in the text is explained
under "Set Marker."

Adjust -The Adjust command adjusts the indentation of a line or a whole group of
lines.

To use the Adjust command, type A for Adjust while at the Edit level. The
following prompt line will then appear:

>Adjust: LCeft, RCight, CCenter, <Moving keys>, <ctrlC> accepts, <esc> escapes

II-118

You can use_,. and --- to push the line right and left, or you can adjust the
line to the Left margin, the Right margin, or the Center. If you move the
cursor up or down, the Editor makes the same adjustment to lines above or
below. You can use a repeat-factor with all cursor moves.

Chapter 4: The Editor

When the Adjust prompt line is at the top of the screen, each time you press
---+ the line the cursor is sitting on moves one space to the right. You can
move the line beyond the Right margin set in the Environment. Characters
moved beyond the 79th character position are not displayed, but their
existence is indicated by an exclamation mark (!) in the 79th character
position of the line.

Each time you press-, the whole line moves one position to the left. You
can move the line beyond the Left margin set in the Environment, but the
leftmost character cannot be moved beyond the left edge of the display
designated as the zero character position.

When you have adjusted the line to the indentation you want, press
CONTROL-C.

You can use ESC to cancel the adjustment of the current line. You accept
the adjustment by pressing CONTROL-C or by moving to another line.

In order to adjust a whole sequence of lines, first adjust the top or the
bottom line, then, before you press CONTROL-C, press t or i. The Editor
will adjust the line above or below by the same amount when the cursor
jumps to that line. Finally, when the entire sequence has been adjusted,
press CONTROL-C.

You can use repeat-factors, including /, before any of the cursor moves
while in Adjust mode.

You can also use the Adjust command to center text on the page and to
left-justify or right-justify text (force all the lines to make a smooth left
margin, like this page has, or a smooth right margin). If you type L for Left
while the Adjust prompt is showing, the Editor left-justifies the line
containing the cursor by moving the leftmost nonspace character to the Left
margin set in the Environment.

Similarly, typing R for Right right-justifies the line by moving the rightmost
text character to the Right margin set in the Environment. Typing c for
Center causes the line to be centered between the set Left and Right
margins. If you press t or i before you press CONTROL-C, the Editor
adjusts the line above or below to the same specification (left-justified,
right-justified, or centered) as the previously adjusted line.

Example
Now insert a line to practice shoving it around with the Adjust command:

My name is Caspar Milguetoast.

The Editor Commands II-119

II-120

After you have typed CONTROL-C to accept the insertion, type AR for
Adjust Right, and press CONTROL-C to shove the line to the right margin:

My name is Caspar Milquetoast.

Now type Ac for Adjust Center, and press CONTROL-C to center the line:

My name is Caspar Milquetoast.

Now type AL,___,.,_..,___,. and CONTROL-C to drag the line to the fourth
column from the left margin:

My name is Caspar Milquetoast.

Set -The Set command is used either to access the Environment parameters or
to set a marker in the text.

To use the Set command, type s for Set while at the Edit level. The
following prompt appears:

>Set: ECnvironment, MCarker, <esc> escapes

Set Marker

When you are editing a large file, it is particularly convenient to be able to
jump directly to certain places in the file by using markers that you have
set in the desired places. Once you have set them, you can jump to these
markers at any time, by using the Marker option with the Jump command.
See "Jump" earlier in the chapter.

The Copy File portion command can also make use of markers that have
been placed in the text of a file. When you are editing one file, you can copy
the marked portion of a second file that is stored on disk into the file you are
editing. See "Copy" earlier in the chapter.

Chapter 4: The Editor

Move the cursor to any spot in the text where you want to place a marker.
When the cursor is in the desired spot, type SM for Set Marker. The ·
following prompt appears:

Set what marker? <esc-ret> escapes

Now type the name of the marker (up to eight characters) that you want
placed at the current cursor position, then press RETURN. You can use any
printable character in a marker name, but all lowercase letters are
converted to uppercase letters.

If you have already placed a marker with the specified name in the file at
an earlier time, the Editor moves the old marker to the current cursor
position without comment, and the old position is lost.

Only ten markers are allowed in a file at any one time. If you attempt to
place an eleventh marker, the following message appears:

Marker overflow. Which one to replace?

fl) name1

1) name2

9) name10

You must eliminate one of your existing markers before you can place the
new one. Choose a number from 0 through 9 and type that number. Its place
in the list will now be available for your new marker name. You can use this
method to rename or reposition an existing marker, but you can never
simply remove a marker from your file, even if you delete all the text that
contained the marker.

The Editor Commands II-121

Set Environment

The Editor lets you set various aspects of the editing "environment" to suit
the task at hand. From the Edit level, type s for Set and then type E for
Environment. The display shows a list similar to the following:

>Environment: <options>, <ctrlC> accepts, <esc> escapes

II-122

ACuto indent True
FCilling False
LCeft margin 0
RCight margin 78
PCara margin 5
CCommand char
TCoken search True

File is 2686 characters long with 25895 more available.
Currently at character position 6.

Patterns:
<target>= 'APPLE', <substitute>= 'BANANA'

Markers:
START
INTRO
ACKNOWL

PART3
MAIHPARA
PART 5

SUMMARY
BIBLIOG
INDEX

Date Created: 4-~1-84 Last used: 7-28-85

You can change any or all of the options listed in the upper portion of the
display by typing the appropriate first letter.

The portion of the display showing the Pa t t er n s : < target > and
<subs t 1 tut e > will not appear unless you have used the Find or Replace
commands since entering the Editor this time. The portion of the display
showing the markers currently in the file will not appear unless you have at
some time used the Set Marker command to place a marker in the text.

The information stored in the Environment (with the exception of the
<target> and <substitute> strings) is saved in the file header each
time you save the file on disk, so the system can "remember" that
environment each time you work on that file again.

The Editor will not accept Environment options in an improper format.

If you enter a non-numeric choice for Left, Right, or Paragraph margins, the
Apple will beep and display the number sign (#)in inverse video at the
cursor location.

Chapter 4: The Editor

You can then try again and enter a number. You cannot escape until you
enter a number or press the SPACE bar.

If you give any answer to Auto indent, Filling, or Token search except T (for
True) or F (for False), the Editor shows you your choices in this message:

T or F

You must type the correct response.

After doing as the prompt suggests, you can either exit the Environment
menu, or type correct values and then exit by typing CONTROL-C to accept
the changes you have made, or by typing ESC to reject any changes you
have made.

Each of the following options must be accessed from the Editor's
Environment. To enter the Environment, enter s for Set and then E for
Environment.

Auto-indent
Auto-indent affects only the Editor commands Insert and Margin. See
"Insert" and "Margin" for more details and examples.

To set the Auto-indent option to True (so that each new line automatically
starts at the same indentation as the first nonspace character of the
previous line), type AT.

To set the Auto-indent option to False (so that new lines begin at the
screen's left edge or at the set Left margin and Paragraph margin), type AF.

Unless Auto-indent is False (and Filling is True), the Insert command will
not cause remargining of the portion of a paragraph following an insertion.

Auto-indent should generally be True for writing and editing programs, and
False for writing and editing natural language text.

Filling
Filling affects the Insert and Margin commands. See "Insert" and "Margin"
for more details.

When the Filling option is set to True, the Editor automatically breaks lines
between words, at spaces and hyphens, when you type them in. This option
prevents lines from exceeding the right margin. To set Filling to True, type
FT. Unless Filling is True (and Auto-indent is False), the Insert command
will not cause remargining of the portion of a paragraph following an
insertion.

To set the Filling option to False (so that the set margins are ignored and·
you end each line yourself), type FF.

The Editor Commands 11-123

40=Column !Displays

Il-124

Filling should generally be False for writing or editing programs, and True
for writing or editing natural language text. However, if you are editing a
table, diagram, or other carefully formatted portion of text, it is a good
safety precaution to set Filling to False (from the Edit level, just enter
s E FF CONTROL-C). This will save you the frustration of having your text
completely reformatted after you make an insertion.

Left Margin, Right Margin, Paragraph Margin
In Document Mode, the margins set in the Environment are the margins
that are used by the Insert command and the Margin command. These
margins also affect the Center, Left, and Right justifying commands in the
Adjust command. See the discussions of those commands for more details
and examples.

To change the value for the Left margin option, type L followed by an
unsigned integer, and then press RETURN. The value that you enter
replaces the old value for the Left margin in the prompt display shown at
the beginning of this section.

To change the value for the Right margin option, type R followed by an
unsigned integer, and then press RETURN.

If you are using a 40-column video display, you should use margin values
between 0 and 39. Setting the Right margin to 39 will keep your
text-editing within the bounds of your screen while you are in
document mode.

The Paragraph margin is the absolute offset or indent of the text from the
edge of the screen. You can change the value of the Paragraph margin
option by typing P followed by an unsigned integer, and then pressing
RETURN.

All unsigned integers with four or fewer digits are valid margin values. If
you attempt to assign a margin value of more than four digits, the value will
be truncated to the first four digits entered. To create normal text displays
whose characters are all visible on the screen, you should use margin values
from 0 through 78, and the Left and Paragraph margin values should be less
than the value of the Right margin.

Comma:rmd Character
The Command character affects the Margin command and remargining in
document mode. See the discussion of the Margin command for more
details.

Chapter 4: The Editor

To change the setting of the Command character option, enter c followed
by any printing character. For example, entering c * will change the set
Command character to *. This change will be reflected in the Environment
display.

If the Command character appears as the first nonblank character in a line
of text, then that line is protected from the Margin command, and from
remargining following an insertion. That line is also treated as a paragraph
delimiter for margining purposes. The normal Command character is the
caret or circumflex accent (A). Unless you have some special use for the
caret in your text, you should generally leave it as the set Command
character.

Token Search
The setting of Token search determines which of two search methods will
be used by the Find and Replace commands. See the discussions of those
commands for more details and examples.

In the Environment, you set Token search to True (so that the default
search option is Token search) by typing TT, and to False (so that the
default search option is Literal search) by typing TF.

When you select the Literal search option, the Editor looks for any
occurrence of a string of characters that exactly matches the <target>
string. When you select the Token search option, the Editor looks for
isolated occurrences of the <target> string. The Editor considers a string
isolated if it is surrounded by any combination of delimiters, where a
delimiter is any character that is not a number or letter.

For example, in the sentence "Put the book in the bookcase. ", using the
<target> string "book", the Literal search option will find two
occurrences of "book" whereas Token search option will find only one, the
word "book" isolated by the delimiters <space> <space>.

When you select the Token search option, you can find an occurrence of the
<target> string even if the occurrence has more spaces or fewer spaces
(including zero) corresponding to each space in the specified <target>
string. For example, suppose you are searching the following text, which
contains four slightly different occurrences of the words APPLE PIE:

!'LL HAVE SOME A PPLEPIE, SOME APPLE
PIE, SOME APPLEPIE, AND THEN
SOME AP PLE PIE, TOO.

If you use the <target> string "APPLEPIE", a Token search will find only
the third occurrence. With the <target> string "APPLE PIE" , a Token
search will find both the second occurrence (which has more spaces, but at

The Editor Commands 11-125

the right place in the string) and the third occurrence (which has fewer
spaces, and none in the wrong place). With the <target> string
"APPLE PIE" , a Token search will find all four occurrences.

However, only a Literal search would find an occurrence of APPLE PIE that
was buried in the word CRABAPPLE PIE. That's because the B would not
constitute a proper isolating delimiter.

When you edit natural language text, it is a good idea to use Literal search
(set Token search to False). When you edit programs, it is usually more
useful to use Token search (leave Token search set to True).

Number of Characters
This line tells you how long your file currently is (in bytes) and how much
space remains in the Editor's file space.

Margin

The Margin command adjusts a paragraph by expanding it as much as
possible without exceeding the the margins set in the Environment. You
execute Margin by typing M for Margin while at the Edit level.

Margin is an Environment-dependent command that has three parameters,
all set in the Environment: Right margin, Left margin, and Paragraph
margin. See "Set Environment" under the section "Set" earlier in this
chapter to learn how to set margin values.

Margin can be executed only when Filling is set to True and Auto-indent is
set to False in the Environment. If you attempt to Margin a paragraph when
Filling and Auto-indent are not correctly set, this message appears:

ERROR: Inappropriate environment. Please press <spacebar> to continue.

11-126

The Margin command affects only the paragraph containing the cursor. A
paragraph is defined as any text bounded above and below by paragraph
delimiters, where a paragraph delimiter is a blank line (created by two
consecutive RETURN characters), the beginning of the file, the end of the
file, or a line that starts with the Command character that is currently set in
the Environment. Unless you change it (see "Set Environment"), the
Command character is by default the caret (A).

To margin a paragraph, move the cursor to anywhere in that paragraph and
type M . The screen blanks while the Margin command is busy shuffling the
paragraph. When margining an exceptionally long paragraph, the Editor

Chapter 4: The Editor

may take several seconds to redisplay the screen. When breaking lines to
avoid exceeding the right margin, the Margin command recognizes all
spaces as possible points to break the line. All other characters in sequence
are considered words, and will not be broken.

The Margin command does not recognize hyphens as possible line break
points, nor does it know how to correctly introduce hyphens into words that
do not already contain them.

By the Way: Certain characters will be followed by exactly two spaces
after a Margin command. These characters are the period, question mark,
colon, exclamation point, or any of those characters immediately followed
by a close-parenthesis or double quotation mark. This feature might
cause some inconvenience with abbreviations.

&. Warning The Margin command will compress all groups of spaces between words
into single spaces.

Example
The paragraph below has been typed with these Environment parameters
set:

Left margin 2
Right margin 54
Paragraph margin 0

When you operate a skateboard in excess of 159 miles
per hour, certain problems are encountered. First of
all, the number of traffic citations becomes
excessive, unless your skateboard is equipped with
either a working radar detector or set of flashing
red lights. Secondly, goggles and knee protectors
often blow away and skateboards have been known to
become airborne. Lastly, you may have to endure the
ire of Porsche and Ferrari drivers, since they become
depressed, angered, and sometimes say uncomplimentary
things when passed by a person on a skateboard.

Next, the same paragraph is shown after being margined with these
parameters set in the Environment:

Left margin 10
Right margin 50
Paragraph margin 0

The Editor Commands 11-127

When you operate a skateboard in excess of 15S
miles per hour, certain problems are
encountered. First of al 1, the number
of traffic citations received gets out
of hand, unless your skateboard is
equipped with either a working radar
detector or set of flashing red lights.
Secondly, goggles and knee protectors
often blow away and skateboards have
been known to become airborne. Lastly,
you have to endure the ire of Porsche
and Ferrari drivers, since they become
depressed, angered, and sometimes say
uncomplimentary things when passed by a
person on a skateboard.

II-128

Verify -The Verify command verifies the contents of the Editor by redisplaying the
screen. This command does not appear on the Edit command line but is
used at that level.

I
Be Aware: This command is not to be confused with the Verify option
available and displayed with the Find and Replace commands. This
command has an entirely different function.

To execute the Verify command, type v for Verify while at the Edit level,
even though the option is not shown. The system verifies the status of the
Editor by redisplaying the screen. The Editor attempts to adjust the window
so that the cursor is at the center of the screen. This command can help you
whenever you are unsure that the display really corresponds to what is in
your file. After you type v the display reflects what is really in your file.

Zap -The Zap command deletes all text between the current cursor position and
the point, which is located by typing the equal sign from the Edit command
line. The point is the text position of the first character of the most recent
Find, Replace, or Insert command. Typing • will place the cursor exactly at
the point, showing you where a Zap would end. You must then move the
cursor (but not using Find!) to the beginning of the material you wish to
Zap.

You execute the Zap command by typing z for Zap while at the Edit level.

Chapter 4: The Editor

This command is designed to be used immediately after one of the Find,
Replace, or Insert commands. If you Insert new material to the right of the
old text that you want deleted, and then move the cursor back to the
beginning of the old text and type Z, you will leave the Inserted material
while deleting the old.

If you Zap more than 80 characters, the Editor asks for verification:

WARNING! You are about to zap more than 80 chars, do you wish to zap? Cy/n)

If you use the Find or Replace command with a repeat-factor, only the last
string found or replaced will be deleted by Zap. All the other strings remain
as found or replaced.

The text that is deleted by using the Zap command goes into the Copy
buffer, where it is available for use with the Copy command (until the next
insertion, deletion, or zap).

If you attempt to use Zap to delete too much text at one time (the maximum
amount varies somewhat, depending on how large your file is at the
moment), the Copy buffer may be unable to hold all the deleted text. In that
case, when you type z to Zap a very large block of text, first this message
appears:

WARNING! You are about to zap more than 80 chars, do you wish to zap? Cy/n)

and then, if you enter Y for Yes, this message appears:

There is no room to copy the deletion. Do you wish to delete anyway? Cy/n)

If you enter Y for Yes, the text between the cursor and the point is deleted,
but that text is not placed in the Copy buffer, although the previous
contents of the copy buffer are destroyed. If you enter N for No, the deletion
is not performed, and the text is not placed in the Copy buffer, which
retains its former contents.

The Editor Commands Il-129

Quit -You use the Quit command to exit from the system's Edit level.

To use the Quit command, type G for Quit from the Edit level. You'll see this
display:

>Guit:
To leave Edi tor, type

ECxit to main command line

To store Text file on disk, type
SCave as MYFIRST:PROGRAM.TEXT
W{rite to a new file name
UCpdate *SYSTEM.WRK.TEXT

To continue editing, type
R(eturn to same file
CChange to another file

You select the option you want by typing the first letter of the option as
given in the display. The Save option does not appear if you are editing the
workfile and have not written it to another filename, or if you are editing a
new file.

Exit

This option causes the system to leave the Editor without saving the file
that you are currently working on. Thus any modifications you have made
since you last wrote to the same file are irretrievably lost. If you have made
changes, the system will ask for verification before throwing your work
away.

Are you sure you want to throw away changes since last update?

II-130

After you answer v, or if you have made no changes, the system returns to
the Command level.

If you answer N, the Quit menu returns to your display.

Chapter 4: The Editor

Save

When you choose this option, your new file will have the same name as the
file last read into the Editor. If you are unsure of the name of your file, you
can check on it by typing G and reading the filename given on the Save line.

After you select the Save option, the Editor asks you if you want to delete
your original file. For example, if you edit the file
MYDISK:PROGRAM.TEXT, quit the Editor, and then save the updated text
with the Editor's Save option, the following message will appear:

MYDISK:PROGRAM.TEXT already exists. Delete before SCave?-->
YCes to delete old file before saving new one.
HCo to delete old file after saving new one.
<ret> to cancel SCave.

If you type v the old file will be removed from the disk before the new file is
written out. The Editor may write the new file over the old file. If you have
no backup of the original file, it would be safer to type H. When you type H
the old file will not be overwritten and will be removed only when the new
file is successfully written to the disk. If there is not room to copy the new
file before destroying the old one, or if an error occurs while the Editor is
writing to the disk, you'll see this message:

ERROR: Writing out the file. Please press <spacebar> to continue

Press the SPACE bar to return to the Quit menu .

.A. Warning Do not press RESET or CONTROL-RESET after you have given the
system permission to delete your original file; doing so may destroy both
the old and new versions of your file. Also remember that if a power
failure occurs while the Editor is writing to the file, the file being written
to may be lost as well. If you have room on the disk, it is always safer to
use the N option.

After your file has been saved on disk, the Editor displays a message similar
to this:

Writin9 to MYDISK:PROGRAM.TEXT ...

The Quit screen will be displayed once again and at the bottom you will see
a line telling you about the file length of the file just saved to disk:

Your file is 1984 bytes long.

From the Quit menu, you can select your next action.

The Editor Commands II-131

II-132

Write

The Write command saves the file presently in memory to the filename you
specify.

If you select this option by typing w, the Editor displays this prompt:

>Quit:
Name of output file (<ret> to cancel) -->

You can save the file under any filename. You do not need to specify the
.TEXT suffix; the Editor supplies it automatically. If you want to suppress
the suffix, end the filename with a period.

If you change your mind and wish to return directly to editing the file
currently in memory without saving it, just press RETURN instead of typing
a filename.

If a file already exists with the same filename you specify, you are asked

:>Quit:
MYDISK:PROGRAM.TEXT already exists. Remove it?-->

YCes to replace old file with new one.
NCo to return to the editor.

If you type N, the Quit menu will return again, so that you can make
another choice. If you type v to continue, your file will be saved on disk and
the Editor displays a message similar to this:

Writing to MYDISK:PROGRAM.TEXT ...

The Quit menu is redisplayed and at the bottom you will see a line telling
you about the file length of the file just written to disk:

Your file is 1984 bytes long.

You can also write to non-block-structured devices, such as to PRINTER: to
print a copy of your file.

Update

This option tells the Editor to erase all previous versions of the system
disk's workfile (SYSTEM.WRK.CODE as well as SYSTEM.WRK.TEXT).
Then it saves on the system disk, under the filename SYSTEM.WRK.TEXT,
a copy of the file currently in memory.

If you are using SYSTEM.WRK.TEXT as your text file, you should use the
Update command at least every 15 minutes, in order to prevent accidental
loss of your efforts. From the Editor, every so often, just type QUR. In a few

Chapter 4: The Editor

>Edit:

seconds, the main system disk's file SYSTEM.WRK.TEXT will contain the
latest version of your file, and you will again be in the Editor, ready to
continue working on your backed-up workfile.

Return

This option lets you return directly to the Editor. The cursor returns to the
exact place in the file it occupied when you typed G. You would usually use
this command after unintentionally typing a, or when you are saving
changes made to the file to disk.

Change

This option lets you switch from the file you are presently working on to
another file without leaving the Editor. If you made changes to the file you
loaded last in the Editor, but didn't Save, Write, or Update, the system will
ask for verification before throwing your work away and allowing you to
enter a new filename.

After you type c for change, you see this prompt:

Edit what file? <<ret> for new file, <esc-ret> to exit editor)
-->

If you want to start a brand new file, press RETURN. Otherwise type the
filename of the file that you want to begin working on, and continue as if
you had entered the Editor from the main Pascal Command level.

When you change to a new file in the Editor, the last-used target and
substitute strings are retained for use in the new file. Thus you can go
through a series of related files and search for some particular item by using
FS, or replace it with Rss. See the discussions of the Find and Replace
commands in this chapter.

Depending on the amount of memory used by the new file, the Copy buffer
will contain what it held when you left the previous file. Thus you can
insert or delete text in a file, change to a new file, and copy the inserted or
deleted text by using ca.

The Editor Commands II-133

11-134

Special Commands Summary

You will find a summary of all Editor commands available from the Editor
command line in Appendix 2A. Here is a review of special commands that
are used in the Editor but are not shown on Editor command lines or
prompts.

Cursor Moves

If You Press Onan Apple The Cursor Moves

t Ile, Ile up bylines

CONTROL-0 II, II Plus up bylines

i Ile, Ile down by lines

CONTROL-L II, II Plus down by lines - any right by characters

+--- any left by characters

SPACE any in the set direction by characters

TAB Ile, Ile in the set direction, to the next tab
stop*

CONTROL-I any in the set direction, to the next tab
stop*

RETURN any in the set direction, to the beginning of
the next line

Page any in the set direction, one full screen

=(equal) any to the beginning of the last text
Inserted, Found, or Replaced

* Tab stops are set every eight spaces across the screen.

Repeat-Factor

An integer from 0 through 9999 typed before a cursor move or command. If
repeat-factor is /the move or command is repeated as many times as
possible in the file.

Chapter 4: The Editor

Set Direction

<
> +

Change set direction to backward

Change set direction to forward

40aColumn Screen Commands

CTRL-A

CTRL-Z

Shows the other 40-character "page" of the display

Screen scrolls right and left to follow the cursor

Apple II and II Plus Only

Special Characters

CTRL-K

SHIFT-M

Produces left bracket: [

Produces right bracket:]

Upper/lowercase Commands

CTRL-E

CTRL-W

CTRL-R

CTRL-T

Turn on reverse video and shift between upper- and
lowercase, like a shift-lock key

Turn on reverse video and force keyboard into
uppercase for the next character typed, followed by
lowercase characters

Turn on reverse video but leave keyboard in
uppercase

Turn off reverse video and return keyboard to
uppercase

Special Commands Summary II-135

Chapter 5 The Compiler

Il-137

II-138

Introduction

The Apple II Pascal Compiler translates the source textfile of a Pascal
program into a codefile. The codefile contains P-code, which is the
"machine language" of the Pascal interpreter or "pseudomachine." See
Part IV to learn more about the P-machine.

Two commands, Compile and Run, invoke the Pascal Compiler. The
difference between these commands is that Compile simply compiles the
source file, whereas Run has three stages:

o First it compiles the source file if no codefile is found.
o Then it automatically runs the Linker if needed.
o Finally it automatically executes the program.

If you Compile a simple program, the resulting codefile can be executed
immediately. However, if the program contains any external references, the
Linker (described in Chapter 7) must be used to link external code into the
codefile before it can be executed. Linking is required if the program

o Contains any procedures or functions that are declared EXTERNAL (that
is, assembly code);

o Uses any Regular Units. (The Program Units supplied with the system
are Intrinsic Units and do not require linking.)

Disk Files Needed

To operate the Pascal Compiler, you need the following disk files:

o Your source file-Any disk, any drive; default is the system disk's text
workfile, SYSTEM.WRK.TEXT.

o SYSTEM.COMPILER-Any disk, any drive.
o SYSTEM.LIBRARY-System disk, any drive; required only if any of the

Program Units in the system library are used by the program.
o Other libraries-Any disk, any drive; required if any Program Units not

in the system library are used by the program being compiled. In this
case you will need to use the Compiler's USING option, described further
on in this chapter.

Chapter 5: The Compiler

o SYSTEM.EDITOR-Any disk, any drive; optional; to fix errors found by
the Compiler.

o SYSTEM.SYNTAX-Same disk as Editor, any drive; optional; contains
error messages given on entering the Editor with an error from the
Compiler.

In addition to the above files, the files SYSTEM.LINKER and
SYSTEM.PASCAL may be needed if you are invoking the Compiler
automatically via the Run command.

Because the Compiler may open a temporary file on the disk containing
SYSTEM.COMPILER, that disk should not be write-protected.

Two 51/.oi·lnch Disk Drives The files SYSTEM.EDITOR and SYSTEM.SYNTAX are both on disk
APPLEl:, which is the usual system disk on a multidrive system. The file
SYSTEM.COMPILER is on disk APPLE2:, which is usually kept in the
second disk drive on a multidrive system. With APPLEl: in the startup
drive and APPLE2: in the non-startup drive, your system has all the files
needed to Run or Compile the workfile. If you want to compile a source
file that is not already on APPLEl: or APPLE2: by using the Compiler, not
the Run command, use the Filer's Transfer command to copy that file
onto either APPLEl: or APPLE2: before compiling, or remove APPLEl:
and replace it with the disk containing the source file.

One 51/4·1nch Disk Drive The files SYSTEM.COMPILER, SYSTEM.EDITOR, and SYSTEM.SYNTAX
are all on disk APPLEO:, which is normally the one-drive system disk. If
you have been working on a program in the Editor, and updating the
workfile, your system disk has all the files you need to run or compile the
workfile. If you want to run or compile a source file that is not already on
the system disk, use the Filer's Transfer command to copy that file onto
your system disk before compiling. If your program requires linking to
EXTERNAL routines, see Chapter 7.

Disk Files Needed 11-139

11-140

Using the Compiler

The Compiler is invoked by typing C for Compile or R for Run from the main
Command level of the system.

Run Links Only SYSTEM.LIBRARY Files: When the Linker is run
automatically under the Run command, it will only link in external code
from the SYSTEM.LIBRARY file. If your program uses any external code
that is in a different library file, you must use the Compile command and
then explicitly run the Linker via the Link command. In this case, the
program must contain the USING option, described further on in this
chapter, or it will not compile.

If you use Compile instead of Run, it is up to you to run the Linker if
necessary and to execute the program by means of the Execute command.

As soon as it is invoked, the Compiler automatically compiles whatever is
available in the file SYSTEM.WRK.TEXT, and places its output in the code
workfile. The Compiler does this by default if the text workfile exists
even if it doesn't contain valid Pascal source text, in which case the
Compiler will soon detect an error and terminate. If you don't want to
compile the workfile, use the Save and New commands in the Filer to save
the workfile to another filename and then clear away the workfile before
using the Compile command.

A Warning [The code workfile, SYSTEM.WRK.CODE, is automatically erased when
any text workfile is Updated from the Editor.

If the text workfile exists, the screen immediately shows the message

Compiling ...

If no text workfile exists, you are prompted for a source filename:

Compile what textfile (<ret> to exit) ?

You should respond by typing the name of the textfile that you wish to have
compiled. If you do not type a suffix, the suffix .TEXT is automatically
supplied by the Compiler. If you want to prevent this from happening, add a
period to the end of your filename. (If you want to return to the main menu
without compiling, press RETURN.)

Chapter 5: The Compiler

If there is no text workfile, you will be asked to supply the name of the
codefile where you wish to save the compiled version of your program:

To what codefile C<ret> for workfile> ?

If you press ESC followed by RETURN, the command will be terminated.
However, if you simply press RETURN, the command will not be
terminated, as you might expect. Instead, the source file will be compiled
and the compiled version of your program will be saved in the code workfile
named SYSTEM.WRK.CODE on the system disk.

If you want the codefile to have the same name as the source textfile but
with the suffix .CODE instead of .TEXT, just type a dollar sign and press
RETURN. The dollar sign ($)repeats your entire source file specification,
including the volume name, so do not specify the volume name before
typing the dollar sign. The suffix .CODE will be supplied automatically. You
can defeat the .CODE suffix by ending your file specification with a period
(.)or with a size specification (as described later).

If you want your codefile to have a different name, type the desired
filename. If you do not type the suffix .CODE, that suffix is automatically
supplied by the Compiler.

Requesting a Program Listing

A program listing is a textfile that contains the source text plus
annotations indicating how the resulting code is related to the source text.
This is useful for debugging purposes. One way to obtain a listing file is to
write a listing option command in your source text as described under
"Compiler Options." Another way is to request a program listing
immediately before your source text is compiled. After you specify the
codefile, you are asked

Listing File C<ret> for none or option in source):

You can respond in three ways. You can

o Press RETURN. If your program already contains a listing option that
requests a listing, that listing will be made. Any L+ or L- option will be
carried out. If there is no listing request in the source program, no
program listing will be made.

o Type a filename. The file you name will become the program listing
textfile, overriding any listing option given in the source. L+ and L- can
still be used in the source.

o Press ESC, then RETURN. Compilation will be canceled and you will
return to the Command level.

Using the Compiler 11-141

Thus you can choose a listing option at the time you write the source text,
and you can either confirm that option or make a new listing request at the
time you compile.

An example of a program listing, with annotations, is given in "The Program
Listing," which follows shortly.

Allocating File Space

The Compiler can produce three different files as a result of one
compilation. These files are opened in a specific order. First it opens the
codefile. Next, it opens a listing file if one is requested. Finally, a temporary
file called SYSTEM.INFO is opened on the disk containing
SYSTEM.COMPILER if needed during the compilation. When these files are
opened, the Compiler does not have information about what the actual size
of the files will be.

The Compiler must use some method of saving space for the files it will
produce. Because Pascal files must occupy contiguous blocks of disk space,
the Compiler allocates areas of unused contiguous blocks for the files. The
Compiler allocates the largest unused space on the disk as the default file
size, [OJ. If the Compiler opens only the codefile, the [OJ size allocation is not
a problem; but if the Compiler attempts to open a second or third file after
allocating the largest unused space on the disk for the first file, it may fail
because it has no space left to allocate. To ensure that the Compiler can
open all the files generated during compilation, you may need to control
how the system allocates space by using file size specifiers. To review
file-size specifiers, refer to the section "File Size Specification" in Chapter 3.

Whenever you get an error message during compilation that tells you there
is No room on v o l um e and you know there is plenty of space on your
disk, you can probably correct the problem by using size specifiers as
described here.

Using Size Specifiers

Unless you are using the system workfile, the Compiler allocates the largest
unused space on the disk for the codefile, using the [OJ default. In this case,
if your disk is crunched you will be unable to open another file on the disk.
To avoid this situation, use either the [* J size specifier or a block number
size specifier when you specify the codefile. You must type the suffix
• CODE, followed by the number of blocks in square brackets, followed by a
period:

To what codefile (<ret> for workfile) ? myprog.code[8].

11-142 Chapter 5: The Compiler

The period at the end prevents the system from adding the .CODE prefix
after the size attribute. The size attribute [8] causes the codefile to be placed
in the first location on the disk where at least 8 blocks are available.

If you are compiling the system workfile, the system saves either half of the
largest unused area or all of the second-largest unused area on the system
disk for the codefile, using the [•] default.

If you request a program listing, either by responding to the system prompt
or by using a listing option in your program, the system will follow whatever
specification is given. If the workfile listing file is used, the system will use
the [•] default.

In general, you can avoid problems with file space allocation by using the
[•] size specifier when you specify the codefile and listing file. This becomes
critical with a one-drive system, even if it is a large capacity disk drive. You
may need to use a block number size specification if you have a file that
requires more space than is allocated by the [•] specifier.

Compiler Messages

While the Compiler is running, messages on the screen show the progress of
the compilation as in the following example:

Apple II Pascal Compiler [1.31
< Ill> ••••••
MYPROG C 2334 WORDSl
< 6>
14 Lines
Smallest available space = 2334 words

The numbers in square brackets at the end of the first line identify this
particular version of the Compiler.

The identifiers appearing on the screen are the identifiers of the program
and its procedures. The identifier for a procedure is displayed at the
moment when compilation of the procedure body is started.

The numbers within [brackets] indicate the number of 16-bit words
available for symbol table storage and Compiler execution at that point in
the compilation. If this number falls too low, the Compiler may fail with a

Using the Compiler II-143

IF 1=2 THEN 1:=8;
ELSE ««

"stack overflow" message. You must then put the swapping option
(described shortly) into your program and try again. When you are running
the Compiler under the 64K Pascal system, approximately 1065 words are
available for symbol table storage and Compiler execution at the start of
execution. When you are running the Compiler under the 128K Pascal
system, approximately 17, 7 45 words are available for symbol table storage
at the start of execution.

The numbers enclosed within <angle brackets> are the current line
numbers in the source file. Each dot on the screen represents one source
line compiled.

Responding to Compiler Errors

If the Compiler detects an error in your program, the screen will show the
text preceding the error, an error number, and a marker < < < < pointing
to the symbol in the source where the error was detected. Here is an
example:

Line 9, error 6: Csp>Ccontinue), <esc>(terminate>, ECdit

II-144

This example shows that the word ELSE is an illegal symbol at this point in
the program. You have three options when you see a message like this.

Chapter 5: The Compiler

o Pressing the SPACE bar instructs the Compiler to continue the
compilation. If the error is not fatal (that is, if the error number is less
than 400), the Compiler will attempt to recover and continue compilation
without generating a codefile. Note that further error messages may
appear as a consequence of the first error.

o Pressing ESC causes termination of the compilation and return to the
Command level.

o Typing E sends you to the Editor, which automatically reads in the
workfile, ready for editing. If you were not compiling the workfile, the
Editor requests the name of the file you were compiling. You should
respond by typing the filename of the file you were compiling so that file
will be read into the Editor. When the correct file has been read into the
Editor, the top line of the screen displays the error message (or number,
if SYSTEM.SYNTAX is not on line) and the cursor is placed at the symbol
where the error was detected.

If SYSTEM.SYNTAX is not available, you can look up the error number
in Appendix 2H. You may wish to delete the file SYSTEM.SYNTAX to
obtain more disk space.

Handling Stack Overflow

If a compilation is too large for the system's memory, there are several
things you can try. See the section "Compiling Large Programs" in
Chapter 15 of Part III for detailed information. You are more likely to have
stack overflow with the 64K Pascal system. If you are using the 64K Pascal
system, you can

o Put the {$S+} or {$S++} "swapping" Compiler option into your program;
o Use the Swap command from the Command level of the Pascal operating

system.

The Program Listing

Because a listing file contains source text plus annotations indicating how
the resulting code is related to the source text, it is approximately twice as
large as a source file. For debugging purposes, a program listing can be
edited just like any other textfile, provided that it is not too big and that a
listing page option has not been used.

The Program Listing 11·145

Proc#:
line# Seg# Lex.lvl

1 1: D
2 1: D
3 1: D
4 1: D

5 2:D
6 2: fl
7 2: 1
8 2: 1
9 2: f1j

111 2: f1J

11 3:D
12 3:D
13 3: llJ
14 3: 1
15 3:3
16 3:2
17 3: Ill
18 3: II

19 1 : fl
211J 1 di
21 1 : 1
22 1: 3
23 1: 2
24 1 : 1
25 1 : Ill

II-146

In the compiled listing, the Compiler places next to each source line the line
number, the segment number, the procedure number, and the number of
bytes or words (bytes for code, words for data) required by that procedure's
declarations or code to that point. The Compiler also indicates whether the
line lies within the actual code to be executed or is a part of the declarations
for that procedure by printing a D for declaration, or an integer from 0
through 9 to designate the lexical level (the level of statement nesting
within the code part). All of these indications are as of the end of the line.

Here is a sample listing, to which column headings have been added:

Byte# Program Text

1 UL PRESCR:DOCTORLIST.TEXT}
1 PROGRAM DOCTOR;
3 VAR WEEK: 1 .. 52;
4

1 PROCEDURE DOSE;
II BEGIN
f1j WRITEC'1 APPLE/DAY'>;

23 WRITELNC' AND ,)
48 END;
GllJ

1 PROCEDURE WEEKTREAT;
1 VAR DAY: 1 .. 7;

QJ BEGIN
llJ FOR DAY : :iil" 1 TO 7 DO BEGIN

17 DOSE
17 END
19 END;
4fl

fl BEGIN
fl {intentional value range error follows}
f1J FOR WEEK : = !l TO 52 DO BEGIN

19 WEEKTREAT
19 END;
28 WRITEUH 'THAT KEEPS THE DOCTOR AWAY'>
74 END.

Chapter 5: The Compiler

Execution Error Messages

The information given in the program listing can be very valuable for
debugging a large program. A run-time error message will normally indicate
the segment number, the procedure number, and the byte number within
the procedure where the error occurred.

Here is a sample run-time error message:

Execution Error # 1
S# 1, P# 1, I H 5

Press <space> to continue

S# is the segment number, P# is the procedure number, and I# is the byte
number in that procedure where the error occurred. In this example, you
could find the Pascal statement where the error occurred by finding
Segment 1 in the second column of the listing, then Procedure 1 in the third
column. Then look in the fourth column for the largest byte number that is
less than 5. This is the starting byte number of the statement that contains
Byte 5 of Procedure 1 of Segment 1, and this is the statement where the
error occurred.

All possible Apple Pascal execution error messages are listed in
Appendix 2H.

Compiler Options

Compiler options allow you to make choices about how the Compiler
operates. There are

o Options that control the operation of the Compiler itself, such as choosing
whether or not it will create a program listing;

o Error-checking options that allow you to turn on and off certain
automatic error-reporting features;

o Options that allow you to control the compilation and loading of program
segments and Program Units;

o Miscellaneous Compiler options.

All of these are discussed in the following sections. The syntax for writing
Compiler options in source text, and their behavior from the viewpoint of
the Pascal language, are discussed in Chapter 14 of Part III.

Compiler Options 11-147

Options That Do Not Affect Program Code

There are five Compiler options that affect the operation of the Compiler
itself. They have no effect on program code, run-time loading, or execution
of the program, and are provided primarily for convenience. They are the
"swapping," "listing," "listing page," "codefile comment," and "quiet
compiling" options.

The most important of these are the "swapping" and "listing" options,
although you can skip reading about the "swapping" option if you are using
only the 128K Pascal system.

The "Swapping" Option

64K Pascal Systems Only I This option determines whether or not the Compiler operates in swapping
mode and is useful only on the 64K Pascal system.

II-148

There are two main parts of the Compiler: one processes declarations; the
other handles statements. In the swapping {$8+} mode, only one of these
parts is in main memory at a time. This makes 5368 additional words
available for symbol-table storage at the cost of slower compilation speed
(because of the overhead of swapping the Compiler segments in from disk).
This option must occur before the program heading, or it will have no effect.

Default option: {$8-}

{$8+} Puts the Compiler in swapping mode.

{$8-} Puts the Compiler in nonswapping mode.

{$8++} The Compiler does even more swapping than with the 8+
option. The program compiles still more slowly, but still
more room is left in memory for symbol-table storage
(1453 more words).

The "listing" Option

The "listing" option controls whether the Compiler will generate a program
listing, which parts of the program will be listed, and where the listing will
be written. Program listings are described in the previous section. This
option consists of the letter L followed by a +, - , or filename argument.

The "listing" option is most often placed before the program heading to
generate a complete listing, but it can be placed anywhere in the source
text. Only one listing file can be produced.

Chapter 5: The Compiler

Default option: {$1-}

{$1 filename} Tells the Compiler to start listing to the specified file.

{$1+} Tells the Compiler to turn on listing of the following
source text. If a filename has not been specified with {$1
filename}, then the listing goes to the file
SYSTEM.1ST.TEXT[*]on the system disk.

{$1-} Tells the Compiler to halt listing temporarily.

For example, the following will cause the compiled listing .to be sent to a
diskfile called DEMOl.TEXT on the disk named MYDISK:

{$1 MYDISK:DEMOl.TEXT}

A listing file on disk may be edited just like any other text file, provided that
it is not too big and that the "listing page" option has not been used. A listing
file is approximately twice as large as a source file.

The "listing Page" Option

This option consists of the letter P, with no arguments. If a listing is being
produced, the "listing page" option causes one form-feed character
(ASCII 12) to be inserted into the text of the listing, just before the line
containing the option. If your program contains the line

{$P}
that line will appear at the top of a new page when you print the program's
compiled listing. Before editing a listing file containing form feed
characters, use the Replace command in the Editor to replace all form feeds
with RETURNs.

The "Codefile Comment" Option

The purpose of this option is to allow a copyright notice or another comment
to be embedded in the codefile. This option consists of the letter C and a line
of text. The text is placed, character for character, in Block 0 of the codefile
bytes 432 to 511 (where it will not affect program operation). Here is an
example:

{$C COPYRIGHT ANDREW FISH 1985}

The "codefile comment" option can appear anywhere in the program. Note
that the line of text cannot contain a comma.

Compiler Options II-149

II-150

The "Quiet Compiling" Option

This option consists of the letter Q followed by a + or - argument. It can
be used to suppress the screen messages that tell the procedure names and
line numbers and detail the progress of the compilation. It is seldom used.

Default option: j$Q-}

{$Q+}

{$Q-}

Causes the Compiler to suppress output to the screen.

Causes the Compiler to send procedure name and line
number messages to the screen.

ErrormChecking Options

The "l/O check," "range check," "varstring," and "GOTO" options control
four different error-checking features. "l/O check" and "range check" are
options for run-time error checking; "varstring" and "GOTO" are options for
compile-time error checking.

Note that the Compiler provides other types of error checking besides the
types controlled by these options.

The "1/0 Check" Option

This option consists of the letter I and a + or - argument. It tells the
Compiler whether or not to generate automatic error-checking code after
each typed file 1/0 statement (not the block or device 1/0 statements). If
the automatic error-checking detects an I/O error, it halts the program with
a run-time error message.

Default option: {$I+}

{$I+} Instructs the Compiler to generate code after each
statement that performs typed file 1/0, in order to check
that the I/O operation was accomplished successfully. In
the case of an unsuccessful 1/0 operation, the program
will be terminated with a run-time error.

{$I-} Instructs the Compiler not to generate any IjO-checking
code. In the case of an unsuccessful 1/0 operation, the
program is not terminated with a run-time error. The
program can then use the IORESULT function to detect
and report 1/0 errors. (See Chapter 10 of Part III.)

The "I/O check" option can appear anywhere in the program.

Chapter 5: The Compiler

The "Range Check" Option

This option consists of the letter R followed by a + or - argument. With
the{ $R+} option, the Compiler will produce code that checks on array and
string subscripts and on assignments to variables of subrange and string
types. The checking code will halt the program with a run-time error
message if a subscript or assignment is out of the range specified in the
program's declarations.

Default option:{ $R+}

{ $R+} Turns range checking on.

{ $R-} Turns range checking off.

The "range check" option can appear anywhere in the program. Note that
programs compiled with the{ $R-} option selected will run slightly faster.
However if an invalid index occurs or an invalid assignment is made, the
program will not be halted. Use{ $R-} only when speed or code size is
critical.

The "Varstring" Option

This option consists of the letter V followed by a + or - argument. When a
procedure or function has a VAR parameter of type STRING, the actual
parameter in each call to the procedure or function can be checked at
compile time to make sure that its declared maximum length is not less
than the declared maximum length of the formal parameter. This checking
is controlled by the "varstring" option.

Default option:{ $V-ij

{ $V -4 Turns checking on.

{ $V -} Turns checking off.

Note that if checking is off and the length of the actual parameter is less
than the maximum length of the formal parameter, it is possible for the
procedure or function to alter bytes of data that are beyond the end of the
actual parameter variable. If "varstring" checking is off and range checking
is on, then the range checked is the length of the formal parameter, not the
length of the actual parameter. This does not cause a run-time error, but
does cause unpredictable results.

Compiler Options 11-151

11-152

The "GOTO" Option

This option consists of the letter G and a + or - argument. It tells the
Compiler whether to allow or forbid the use of the Pascal GOTO statement
within a program.

Default option: { $G - }

{$G+} Allows the use of the GOTO statement.

{$G-} Causes the Compiler to treat a GOTO as an error.

The "GOTO" option can appear anywhere in the program.

Control of Segments and Libraries

The "next segment," "no load," and "resident" options control the way
segments of a program are numbered and loaded for execution. See
Chapter 15 of Part III for full explanations and examples of how to use these
options. The "using" option selects a library file other than
SYSTEM.LIBRARY as the file to search for Program Units referenced in
USES declarations.

The "Next Segment" Option

The "next segment" or "nextseg" option consists of the letters NS followed
by an unsigned integer which should be in the range 7 .. 57fora128K system
and 7 .. 31fora64K system. This option specifies the segment number to be
associated with the next code segment produced by the Compiler. This
option can appear anywhere in the program but is ignored in certain cases;
see Part III, Chapter 15, for details.

The "No load" Option

This option consists of the letter N followed by a + or - argument. It
prevents the code of any Program Units used by the program from being
loaded automatically when the program is executed. Instead, each Program
Unit's code is in memory only when some portion of it is active, or unless
specified as resident by the "resident" option.

Default option: {$N - }

{$N+} Unit code will be loaded only when active.

{$N-} Unit code will be loaded as soon as program begins
executing.

Chapter 5: The Compiler

The { $N +} option should be placed at the beginning of the main program
body (after the BEGIN). Note that use of the { $N +}option does not prevent
the initialization portion of a Program Unit from being initially executed. For
more information see Part III, Chapter 15.

The "Resident" Option

This option consists of the letter R followed by either an identifier or an
unsigned number.

If an identifier is used, it must be the identifier of a Program Unit or of a
SEGMENT procedure or function. If a number is used, it should be the
segment number of a Program Unit or of a SEGMENT procedure or function.

The "resident" option should be placed at the beginning of a procedure or
function body (after the BEGIN and before any statements). It causes the
code of the specified segment to be kept in memory, for as long as the
procedure or function that contains the option is executing. See Part III,
Chapter 15, for details.

The "Using" Option

The "using" option is used to select a library file other than
SYSTEM.LIBRARY as the file to search for Program Units referred to in a
USES declaration.

This option consists of the the letter U followed by the filename of a library
file or codefile. The "using" option causes the Compiler to seek Program
Units in subsequent USES declarations in the named file instead of in
SYSTEM.LIBRARY.

Note that the "using" option applies only during compilation. If Intrinsic
Units are used, then at execution time the system will still look for them
first in the Program Library or Library Name File (if there is one) and then
in SYSTEM.LIBRARY.

The specified filename is used exactly as typed. No suffix is added. When
you specify the filename, you may not use the asterisk (") notation to
indicate the system disk. You must give the volume name.

The following is an example of a valid USES declaration employing the
"using" option:

USES UNIT1,UNIT2, {Found in SYSTEM.LIBRARY}
{$U MYDISK:A.CODE} UNIT3,
{$U MYDISK:B.LIBRARY} UNIT4,UNIT5;

Compiler Options 11-153

11-154

See "The 'Using' Compiler Option" in Chapter 13 of Part III for a discussion
of how the Compiler searches for Program Units.

Miscellaneous Options

Two miscellaneous options, "include" and "user program" respectively,
allow you to break a large program into more files and to determine what
program level is being compiled.

The "Include" Option

This option consists of the letter I followed by a filename. It causes the
contents of another file of Pascal source text to be compiled at that point in
processing the source file. Thus you can compile a large program without
having the entire source in one large file. The syntax is

{$I filename }

The "include" option can appear anywhere in the source file. The contents
of the specified file are inserted into the compilation at the point where the
option is encountered by the Compiler.

You may not use the asterisk (*)notation in the filename to specify the
system disk. The Compiler adds the suffix .TEXT to the filename according
to the usual rules when expecting a textfile. If the attempt to open the file
fails, or if some 1/0 error occurs while reading the file, the Compiler
responds with a fatal error message and terminates its operation.

If the "include" option occurs within the declarations section of a program
or procedure (that is, before the BEGIN), then the Compiler will allow
further declarations out of order. For example, suppose that a program
contains TYPE declarations and VAR declarations, and then an "include"
option. The included file is allowed to contain further TYPE and VAR
declarations, and can also contain USES, LABEL, and CONST ANT
declarations.

If the "include" option occurs within the body of a procedure or program
(that is, after the BEGIN), the included file must not start with any
declarations. If it does, a syntax error is generated because declarations are
not allowed in a program or procedure body.

The Compiler cannot keep track of nested "include" options; that is, an
included file must not contain an "include" option. This results in a fatal
Compiler error.

Chapter 5: The Compiler

The "User Program" Option

This option consists of the letter U followed by a + or - argument. It
determines whether a compilation is a user program compilation, or a
compilation at the system level.

Default option: {$U+}

{$U+} Informs the Compiler that this compilation is to take
place on the user program lexical level.

{$U-} Tells the Compiler to compile the program at the system
lexical level. Also sets certain other options as follows:
R-,G+,I-, V-.

Know Your Operating System: Compilation at the system level will
produce meaningful results only if the program was written with
knowledge of the operating-system structure. Do not attempt
system-level compilation unless you have this knowledge.

Compiler Options 11-155

Chapter 6 The Assembler

11-157

11-158

Introduction

Even if you write most of your programs in Pascal, you may occasionally
need to write an assembly-language routine for a part of your program that
requires critical timing or that directly interfaces with hardware. The
Apple II Pascal Assembler converts your assembly-language routine into a
codefile that can be linked with a Pascal program. The Assembler is a
version of the UCSD Adaptable Assembler, implemented specifically for the
6502 microprocessor used in the Apple II computer.

This chapter tells how to use the Assembler, but it is not a complete
description of the 6502 assembly language used on the Apple II. For that
you will need a reference book on 6502 programming. Several good ones are
listed in the Bibliography.

Files Needed

The assembly-language routine you wish to assemble should be stored in a
textfile. This file, called the source file, may be the text part of the system
workfile. If there is no workfile currently assigned, you can specify any
other textfile. The result of assembling the source file is a codefile called the
object file.

In addition to the source textfile, you will need the following files to be able
to use the Assembler:

o SYSTEM.ASSMBLER
D 6502.0PCODES
o 6502.ERRORS (optional)
o SYSTEM.EDITOR (optional)

These files are supplied on the Pascal system disks. The file
SYSTEM.ASSMBLER contains the Assembler program. The file
6502.0PCODES contains the instruction mnemonics for 6502 assembly
language as used in the Apple II. These files are supplied on APPLE2:. They
must be available on the same disk when you type A from the Command
level to invoke the Assembler.

Chapter 6: The Assembler

One 51/4-lnch Disk Drive

The file 6502.ERRORS, also supplied on APPLE2:, contains the Assembler
error messages. This file is optional; if it is not available on the same disk as
SYSTEM.ASSMBLER, the Assembler will report errors by number and you
will have to look up the error descriptions in the "Error Messages" appendix,
Appendix 2H.

When the Assembler detects an error, it gives you the option of immediately
entering the Editor to correct the problem. If you choose to enter the Editor
in response to the Assembler prompt, the file SYSTEM.EDITOR must be on
a disk in any drive.

Because the Assembler opens a temporary file on the disk containing
SYSTEM.ASSMBLER, that disk should not be write-protected.

With APPLEl: in the startup drive, and APPLE2: in the second drive, your
system has all the files needed to edit, compile, assemble, and link
programs. You can remove APPLEl: and replace it with a disk containing
the file to be assembled. When the Assembler is finished, the system will
ask that you insert the APPLEl: disk. You can also use the Transfer
command to transfer the file onto either APPLEl: or APPLE2: before
assembling it.

In order to edit and assemble a textfile on a one-drive system, transfer the
file to be assembled to APPLE2: or a disk with the files
SYSTEM.ASSMBLER and 6502.0PCODES on it. Replace APPLEO: with
APPLE2: or with the assembler disk you have created with your textfile
on it before typing A for Assemble. When the Assembler is finished, the
system will ask that you insert the APPLEO: disk.

Allocating File Space

The Assembler can produce three different files during one assembly
operation. These files are opened in a specific order. First the Assembler
opens the codefile. Next, it opens a listing file if one is requested. Finally, a
temporary file called LINKER.INFO is opened on the disk containing
SYSTEM.ASSMBLER. The temporary file used by the Assembler,
LINKER.INFO, is opened each time you use the Assembler, and is not to be
confused with the temporary file, SYSTEM.INFO, that is sometimes opened
by the Compiler. When these files are opened, the Assembler does not have
information about what the actual size of the files will be. Allocating file
space in the Assembler works in the same way as in the Compiler. Refer to
"Allocating File Space" in Chapter 5 for a more detailed description.

Introduction 11-159

If you attempt to assemble without space on the disk for the temporary file
you will see the message

ID Error #8 occurred while opening temporary file %LINKER.INFO
Fatal error. Cannot continue.

II-160

The Assembler will terminate and your disk may contain a new file named
LINKER.INFO, of zero length and type Infofile. You can remove this file if
you wish.

If you request a listing file without space on the disk, you will get a similar
message but the Assembler will not terminate. Instead, the listing file
prompt will be repeated.

To avoid these error messages and to be sure you have saved room on your
disk for the temporary file (and/ or a listing file) when you assemble a
program, you need to specify how the system allocates space for the output
codefile and the listing file if there is one. See "File Size Specification" in
Chapter 3 and "Allocating File Space" in Chapter 5 for more information.

If you are assembling the workfile without creating a listing file, you usually
will not have a problem because the system uses the [* J default size
specification when opening the output codefile. The [* J default
automatically saves room for the Assembler's temporary file. However, if
the output codefile exceeds the default file size, that file is automatically
extended to maximum [OJ size. If there was only one unused area on the
disk, this extension will eliminate the space needed by the temporary file.
You can overcome this problem by specifying an appropriate file size for the
output codefile, or by making sure there are at least two noncontiguous
unused areas on the disk.

If you are not assembling a workfile, the system will use the [OJ size default
unless you specify otherwise. If your disk space was crunched, you will not
be able to open any other file on the disk. To avoid this possibility, use the
[* J file size default when specifying the output codefile and listing file
unless this default allocates insufficient space. In that case, you may wish
to specify a different file size.

Chapter 6: The Assembler

Using the Assembler

You invoke the Assembler by typing A for Assembler from the main
Command level.

If no workfile is available, the system prompts you with the message

Assemble what textfile (<ret> to exit) ?

You should respond by typing the filename of the source file, that is, the
textfile that contains the routines you wish to assemble. It is not necessary
to type the suffix . TEXT; the suffix is automatically supplied by the
Assembler if you don't type it. If you wish to defeat this feature in order to
assemble a textfile whose filename does not end in .TEXT, type a period(.)
after the last character of the filename.

Next you will be asked for the name of the codefile where you wish to save
the assembled version of your routine:

To what codefile (<ret> for workfile) ?

If you simply press RETURN the command will not be terminated, as you
might expect. Instead, the assembled version of your routine will be saved
in the Pascal system disk's workfile SYSTEM.WRK.CODE.

Press ESC and then press RETURN in response to this prompt or the
previous one to abandon the assembly and return to the Command level.

If you want your object codefile to have the same filename as the source
textfile (with the suffix .CODE instead of .TEXT), you should respond to
this prompt by typing a dollar sign($) and pressing RETURN. This feature
makes it easy to use the same name for both versions of your routine. The
dollar sign repeats your entire source-file filename, including the volume
name, so do not specify the volume before you type the dollar sign.

If you want your codefile to be stored under some other filename, type that
filename in response to the prompt. It is not necessary to type the suffix
.CODE; the suffix is automatically supplied by the Assembler. If you wish to
defeat this feature in order to specify a filename that does not have a .CODE
suffix, type a period(.) after the last character of your filename.

Ending your output filename with a file size specification (with or without a
following period) suppresses the addition of any suffix. The file is then
opened according to the file size given; on closing the file will take its actual
size. The default size used to open the codefile is [O].

Using the Assembler II-161

II-162

After the source and object files for the assembly have been specified, you
see the following prompt:

Output file for Assembler listing (<ret> for none):

Now you must specify where you want the Assembler to send the assembly
listing. The assembly listing gives the address and the assembled object
code for each statement in the source routine. It also includes reference
symbol tables, described below. This listing is independent of the codefile
that is saved as the final output of the assembly. See the example later in
this chapter for a sample assembly listing.

If you wish, you can have the assembly listing sent to a disk file, to the
console, or to the printer. As usual for a console or printer output, the word
CONSOLE or PRINTER must be followed by a colon; for example,
CONSOLE:.

If you specify a disk file for the assembly listing, you do not need to type the
. TEXT suffix; . TEXT will be added automatically if it is needed. Ending the
specified filename with a period suppresses the addition of the . TEXT
suffix.

If the filename ends in a . TEXT followed by a file size specification, the file
is opened according to the file size given (on closing the file will take its
actual size). The default size for opening this file is [O].

Press RETURN if you do not want this listing. If you wish to abandon the
assembly at this point, press ESC and then press RETURN.

Replace Control Characters: If you store an assembly listing as a disk
file, you can use the Editor to look at it, but control characters in the file
may make it difficult to edit. Before you edit an assembly listing, use the
Editor's Replace command to relace all CONTROL-L's and CONTROL-P's
with RETURN.

After you tell the Assembler what to do with the listing file, it starts
assembling the source file. If you told the Assembler to send the assembly
listing to CONSOLE:, the listing appears on the display, one lin:e at a time. If
you did not direct the assembly listing to CONSOLE:, a simple display
showing the assembly's progress appears on the screen instead. In this
mode, the Assembler displays a dot for each line of code assembled and a
line counter every 50 lines. Upon completing each procedure or function, it
displays the number of words of space available for the reference symbol
table (described below) in brackets, followed by the message

Current minimum space is XX words

Chapter 6: The Assembler

If you used the INCLUDE directive in your routine, the Assembler will
display the message

.INCLUDE <filename>

each time it encounters the directive, to inform you that the named file has
been included in the assembly.

When the assembly is finished, the Assembler displays a message telling
you that it is finished and the number of errors that it found.

If the Assembler found no errors, it stores the object code in the Pascal
system disk's workfile SYSTEM.WRK.CODE or in the codefile with the
filename that you specified earlier. The assembled codefile cannot be
executed by itself; it can only be used by Linking it with a Pascal program's
codefile. For information about linking, see the example later in this
chapter, and also see Chapter 7, "The Linker." For information about
putting assembled codefiles into a library file so that the Run command will
automatically link them to a host program, see Chapter 8, "The Librarian."

I
Code Workfile Is Erased: The code part of the Pascal system disk's
workfile, SYSTEM.WRK.CODE, is automatically erased whenever you
use the Editor's Update command to update the text part of the workfile.

Responding to Assembler Errors

If the Assembler encounters an error, it displays a message that shows the
offending text and indicates the nature of the error. For example, you might
see

$04 .EQU *
Identifier previously declared

The error message is taken from the file 6502.ERRORS. If this file is not on
the disk containing SYSTEM.ASSMBLER, or if there is not enough available
memory to load it, only the error message number is given. In that case, you
might see

$04 .EQU *
Error # 9
"6502.ERRORS" file not found

A complete list of Assembler syntax-error messages that correspond to
these error numbers appears in "Assembler Error Messages" in Appendix
2H. Note that the descriptive error message is given only at the time the
error is detected, and is not given by the Editor as it is when you use the
Compiler. After each error is found, the Assembler prompts you with the
following choice:

ECdit,<space>,<esc>

Using the Assembler II-163

>Edit:

This is similar to the choice that you are given when the Compiler
encounters an error. If you wish to proceed with the assembly, looking for
more errors, press the SPACE bar. If you decide to terminate the assembly
and return to the outermost Command level, press ESC. If you wish to
correct the error, type E. The Editor will be loaded and the workfile will be
read into the Editor, ready for editing. If the file you are assembling is not
the workfile, this prompt appears:

Ho workfile i5 pre5ent. File? C <ret> for no file <e5c> to exit >

II-164

You should type the filename of the source file being assembled. If the error
occurred in an Include file, you should type the name of that file, which is
given in the last include message that was displayed. The file you specified
will then be read into the Editor, the Editor will display a general error
message, and the cursor will be placed near the point in the text where the
error was detected. •

Make a Nate of Error Numbers: The Editor does not display specific
messages for errors reported by the Assembler. Therefore you should be
sure to note which error is being reported by the Assembler before you
type E to invoke the Editor.

64K Pascal Systems I If you are using the 64K Pascal system and have a problem with stack
overflow during assembly, use the Swap command from the Command
level. See Chapter 2.

Reference Symbol Table

To help you locate the symbols in the listing of your assembly-language
routines, the Assembler generates reference symbol tables. A reference
symbol table, entitled SYMBOLTABLE DUMP, appears in the assembly
listing following the listing of each procedure or function. Each entry in the
reference symbol table contains three items. The first item is the symbol
itself-the entries are listed alphabetically by symbol. The second item is
the symbol type, using the abbreviations listed at the top of each table. If
the symbol represents a label or an absolute, the third item is the definition
address. A label's definition address is the four-digit hexadecimal number
shown in the left-most column of the assembly listing for the statement that
defines the label. If the symbol represents neither an absolute nor a label,
the third item is filled in with dashes. A vertical bar (I) ends each entry.

Chapter 6: The Assembler

Here is an example of a reference symbol table.

PAGE - 5 INCARRAY FILE: SYMBOLTABLE DUMP

AB - Absolute LB - Label
RF - Ref DF - Def
PB - Public PV - Private

ALO OP LB rlJll 121 INCARRAY
PSEUDO AB l'Jf/JE!'JI PUSH
SIZE AB fl llil 2

UD - Undefined MC - Macro
PR - Proc FC - Fune
cs - Cons ts

PR - -- -I POP MC - - - -I
MC - -- -I RETURN AB IHH/H'JI

The first entry is for a label named ALOOP, defined at address 0012. The
second entry shows that INCARRAY is the name of the procedure. The third -
entry shows that POP is the name of a macro. The fourth entry shows that
PSEUDO is an absolute that has been assigned the value OOEO.

A Sample Program
5Mt w ••

The sample program that follows includes the following items:

1. The assembly-language source text of an external function, TIMES2,
and an external procedure, INCARRAY.

2. The assembly listings for the function and the procedure.
3. A Pascal host program that calls the function and the procedure.
4. Sample commands for compiling the Pascal host program.
5. Sample commands for linking the assembly-language routines to the

Pascal host program.

Assembly-Language Routines

You can create your program textfile in the system workfile and assemble
it, as described in the previous chapter. The alternative approach is to use
named files for your program text and code. That approach is demonstrated
in the sample that follows.

Using the Assembler II-165

sample

.MACRO
PLA
STA
PLA
STA
.EHDM

sample

.MACRO
LDA
PHA
LDA
PHA
.ENDM

macro

POP

%1

%1+1

macro

PUSH
%1+1

%1

First, use the Filer's New command to remove any existing workfile. Then,
using the Editor's Insert command, type the following assembly-language
routine into the computer just as it appears here. Be careful with
punctuation and special characters.

Note: The text following the semicolon(;) on each line is a comment. You
can omit the semicolon and the comment if you wish.

POPs word from eval. stack

PUSHes word to eval. stack

sample function for Pascal, declared:
function TIMES2Cdata:integer):integer;

.FUNC
RETURN .EQU

11-166

POP
PLA
PLA
PLA
PLA

TIMES2,1
Ill

RETURN

;one word of params
;temp store rtn addr

;save Pascal rtn ad
;discard 4 bytes
;of stack bias
;Conly need to do
;for .func)

Chapter 6: The Assembler

PLA
ASL
TAX
PLA
RDL
PHA

TXA
PHA

PUSH

RTS

A

A

RETURN

;lsb of data
;times 2
;save in x
;msb of data
;times 2, with carry
;move msb to
;evaluation stack
;restore lsb to ace
;move lsb to
;evaluation stack

;restore Pascal
;return address
;RETURN to Pascal

sample procedure for Pascal, declared:
procedure INCARRAYCsize:integer; var data: list);

RETURN
SIZE
ADRS

ALDDP

.PRDC

.EQU

. EQU

.EGU

PDP
PLA
STA
PLA
STA
PLA
STA
PLA

LDY
CLC
LDA
ADC
STA
!NY
CPY
BCC

PUSH

RTS

.END

INCARRAY,2
Ill
2
4

RETURN

ADRS

ADRS+1

SIZE

#Ill

@ADRS,Y
#1
@ADRS,Y

SIZE
A LOOP

RETURN

;2 words of params
;temp store rtn ad
;temp store SIZE
;temp store array adrs

;save Pascal rtn ad
;lsb of array addr

;msb of array addr

;lsb of SIZE param.

;msb of SIZE discard

;init'ize array indx
;clear for add
;load array byte
;increment
;store incd ar'y byt
;incrm't array index
;test vs array SIZE
;repeat if lt or eg

;restore Pascal
;return address
;RETURN to Pascal

;end of assembly

Using the Assembler 11-167

II-168

The Assembly Listing

After you have typed the assembly-language sample with the Editor, type G

for Quit, select the Write option, and save the program in a disk file named
ASMSUBS. If you only have one or two drives, you'll have to keep your
developing program on one of the system disks. If you save your text and
codefiles on APPLEl:, you can put your listing files on APPLE2:.

After you have saved your textfile, and with the system at the Command
level, type A to invoke the Assembler. The system loads the Assembler,
which displays a prompt asking for the source textfile:

Assembling ...
Assemble what textfile C<ret> to exit) ?

If your textfile is on the system disk, respond with APPLEl:ASMSUBS.
Next, the Assembler asks you for the name to use for the assembled object
codefile:

To what codefile C<ret> for workfile) ?

To save the codefile with the same name as the textfile, except for the
suffix, you may simply type a dollar sign($). It is usually convenient to use
the same filename for both versions of your program, and most commands
can use the suffix .TEXT or .CODE to choose the appropriate version. If you
have only one disk drive, you must use a file size specifier when you specify
the codefile filename, for example, $[*].

Note: if the source textfile had been available in the system disk's workfile
SYSTEM.WRK.TEXT or some other workfile that you designated using the
Filer's Get command, the prompts shown above would not have appeared.
Instead, the Assembler would have assembled the text workfile and would
have stored the object codefile as SYSTEM.WRK.CODE.

Next the Assembler asks you where to send the assembly listing:

Output file for assembler listing C<ret> for none):

If you have a printer connected to your Apple, type PRINTER: to send the
assembly listing to the printer. If you respond to the last prompt by typing
CONSOLE:, the assembly listing will be sent to the monitor screen in place
of the Assembler's usual screen display. If you want the listing file to be
saved, specify the filename where you want it sent; for example,
APPLE2:ASUBS.LST. TEXT[*].

After you specify the disposition of the listing, the assembly process will
begin. You will see the usual Assembler display: a dot for each line of the
source program, and messages that tell you how much memory space, in

Chapter 6: The Assembler

16-bit words, is available at each stage of the assembly. The screen display
will look something like this:

[111J768]< ">
2 blocks for procedure code 9642 words left
[9635]< 26>
[95281< Sh
Current minimum space is 9595 words
[9616] < 57>
Current minimum space is 9571 words
[95921< 92>
Assembly complete: 94 lines

Ill Errors flagged on this Assembly

Meanwhile, the printer has been printing the assembly listing, which looks
something like this:

PAGE - Ill
Current memory available:
e 0!!11/JI
llJllJl/JBI
f/J0!!lll
!!Jf/J UI
ee 0e1
IH'J Ill I'll
illlJ i!llJI
llJllJllJ01
00001
0 e u1
00UI
00 001
llJll Ill fill
l/Jflj 001
00001
f/Jl'J00I
l'Jllfilfll
IHHtlllJI
00 001
l'll'J011JI
l'J0f1Jlill
f/J01iHll
01/Jlil I/JI
IHHll!I
00001

19616

sample macro pops word from eval.

.MACRO POP
PLA
STA % 1
PLA
STA % 1+1
.ENDM

sample macro pushes word to eval.

.MACRO PUSH
LDA % 1+1
PHA
LDA %1
PHA
.ENDM

sample function for Pascal, declared:
function TIMES2Cdata:integerJ: integer;

2 blocks for procedure code 18377 words left
PAGE - 1 T!MES2 FILE:

Using the Assembler

stack

stack

Il-169

01Hlllll
Current memory available:
0 lil liHl I iH!HHl
llJ0 01/JI
fil(/jf/Jfill
flJllrlJllJI 68
l:rnll 11 85 ll!il
llHHJ31 68
00041 85 11.11
(1)0061 68
l/Jilll71 68
00081 68
111flJ091 68
01/JlilAI
llHH'JAI 68
0 flH'JBI 0A
001/JCI AA
!HHlDI 68
f/J0ilEI 2A
il0f/JFI 48
ll01/JFI
ll.llil 1 f/JI SA
flJ0111 48
00111
00121
"111J 121
(/JI! 121
iHJ121 AS lil1
00141 48
00151 AS !HJ
llllil 171 48
flJl/J181 60
00191
IHJ191
011191

fl

.FUNC
19027

RETURN . EQU

POP
PLA
STA
PLA
STA

PLA
PLA
PLA
PLA

PLA
ASL
TAX
PLA
ROL
PHA

TXA
PHA

PUSH

LDA
PHA
LDA
PHA
RTS

TIMES2,1

RETURN

RETURN

RETURN+1

A

A

RETURN

RETURN+1

RETURN

;one word of params

;temp store rtn addr

;save Pascal rtn ad

;discard 4 bytes
;of stack bias
;Conly need to do
;for .func)

;lsb of data
;times 2
;save in x
;msb of data
;times 2, with carry
;move msb to
;evaluation stack
;restore lsb to ace
;move lsb to
;evaluation stack

;restore Pascal
;return address

;RETURN to Pascal

llJ0191 sample procedure for Pascal, declared:
11l0191 procedure INCARRAYCsize:integer; var data: list);
l/J fil 191
PAGE - 2 TIMES2 FILE:

AB - Absolute
RF - Ref
PB - Public

LB - Label
DF - Def
PV - Private

SYMBOLTABLE DUMP

UD - Undefined
PR - Pree
CS - Consts

MC - Macro
FC - Fune

POP
PAGE -

MC ----1 PUSH MC ----1 RETURN AB lllllJflJl/JI TIMES2
3 TIMES2 FILE:

II-170 Chapter 6: The Assembler

FC ----1

Current minimum space i5 1837S words
PAGE - 4 INCARRAY FILE:

ll 9 HI .PROC INCARRAY,2 ;2 words of param5
Current memory available:
ll ll IH'JI I! ll ll ll
lll'HiJlll IHJll2
!llll llll I llll !M
llll IHJI
90111ll
fJ llll Ill 68
Bllll11 8S llll
llJIHJ31 68
fJIHJ41 8S ll 1
ll llllSI 68
fllll!71 8S ll4
llllll91 68
BIHJAI 8S !'JS
!!BllCI 68
llllllDI 8S ll2
!'llHlFI 68
ll ll 1 Ill
ll ll 1 Ill All l/Jll
llll 121 18
llll 131 B1 !l4
ui 1 s1 69 e 1
illl171 91 94
011191 cs
91l 1AI C4 02
tll1J 1CI 31lF4
Wll 1EI
!l!'J 1 El
Ill! 1 El
llll 1 El AS ll 1 ill

illl21ll 48
llll211 AS !'H! #

llll231 48 #

llf/J241 Sil
ll!l2SI
""2 SI
PAGE - S INCARRAY FILE:

19027
RETURN
SIZE
ADRS

ALOOP

AB - Absolute
RF - Ref

LB - Label
DF - Def

PB - Public PV - Private

.EQU

.EQU

.EQU

POP
PLA
STA
PLA
STA
PLA
STA
PLA
STA
PLA
STA
PLA

LDY
CLC
LDA
ADC
STA
INV
CPY
BM!

PUSH

LDA
PHA
LDA
PHA
RTS

.END

il
2
4

RETURN

RETURN

RETURN+1

ADRS

ADRS+1

SIZE

#(/)

@ADRS,Y
#1
@ADRS,Y

SIZE
A LOOP

RETURN

RETURN+1

RETURN

SYMBOLTABLE DUMP

UD - Undefined
PR - Proc
CS - Const5

Using the Assembler

;temp store rtn ad
;temp store SIZE
;temp store array adr

;save Pascal RTN ad

;lsb of array addr

;msb of array addr

;lsb of SIZE param.

;msb of SIZE discard

;init'ize array indx
;clear for add
;!array byte
;increment
;store incd ar'y byt
;incrm't array index
;test vs array SIZE
;do while less than

;restore Pascal
;return address

;RETURN to Pascal

;end of assembly

MC - Macro
FC - Fune

II-171

ADRS
PUSH

PAGE -

AB l!HHJ 41 ALOOP
MC ----1 RETURN

6 INCARRAY FILE:

LB 00121 INCARRAY PR ----1 POP MC ----1
AB l'HHHJI SIZE AB l'll?J02

Current minimum space is 18351 words

Assembly complete: 94 lines

11-172

e Errors flagged on this Assembly

I
By the Way: Only the assembled object code shown on the left side of
the assembly listing is saved in the file ASMSUBS.CODE.

Here are some notes about the sample assembly listing:

1. The addresses given in the SYMBOL TABLE dump correspond to the
addresses shown in the leftmost column of the listing.

2. Addresses in the object code appear in reverse byte order; that is, low
byte first.

3. A number sign (#)is printed at the left of all source statements that are
expanded from macros.

4. The notation used for indirect addressing with the Assembler is not the
same as the standard notation defined by the manufacturer of the 6502
microprocessor. See the section "Addressing Mode" under "Syntax of
Assembly Language Statements," later in this chapter.

A Pascal Host Program

The following sample Pascal host program calls the external function and
procedure assembled earlier. You should use the Editor to type the program
as shown, then save it under the filename CALLASM.TEXT.

program CALLASM;

{

{

sample Pascal host program with calls
to an external function and procedure

type list =packed arrayce .. 9J of e .. 255;

var i,k: integer; aa: list;

procedure INCARRAYCsize:integer; var data: list);
external;

Chapter 6: The Assembler

}

}

function TIMES2Cdata:integer):integer;

external;

begin

writelnC'initial array:');

for i := 0 to 9 do

begin

aa[il := i;

write(aa[i],' ');

end;

writeln;

writeln('array, incremented:');

INCARRAYC1!l,aa);

for i :=ii to 9 do writeCaa[il,' '>;
writeln;

writelnC'incremented array, times 2:');

for i := 0 to 9 do writeCTIMES2Caa[iJ),' ');

end.

Using the Host Program

Before the Pascal host program you have just typed can be used, the text
version must be compiled to make an executable P-code version. This is
done from the Command level by typing c for Compile. If you saved the
program text in a file named CALLASM.TEXT, the first prompts and your
responses will look like this:

Compiling ...

Compile what textfile C<ret> to exit) ? CALLASM

To what codefile (<ret> for workfile> ? $

The first response tells the Compiler to compile the program in the textfile
CALLASM. TEXT. The dollar sign ($) response to the second prompt tells
the Compiler to save the resulting codefile with the same filename as the
textfile, except for the suffix: CALLASM.CODE. Just as in the Assembler
example, it is convenient to use the same name for the textfile and codefile
versions of the program. If you have only one disk drive, you should use a
file size specifier when you specify the codefile filename, for example, $[*].

Next the Compiler asks you where to send the listing.

Listing file (<ret> for none or option in source):

Using the Assembler II-173

Linking ...

Apple Pascal Linker [1.3]

If you have a printer connected to your Apple, type PRINTER: to send the
assembly listing to the printer. If you respond to the last prompt by typing
CONSOLE:, the listing will be sent to the monitor screen in place of the
usual screen display. If you want the listing file to be saved, specify the
filename where you want it sent; for example, APPLE2:CALL.LST. TEXT[*].

Now the actual compilation begins. The Compiler displays a dot for each
line of the source program, and messages that tell you how much memory
space, in 16-bit words, is available at each stage of the compilation. For a
description of the Compiler messages, refer to Chapter 5.

If there are no errors in the program, the Command prompt line will
reappear. When you reach this point, compilation of CALLASM is complete
and the compiled codefile is stored as CALLASM.CODE.

However, CALLASM is still not ready to execute: the external
assembly-language function and procedure in ASMSUBS.CODE still have to
be linked to the Pascal program. To do this, type L for Link. The system's
messages and your responses will make a dialog like the one shown below.
For each prompting message from the system, the response you should
make is given below. An explanation of each response is shown in
parentheses.

Link what host codefile? CALLASM (Host program codefile)
Opening APPLE1:CALLAS~.CODE
Using what library file? ASMSUBS (Routines to link)
Opening APPLE1:ASMSUBS.CODE
Another library file C<ret> for none)? <Press RETURN--no more to link)
Map f~le Ccret> for none)? (Press RETURN--no map file)
Reading CALLASM
Reading Tl MES2
Output file C<ret> for workfile)? SAMPL.CODE (Executable codefile;

type suffix .CODE>
Linking CALLASM # 1

Copying func TIMES2
Copying proc INCARRAV

11-174

The file SAMPL.CODE now contains your compiled Pascal host program
CALLASM linked with the assembly-language routines TIMES2 and
INCARRAY. The completed program is now an executable codefile. If you
type x for Execute, you are asked

Execute what file (<ret> to exit) ?

Chapter 6: The Assembler

If you type SAMPL, the program you just linked will be loaded and executed,
to produce this display:

initial array:

(iJ 1 2 3 4 5 6 7 8 9
array, incremented:

1 2 3 4 5 6 7 8 9 10
incremented array, times 2:

2 4 6 8 11/J 12 14 16 18 2f/J

Assembler Information

This section defines the syntax of assembly-language source files and of the
statements they contain. It does not describe programming techniques, but
only the way the program must be written for the Pascal Assembler to
assemble it.

Syntax of Assembler Sm.m::e Files

The routines you assemble with the Pascal Assembler will be external
procedures and functions used with Pascal programs. Statements that do
not generate actual instruction code can also occur outside the body of a
procedure or function. These statements can be of two kinds:

o Statements in macro definitions;
o Statements using any of the assembler directives in the following table .

. EQU .MACRO .IF

.ABSOLUTE .ENDM .ELSE

.INTERP .LIST .ENDC

.DEF .NOLIST .MACRO LIST

.REF .PAGE .NOMACROLIST
.TITLE .PATCHLIST

.NOPATCHLIST

All symbols defined before the first procedure or function stay in the symbol
table throughout the assembly, so they can be referred to from any of the
routines in the source file. When each new procedure or function begins, all
symbols are removed from the symbol table except the ones that were
defined before the first procedure or function.

Assembler Information 11-175

II-176

The statements making up the body of a procedure or a function are
preceded by a .PROC or a .FUNG statement. Each procedure or function
ends at the occurrence of the next .PROC or .FUNG statement, except the
last one. The last procedure or function in the source file must end with an
.END statement, which terminates the assembly. All text beyond the .END
statement is ignored by the Assembler.

Assembly-file syntax follows this general syntax diagram:

any non-code
generating
operations

.PROC

.FUNG

code-generating
operations and

directives

Syntax of Assembly-language Statements

.END

Each assembly-language statement occupies one line and contains four
fields, arranged like this:

Label Operation Operand Comment

The fields are separated by one or more spaces or tabs. The normal practice
is to use tabs so that the fields line up as columns on the listings, making
them easier to read.

The label field can be occupied by an identifier or a local label, or it can be
blank. The operation field is occupied either by an instruction mnemonic
(opcode), by an assembler directive (pseudo-op), or by a macro identifier.
The operand field is occupied by the arguments of the instruction or
directive in the operation field. These can be expressions, identifiers,
character strings, or other kinds of arguments, depending on the operation.
In some cases, the operand field is blank.

The comment field contains text that is ignored by the Assembler. The
comment field starts with a semicolon (;). A comment normally follows the
other fields in a statement, but if a semicolon is the first nonblank character
in a statement, the entire statement is treated as a comment.

Chapter 6: The Assembler

" Identifiers

An identifier is a character string starting with a letter. The subsequent
characters can be letters, numbers, or the ASCII underline(_). Only the
first eight characters (not counting any underlines) are actually used by the
Assembler, although more can be typed in the identifier.

I
Note: The underline character is ignored by the Pascal Compiler and
Assembler. If you declare a procedure as EXT _pRQC , it is just as if you
had declared it EXTPROC or E_x_ T _pRQC . '

The Assembler makes only one pass through the source. On encountering
an undefined identifier in an expression, the Assembler treats the identifier
as an undefined label that will eventually be defined. Any identifier other
than a label must be defined before it is used.

labels

A label must begin in the first column, with no preceding spaces. A label
can be followed by a colon; the colon will be ignored.

Using the Equate directive (.EQU), a label can be defined by an expression
containing other labels or absolutes. A label that appears as the argument of
an Equate directive can be undefined, but the undefined label cannot then
be defined by a later Equate directive.

Assembler Information ll-177

Il-178

local Labels

A local label has a dollar sign($) as its first character, followed by as many
as eight digits. A local label cannot be used on the left-hand side of an
equate.

Local labels are mainly used to jump around within a small segment of code
without using up space in the symbol table that will be needed for regular
labels. The Assembler's local-label table can hold up to 21 labels. The
local-label table is emptied each time a regular label is encountered, thus
making all local labels previously defined invalid beyond that point in the
assembly. An example of the use of local labels is shown below, where the
branch to label $04 is made invalid by the intervening regular label
REALLAB.

STA 4

BNE $03

BNE $04
REALLAB LDA #1
U4 TAX

Chapter 6: The Assembler

;LEGAL USE OF LOCAL LABEL

;ILLEGAL USE OF LOCAL LABEL

Constants

A constant must start with an integer from 0 through 9. For example, the
hexadecimal constant FF must be written OFF.

The default number base is hexadecimal. A decimal constant consists of a
number followed by a period (decimal point).

EXAMPLE: Hexadecimal: 13
Decimal: 19.

Location Counter

The Assembler recognizes the asterisk (*) in the operand field as a
reference to the current value of the location counter. For example, the
statement

LOOP JMP *

would be assembled as a jump to the location of the jump itself; in other
words, an infinite loop or virtual halt.

Addressing Mode

The value of an expression appearing in the operand field of an instruction
is used either as immediate data, as an address, or as an indirect address.
The default case is to use it as an address.

As usual with the 6502, immediate data is indicated by a number sign (#)
before an expression. For example,

LDA #5

is assembled as a load-accumulator immediate with data 05.

The notation used in the sample program for the indirect and indexed
addressing modes is not the same as the standard notation defined by the
manufacturer of the 6502 microprocessor. (The Assembler will accept the
standard notation, but note the warning below.)

Assembler Information II-179

11-180

An at sign(@) before an expression appearing in the operand field causes
the value of the expression to be used as an indirect address reference. For
example, the instruction

LDA DATADDR

would be assembled as a load-accumulator absolute that would load the
byte of data at address DAT ADDR, but the instruction

LDA @DATADDR,Y

would be assembled as a load-accumulator indirect, indexed by index
register Y, that would use the word of data at address DATADDR as an
address. The 6502 would add the contents of the Y index register to the
contents of the word found at DAT ADDR and load the accumulator with the
byte of data found at the resulting address.

Notations for indirect and indexed addressing modes are shown in the
following table.

Pascal Assembler Standard 6502
Addressing Mode Format Assembler Format

Indirect JMP@GOVECT JMP (GOVECT)

X-indirect LDA@LOC2,X LDA (LOC2,X)

Y-indirect LDA@LOCl,Y LDA(LOCl),Y

Note: The Pascal Assembler also accepts the standard notation for the
indirect and indexed addressing modes, but it does not check the
placement of the parentheses. It distinguishes between indirect indexed
and indexed indirect modes by the presence of the X or the Y.

Expressions

The following operators can appear in expressions:

Unary Operators

+ positive
negative
ones complement

Chapter 6: The Assembler

LDA #LABEL+S

Binary Operators

+ addition
subtraction

* multiplication
/ truncating division (DIV)
% remainder division (MOD)

bit-by-bit OR
bit-by-bit exclusive OR

& bit-by-bit AND
equal (valid only with .IF)

< > not equal (valid only with .IF)

Expressions are evaluated from left to right, and all operators have the
same precedence. To override the normal left-to-right precedence, use angle
brackets <like this> around the part of the expression to be evaluated
first. It is possible to create bracketed expressions too complex for the
Assembler to evaluate, but most such expressions are too long to fit onto one
line anyway.

Normally, a label can be used in an address expression such as

LDA LABEL+S ; Legal expression with label

only if the expression adds or subtracts a constant value from the address of
the label. An expression such as

LDA LABEL"2 ; Illegal expression with label

will not be accepted by the Assembler unless you are assembling using the
.ABSOLUTE directive (discussed later in this chapter) and LABEL is
previously defined. Likewise, a label must not appear in an expression used
to make an absolute constant unless the label is absolute. A statement such
as

Illegal absolute constant with label

will not be accepted by the Assembler unless the .ABSOLUTE directive is in
use and LABEL is previously defined.

The following portion of an assembled listing illustrates expression syntax
as used in the Assembler. The examples are not an actual, useful program.

Assembler Information 11-181

PAGE - 1 TEMP1 FILE:

lllllll01
Current memory available:
fHl 0 Ill
lllllllll
IHHHJI '1J IH'JA
00001 00BF
0 f/Jl'l lll (1Jfl)F7
llilllllll
00001
f/Jllf/J01
00 llHJI AS llS
0 llf/J21 AS 4D
0fllf/J41 AS 4D
00061 AS !'JA
f/JllJfilBI AS lli7
ll011JAI AS llJ1
000CI AS £lJ2
0f/J0EI AS f/J7
Ill 01 Ill AS 48
00121 AS B7
il ll 141 AD 0Ef1Jil
00171 AD rl!91!J0
001AI AD 411JlHl

LDA LABEL*2
ill-formed expression
ECdit,<space>,<esc>

f!Jf/J1DI
flfll 1DI A9 0S
£llll 1FI A9 1C

LDA #<LABEL+S>
operand not absolute
ECdit,<space>,<esc>

01l211 A9

LDA #LABEL
operand not absolute
ECdit,<space>,<esc>

00221 A9
00231
1Hl231

II-182

.PROC TEMP1
111J!'J88

; CONSTANTS

CON 10 .EQU HJ.
OTHlli .EQU !!JBF
ONEllJ .EQU 0F7

; example EXPRESS IONS

LDA s
LDA S+6*7
LDA <S+6>*7
LDA 7*6/4
LDA 7*<6/4>
LDA 6%S
LDA S+11%S

LABEL LDA S+<11%S>
LDA OTHll"ONEfJ
LDA OTH0&0NEll
LDA LABEL
LDA LABEL-S
LDA LABEL+<S*CON11h

[SPACE pressed here, to continue assembly.]

LDA LABEL*2
LDA #S
LDA #S*<CON1f!J I 2> +3

[SPACE pressed here, to continue assembly.]

LDA #<LABEL+S>

[SPACE pressed here, to continue assembly.]

LDA #LABEL

.END

Chapter 6: The Assembler

linkage to A~sembiy-Language Routines

A routine is declared EXTERNAL in a Pascal host program in much the
same way that a Pascal routine is declared FORWARD. The routine is
declared by a standard PROCEDURE or FUNCTION heading followed by the
keyword EXTERNAL. Calls to the EXTERNAL routine use standard Pascal
syntax, and the Compiler checks that each call agrees in type and number
of parameters with the declaration for that routine. It is the programmer's
responsibility to ensure that the assembly-language routine agrees with the
host program's EXTERNAL declaration. The Linker checks only for the
same number of words of parameters in the host program's EXTERNAL
declaration and in the EXTERNAL routine's .PROC or .FUNG declaration.
For more information on the Linker's functions, see Chapter 7, "The
Linker."

When the host program executes a call to an EXTERNAL procedure or
function, parameters to be passed are pushed on the evaluation stack in the
order they are encountered in the host program's calling statement: the first
parameter is pushed on the stack, high byte first, then the second
parameter, and so on. Long integers and sets are passed as the number of
words used in the host program. After a long integer or set, a word
indicating the number of words passed is pushed onto the stack. Again,
each word is pushed on the stack high byte first. Strings, records, arrays,
and VAR parameters are passed by address, high byte first. The host
program's EXTERNAL declaration may declare a VAR parameter without a
type. This allows a parameter of indeterminate size to be passed by address.
When all the parameters have been passed, the host program's return
address is pushed on the stack, high byte first, then low byte.

The assembly-language routine being called must save the return address,
and then push it back on the stack just before returning to the calling
program. The passed parameters are available on the stack in reverse order:
the last one passed is at the top of the stack. See Chapter 9 of Part III for
more information.

The TIMES2 function in the assembly-language example earlier in this
chapter uses parameter-passing by value. The function first removes the
return address from the stack and saves it in location RETURN. After
discarding the four extra bytes added to the stack because the host program
was calling a function, the function then picks up the data word, one byte at
a time. When it is finished, the function pushes the result back onto the
stack, followed by the return address.

Assembler Information 11-183

ll-184

Conventions
When you write assembly-language routines in the Pascal environment, you
must respect its conventions concerning register use and calling sequences.
These are explained in Chapter 9 of Part III. All the 6502 registers are
available, and zero-page hexadecimal locations 0 through 35 are available
for storing temporary variables. However, the Pascal system may also use
these locations, so you should not expect data to remain there from one
execution of a routine to the next. You can save variables in non-zero-page
memory by using the .BYTE or .WORD directives to reserve space in your
assembly-language routine.

There are two Pascal conventions that apply only to functions:

o When a function is called, the host program pushes two words (four
bytes) of zeros on the evaluation stack after any parameters are pushed
and before the return address is pushed.

o When a function is finished, it must push the result (a scalar, real, or
pointer, maximum two words) on the stack, high byte first, just before it
pushes the return address.

The Assembler Directives

Assembler directives are statements you put in your program to cause
certain operations to be performed during program assembly. Assembler
directives resemble machine instructions in appearance but, unlike
instructions, they do not get assembled into corresponding opcodes, so they
are sometimes called pseudo-ops. To make them easier to distinguish from
instructions in program listings, all assembler directives begin with a
period.

The Pascal Assembler directives described below are those of the UCSD
Adaptable Assembler. They are different from the directives used by the
various 6502 microprocessor manufacturers.

In the descriptions that follow, punctuation marks and items that appear in
uppercase are to be typed just as they appear. Items that appear in
lowercase are the names of element types, which you replace with the
appropriate elements when you use the directives. Items that are enclosed
in angle brackets <like this> are required elements, which you must
supply. Items enclosed in square brackets [like this] are optional elements,
which you may supply. If an element type is not shown with a particular
directive, the element type is not used with that directive. Here is an
example:

[label] .ASCII "<character string>"

Chapter 6: The Assembler

This notation indicates that you may supply a label, though you don't need
to, and that between the required double quotation marks you must supply
the character string. You should not type the brackets.

Some of the common types of elements are defined in the following table.

Type

value

valuelist

identifierlist

Definition

Any numerical value, label, constant, or
expression.

A list of one or more values separated by commas.

A list of one or more identifiers separated by
commas.

expression Any legal expression as defined under "Syntax of
Assembly-Language Statements."

identifier[:integer]list A list of one or more identifier:integer pairs
separated by commas. The colon-integer is
optional in each pair; the default value of integer
is 1.

Examples are included after each directive definition to show you the
specific syntax and form of the directive. Also, the example
assembly-language routine earlier in this chapter includes some Assembler
directives in operation.

R.outine&Delimiting Directives

Every Assembler source textfile must include at least one .PROC statement
or .FUNC statement and one .END statement. The .PROC and .FUNC
statements declare and delimit the procedures and functions that will be
called by a Pascal host program. The .END statement appears at the end of
the last routine and serves as the final delimiter. A single assembly program
cannot contain more than 50 .PROC and .FUNG directives.

The Pascal host program refers to an assembly-language routine by means
of an EXTERNAL declaration. At the time a routine is declared, the actual

The Assembler Directives II-185

II-186

parameter names are given. For example, for the assembly-language
procedure that begins with the statement

.PROC FARKLE,4

the declaration in the Pascal host program might be

PROCEDURE FARKLECX,Y:REAL>;
EXTERNAL;

The use of these directives is demonstrated in the example given earlier in
this chapter .

. PROC

Identifies a procedure, which returns no value. A procedure is terminated
by the occurrence of a new .PROC or .FUNC statement, or by an .END
statement.

Form:

Example:

.FUNC

.PROC <identifier>[,expression]

[expression] indicates the number of words of parameters
expected in calls to this routine. The default value is 0.

.PRDC DLDRIVE,2

Identifies a function, which returns a value. The host program pushes two
words onto the stack before it pushes the return address. A function is
terminated by the occurrence of a new .PROC or .FUNC statement, or by an
.END statement .

Form:

Example:

.END

. FUNC <identifier> [,expression]

[expression] indicates the number of words of parameters
expected in calls to this routine. The default value is 0.

.FUNC RANDOM,4

Indicates the end of the last routine in an assembly-language source file.

Form: .END

Example: . END

Chapter 6: The Assembler

Data Directives

The next four Assembler directives are for inserting data into the stream of
code being generated by the Assembler. The .BYTE, .WORD, and .BLOCK
directives can also be used to allocate space for storing variables .

. ASCII

Converts character values to ASCII-equivalent byte constants and places
them into the code stream. If a label is present, its value is the address of
the first byte stored.

Form: [label] .ASCII "<character string>"

Example:

. BYTE

where the character string is any string of printable ASCII
characters, including spaces. The length of the string must
be less than 80 characters. The double quotation marks
are used as delimiters for the characters to be converted. If
you want to put a double quotation mark into the string,
you must insert it separately, using the .BYTE directive, as
shown below.

.ASCII "HELLO"

For the insertion of a string containing a double quotation
mark, such as AB"CD, use the following technique:

.ASCII "AB"

.BYTE 22 ; An ASCII

.ASCII "CD"

Note: The 22 is the hexadecimal ASCII code for a double
quotation mark .

Generates a byte of data in the code stream for each value in the list. Only
the first 7 items in the list appear in the assembly listing, even though all of
the items are assembled into the code stream. Each value must be
between -128 and +255. If the value is outside this range an error will be
flagged. If a label is present, its value is the address of the first byte stored.

Form: ~abel] .BYTE [valuelist]

The default for no stated value is 0.

The Assembler Directives II-187

Il-188

Example:

.BLOCK

TEMP .BYTE 4

The associated output would be
!il4

Generates a block of repeated data in the code stream. The length of the
block is in bytes, and each byte in the block has the same value. If no value
is specified, the default is 0. If a label is present, its value is the address of
the first byte in the block.

Form: [label] .BLOCK <length>[,value)

Example: TEMP .BLOCK 4,6

The associated output would be
06 (four bytes, each with value 06)
l'J6

il6

l'J6

.WORD

Generates a two-byte word of data in the code stream for each value in the
valuelist. Assigns the label the value of the address of the first word.

Form: [label] .WORD [valuelist]

Example:

Example:

TEMP . WORD 0, 2, 4, ...

The associated output would be
illillilll

0ill'J2

!1Hllil4

A1

A2

.WORD A2

.EQU *

.WORD 5.
* denotes L.C. value

Chapter 6: The Assembler

The statement A2 • mu * assigns the current value of
the assembler's location counter (L.C.) to label A2 . If the
value of the location counter is 50 at the .EQU, the
associated output would be:

0 0 s 0 (assignment of the value of A2)
0 e 0 s (assignment due to . WORD 5)

Label-Definition Directives

The next four directives control the definitions of the labels used in your
program .

. EQU

Assigns a value to a label. A label can be equated to an expression
containing labels or absolutes, but the labels must already be defined. A
local label can neither appear in nor be defined by an .EQU.

Form: <label> .EQU <value>

Example: BASE • EQU LABELS

.ORG

Sets the location counter to the value of the operand. Words or bytes of
zeros are generated in the code stream to fill the space between the old and
new positions of the location counter. If the new value is less than the
current location counter, an error will be generated.

Form: .ORG <value>

Example: .ORG 0Dlil00

.ALIGN

Sets the location counter to the next higher address that is an even multiple
of the value of the operand.

Form: <label> .ALIGN <value>

Example: PAGE .ALIGN

The Assembler Directives II-189

11-190

.ABSOLUTE

This directive forces the Assembler to interpret the arguments of all .ORG
directives as absolute memory locations. Because the use of .ABSOLUTE
has the effect of cancelling the generation of relocation information, the
resulting object code cannot be linked to a Pascal host. Such an object file
must be loaded by the user. It also makes it possible to treat any defined
(that is, non-forward-referenced) labels as absolute numbers. Thus such
labels may be multiplied and divided, and so on. The .ABSOLUTE directive
must occur before the first .PROC or .FUNG directive and is in effect for the
entire assembly .

Fo:rm: . ABSOLUTE

Example: .ABSOLUTE

.INTERP

Used in expressions to specify locations relative to the beginning of a special
table in the Interpreter. Interpreter-relative labels may be defined as shown
in the example. The rules regarding the use of such labels are the same as
for any other specially defined labels (for example, .PUBLIC and
.PRIVATE).

Example: STUFF • EQU .INTERP+2

Certain Interpreter entry points may be accessed by
means of an instruction such as

JMP @.!NTERP+n

For more information on Interpreter entry points, refer to Chapter 1 of
Part IV.

Mac:m Directives

A macro is a named block of statements. After it is defined, it can be
inserted into the text wherever it is needed simply by using its name as an
operator. The text of the macro can include parameters so that each
insertion results in a different version of the macro statements. A macro
whose definition precedes the first .PROC or .FUNG statement in an
assembly-language source file can be used in any of the procedures or
functions in the file.

Chapter 6: The Assembler

A macro is invoked by using its name as an operator. The Assembler inserts
the text of the macro definition into the program immediately after the
statement that invokes it. A statement that invokes a macro can have a list
of up to nine arguments, separated by commas, in its operand field. Each
time it is invoked, the macro text is modified by substituting the arguments
for the macro parameters. If n is a single decimal digit greater than zero, the
n-th invocation argument is substituted wherever the parameter %n occurs
in the macro definition. If a particular invocation provides fewer arguments
than there are parameters in the macro's definition, a null string is
substituted for each missing argument.

Note: A macro definition cannot contain another macro definition.
However, a definition can include other macro invocations. The nesting of
macro invocations can be up to five levels deep.

You can put a macro definition in either the main file or in an Include file,
but the macro definition must be completely contained within one
textfile. It is illegal to start a macro definition in the main source file and
continue it into an Include file, or to start the definition in one Include file
and continue it in another Include file.

Each time a macro is invoked, the macro text will appear in the listing file
unless .NOMACROLIST was in effect when the macro was defined. Macro
expansion text is flagged in the listing by a number sign (#) at the left of
each macro statement. Comments occurring in the macro definition are not
repeated in the expansion .

. MACRO and .ENDM

.MACRO indicates the start of a macro definition and gives it an identifier .

. ENDM indicates the end of a macro definition.

Form: .MACRO <identifier>

; (macro body)

.ENDM

The Assembler Directives 11-191

Example: .MACRO HELP
STA
LDA
.ENDM

%1
%2

(comment)
(comment >

The assembly listing beginning at the point where this
macro is invoked might look like this:

HELP ALPHA,BETA
STA ALPHA
LOA BETA

The statement HELP invokes the defined macro using
two arguments, ALPHA and BETA. These arguments
are used in forming the macro expansion (flagged in
the listing by number signs) that follows the invoking
statement. In the expansion, the first
macro-invocation argument (variable ALPHA) is
substituted for the definition's parameter %1, and the
second argument (variable BETA) is substituted for
parameter %2.

The following portion of an assembly listing illustrates the syntax used
when defining and invoking macros. The procedure itself is not meant to be
an actual, useful program. Other examples of macros occur in the program
example given in the first part of this chapter.

PAGE - TEMP2 FILE:

Hill!ll
Current memory available:
fllflf.l!ll
l'lfllBSI
l'lfllfrnl l!HA
l!HSI llflBF
HUI SllF7

llllllll
!l0Blll
llfrHltlll
f/JtlJtlllll
I! I! HI
ll ll 1!111
llilflflll
ltlllllfll

II-192

COH1 Ill
OTHfl
ONE fl

.PROC TEMP2
11Hl88

CONSTANTS

.mu 11il.

.EGU fl BF

.EQU ilF7

MACRO DEFINITIONS

.MACRO M2
CLC
LDA PREDEFL+%1

.ENDM

Chapter 6: The Assembler

00 f/J 01
000 01
U!HJI
f/Jfil f/J rill
0f/J001
fil00 01
00 0 01
000 01
00 filllll

00 f/J 01
00 fillill AS filS
00021
00 021
0!'!021
00 021
f/J 0021
00021 4C 0 IH'HJ
0 00SI A9 3D
00071
0 0071 18
01Hl81 AD 3800
00081 A9 SS
1Hl0DI A9 !'JG
011J0FI AS il 1

"'fiJ 1 11 4C ****

flJ 0141
f/J0141
(/j 0141 18
001 SI AD 0SlH!
00181
tlJ fij 181
00181
f/J f/J 181
llJ!'J 181

JMP
not enough operands
ECdit,<space>,<esc>

0f/J181
!IJ 0181 A9 flJF
tlJ 01 Al
0fiJ1 Al 18
fil fl) 181 AD 0AiJ!IJ

.MACRO
JMP
LDA
M2
LDA
LDA
LDA
JMP

.ENDM

TES TM
% 1
#S+%2

%2 ; MACRO CALL INSIDE
%3
%4
%S
%6

PREDEFL LDA S A PRE-DEFINED LABEL

MACRO CALL WITH ALL

A MACRO DEF'N

; PARAMETERS
& NO LEADING OR ; TRAILING SPACES

TESTM PREDEFL,<S*CON1f/J+6>,#SS,#6,1,LABEL2
JMP PREDEFL
LDA #S+<S*CON10+6>
M2 <S*CON1!'J+6>

"' CLC
LDA PREDEFL+<S*CON10+6>
LDA #SS
II LDA #6
LDA 1
Ill JMP LABEL2

M2 S ; SIMPLE MACRO CALL
CLC
LDA PREDEFL+S

MACRO CALL WITH NULL PARAMS AND LEADING
& TRAILING SPACES

TESTM , CON 11/J, , XX ,flJFf/J, PREDEFL

SPACE pressed here, to continue assembly. l

II JMP
LDA #S+CON1f/J
M2 CON10
II CLC
LDA PREDEFL+CON10

The Assembler Directives ll-193

LDA
ill formed operand
ECdit,<space>,<esc>

ilf/J 1EI
f/Jf/J 1EI AD ****
8f/J211 AS Fil
1!1!231 4C f/Jf/Jf/Jil
l!f/J261
l!f/J261

II-194

[SPACE pressed here, to continue assembly. l

LDA
LDA XX
LDA f/JFf/J
JMP PREDEFL

.EHD

Conditional-Assembly Directives

Conditional-assembly directives are used to exclude or include selected
sections of a source file at the time it is assembled. When the Assembler
encounters an .IF directive, it evaluates the expression in its argument. If
the expression is false, the Assembler simply discards the text until an
.ENDC is reached, unless an .ELSE is encountered. If there is an .ELSE
directive between the .IF and .ENDC directives, the text before the .ELSE is
assembled if the expression is true. If the expression is false, the text after
the .ELSE is assembled. The unassembled section of code will not be
included in any listing. Conditional-assembly directives may be nested.

The conditional expression takes one of two forms. The first is the normal
arithmetic/logical expression used elsewhere in the Assembler. This type
of expression is considered false if it evaluates to zero; otherwise, it is true.
The second form of conditional expression is comparison for equality,
indicated by an equal sign (=), or inequality, indicated by less-than
greater-than (< >). The objects compared may be strings, characters, or
arithmetic/logical expressions .

.IF, .ELSE, and .ENDC

.IF identifies the beginning of the conditional text and defines the
conditional expression .. ELSE identifies the alternate section of text, which
is used if the conditional expression is false .. ENDC identifies the end of the
conditional text.

Chapter 6: The Assembler

Form: [label] .IF <expression>

[.ELSE]

.ENDC

Example: (See the listing below.)

.IF LABEL1-LABEL2 ;Arithmetic expression.
This text assembled
only if subtraction
result is non-zero

.IF "%1" ="STUFF" ;Comparison expression.

• ENDC

.ELSE

• ENDC

This text assembled
if subtraction above
was true and if text
of first parameter
(assuming in macro)
is egual to "STUFF".

End of nested cond .

This text assembled
if subtraction result
was zero .

Terminates outer
level of conditional.

Host-Communication Directives

The directives .CONST, .PUBLIC, and .PRIVATE enable an
assembly-language routine to share addresses and data space with the
Pascal program that calls it. Data values and locations are referred to by

The Assembler Directives II-195

11-196

name in both the program and the routine. The Linker picks up and
transfers the address values necessary to resolve these external references.
Refer to Chapter 7, "The Linker,'' for further information.

Note that the locations defined using these directives are discussed in
Chapter 2 of Part IV .

. CONST

Allows constants that are declared global in the Pascal host program to be
accessed by the assembly-language routine. Only 16-bit objects can be
accessed by means of the .CONST directive.

Form: .CONST <identifierlist>

Example: (See the example after .PRIVATE.)

.PUBLIC

Allows variables declared global by the Pascal host program to be used by
the assembly-language routine as well as the host program.

Form: .PUBLIC <identifierlist>

Example: (See the example after .PRIVATE.)

.PRIVATE

Allows variable data used by the assembly-language routine to be stored in
the Pascal host program's global data segment and yet be inaccessible to the
host program. These variables retain their values for the entire execution of
the program.

Form:

Example:

.PRIVATE <identifier[:integer] list>

Each identifier will be allocated the number of words
given by integer. The default is one word.

Assume that the host program is the following Pascal
program:

PROGRAM EXAMPLE;

CONST SETSIZE=50; LENGTH=80;

VAR l,J,F,HOLD,COUNTER,LDC:INTEGER;

LST1:ARRAYC0 .. 9] OF CHAR;

Chapter 6: The Assembler

BEGIN

END.

The statement . CONST LENGTH occurring in an
assembly-language routine called by the Pascal host
program will allow the constant LENGTH to be used in
the assembly-language routine almost as if the line
LENGTH • EGU 00. had been written. Remember the
limitation mentioned above: .CONST identifiers can be
used only for 16-bit objects.

If the statements

.PRIVATE PRT,LST2:9

• PUBLIC LDC, I , J

appear in the assembly-language routine, the variables
LDC, I, and J can be used by both the host program
and the assembly-language routine, whereas the
variables PRT and LST2 can be used only by the
assembly-language routine. Also, the argument LST2:9
causes the variable LST2 to correspond to the
beginning of a nine-word block of space in the Pascal
host's global data segment.

External-Reference Directives

Separate assembly-language routines can share data structures and
subroutines by means of the .DEF and .REF directives. These directives
cause the Assembler to generate information that the Linker uses to resolve
external references between separate routines in the same assembly or
between routines assembled separately. For example, by using these
directives, one assembly-language routine can call subroutines defined in
another assembly-language routine.

Note that procedures and functions can refer to identifiers defined before
the first procedure or function in the same source file without using .DEF
and .REF.

The Assembler Directives II-197

II-198

The use of the .DEF and .REF directives is similar to the use of the .PUBLIC
directive. The .DEF and .REF directives enable you to associate labels
between two assembly-language routines rather than between an
assembly-language routine and a Pascal host program. Just as with
.PRIVATE and .PUBLIC , these external references must eventually be
resolved by the Linker.

Note: The .PROC and .FUNC directives implicitly generate a .DEF with
the same name. This means that an assembly-language routine can call
external procedures and functions if they are declared with a .REF
directive in the calling assembly-language routine .

. DEF

Declares that a label defined in the current routine is available for use (by
means of .REF) from procedures or functions in other assembly-language
routines.

Form:

Example:

.DEF <identifierlist>

The following outline routine declare~ the labels DOIT
and THINK in a .DEF statement. The subroutines
labeled DOIT and THINK may then be used by other
assembly-language routines (see example for .REF) .

. PROC FARKLE,3

.DEF DOIT, THIHK

BNE THINK

DOIT LDA

RTS

THINK LDY

RTS

.END

Chapter 6: The Assembler

.REF

Identifies a label, used in the current routine, that is defined and declared
as available (by means of a .DEF directive) in another routine. During the
linking process, corresponding labels declared in .DEFs and .REFs are
matched.

Form:

Example:

.REF <identifierlist>

The following outline assembly-language routine
defines the external label DOIT in a .REF statement.
(DOIT was declared available for such reference by
the .DEF in the previous example). It then uses the
label DOIT just as if it referred to a labeled subroutine
within the routine itself .

. PROC SAMPLE

.REF DOIT

JSR DOIT

.END

Listing-Control Directives

The listing-control directives determine what is sent to the assembly listing
file. This is the file that is specified in response to the Assembler prompt

Output file for assembled listing (<ret> for none):

If the assembly listing file is omitted, all listing-control directives are
ignored.

The Assembler Directives 11-199

II-200

.LIST and .NOLIST

These two directives allow selective listing of assembly-language routines.
Statements assembled after a .LIST directive go to the specified listing file.
Statements assembled after a .NO LIST directive are not listed. Listing may
be turned ort and off repeatedly within an assembly .. LIST is the default
option.

Form: .LIST
.NOLIST

.MACROLIST and .NOMACROLIST

Allow selective listing of macro expansions. The textual expansion of a
macro will appear in the assembly listing if the .MACROLIST option was in
effect when the macro was defined. The expansion text will not appear in
the listing if the .NOMACROLIST option was in effect when the macro was
defined. These options may be used repeatedly throughout an
assembly-language source file, to select those macros whose expansion text
will appear in the assembly listing. The Assembler defaults to the
.MACROLIST option.

Macro expansion text is flagged in the listing by a number sign (#) at the
left of each expanded line. Comments in a macro's definition do not appear
in the expansion. In the example assembly listing earlier in this chapter, the
definition of macro POP appears on PAGE-0; the macro's expansion text
appears on PAGE-1 and PAGE-4.

When assembling nested macro invocations, listing of expansion text
continues until the Assembler encounters the first macro defined with
.NOMACROLIST in effect. Listing does not resume until that macro's
invocation is complete, regardless of the listing state of the macros invoked
by the nonlisting macro .

Form: . MACRO LIST
.NOMACROLIST

I Remember: The .NO LIST option takes precedence over the
.MACROLIST option.

Chapter 6: The Assembler

.PATCHUST and .NOPATCHUST

Allow control over listing of back-patches made to the codefile. These
options may be used repeatedly throughout an assembly. When an
undefined label is encountered, the assembled listing shows an asterisk (")
for each hexadecimal digit to be filled in later. For example:

l!Jl'J 191 Hl** BPL DONE

When the forward reference is resolved, the back-patch is listed in the form

f/J019* l!S

001FI A9 01! DONE LDA #0

where the number to the left of the asterisk is the address of the patched
location and the number to the right of the asterisk is that location's new
value. PATCHLIST is the default state .

Form:

.PAGE

. PATCHLIST

.NOPATCHLIST

Inserts a top-of-form page break in the assembly listing .

Form: . PAGE

.TITLE

Specifies the title to appear at the top of each page of the assembly listing.
At the beginning of each routine the title is set to blanks and must be reset
if a title is desired for that routine. The title is cleared at the start of the file.

In the example assembly listing earlier in this chapter, the title
SYMBOL TABLE DUMP was not set by a . TITLE directive. That title is
always used on pages containing reference symbol tables. After each
symbol table is listed, the title printed reverts to its previous setting.

Form: .TITLE "<title>"

where <title> is any string of printable ASCII
characters, including spaces. The string must be less
than 80 characters. The double quotation marks are
used to delimit the string, so a title may not include
the double quotation mark character.

Example: . TITLE "QRC12 INTERPRETER"

The Assembler Directives IJ-201

II-202

File Directive

.INCLUDE

Causes the specified source file to be included in the assembly immediately
after the .INCLUDE .

Form:

Correct
Example:

Correct
Example:

Incorrect
Example:

.INCLUDE <filename>

where the filename specifies an assembly-language
textfile to be included.

If you don't add the suffix .TEXT, the system will add
it for you. The last character of the filename must be
the last nonspace character on that line; no comment
may follow on the same line.

.INCLUDE SHORTSTART.TEXT

.INCLUDE SHORTSTART.TEXT
; CALLS STARTER

.INCLUDE SHDRTSTART.TEXT ;CALLS STARTER

The text of any included file is treated by the Assembler just as if you had
typed that text into the original file at the position of the .INCLUDE
directive. For example, if the included file contains an .END directive, the
assembly ends there.

A file that is included in an assembly via an .INCLUDE directive cannot
itself contain .INCLUDE directives. In other words, you can't nest
.INCLUDEs.

Chapter 6: The Assembler

.PROC

. FUNC

. END

Assembler Use Summaries

This section contains summaries of the Assembler commands and the
Assembler directives.

Assembly Process Summary

l. From the Command level, select Assemble.
2. If a text workfile exists, the Assembler assembles that file

automatically. Otherwise, the Assembler prompts you to specify a
source textfile and then to specify a destination codefile.

3. Finally, the Assembler prompts you to specify an output textfile for the
assembly listing, if you want one.

4. If the Assembler finds an error, select the Editor to correct the source
file, then assemble again.

Assembler Directive Summary

Square brackets [like this] surround optional elements, which you may
supply. Angle brackets <like this> surround required elements, which
you must supply. The brackets and the brief definitions at the right side of
the table are not to be typed.

Routine-Delimiting Directives

<identifier>[,expression]
<identifier>[,expression]

Assembler Use Summaries

Begins a procedure .
Begins a function .
Ends the entire assembly.

II-203

[label]

[label]

[label]

[label]

<label>

[label]

11-204

.ASCII

.BYTE

. BLOCK

.WORD

.EQU

.ORG

.ABSOLUTE

.ALIGN

.IN TERP

.MACRO

. ENDM

.IF

[.ELSE]

. ENDC

Data Directives

"<character string>"

[valuelist]

<length>[,value]

[valuelist]

Inserts ASCII values of characters.

Inserts bytes of listed values.

Inserts block of given value and length .

Inserts words of listed values.

label-Definition Directives

<value> Assigns value to label.

<value> Location of next byte will be (start of assembly
file) + value.

Causes all .ORGs to put next byte at absolute
location = value.

<value> Increases the location counter to the next whole
multiple of value.

First location of interpreter relative location
table; used in relative-location expressions.

Macro Directives

<identifier> Begins a macro definition.

Ends a macro definition .

ConditionalaAssembly Directives

<expression> Begins conditional assembly. If true, assembles
next text [up to .ELSE]; if false, only assembles
text after .ELSE .

Ends conditional assembly .

Chapter 6: The Assembler

Host-Communication Directives

.CONST

.PUBLIC

.PRIVATE

<identifierlist>

<identifier list>

<identifier[:integer] list>

Takes value from global constant in Pascal host.

Uses a global variable from the Pascal host.

Creates a global variable not accessible to the
Pascal host. Default: 1 word per identifier.

External-Reference Directives

.DEF

.REF

<identifierlist>

<identifierlist>

Makes label available to other routines.

Refers to label .DEF'd in some other routine.

listing-Control Directives

. LIST and .NOLIST

.MACROLIST and .NOMACROLIST

. PATCHLIST and .NOPATCHLIST

.PAGE

. TITLE "<title>"

File Directive

.INCLUDE <filename>

Assembler Use Summaries

Turn assembly listing on and off .

Turn listing of macro expansions on and off.

Turn listing of back-patches on and off .

Puts page-break in listing.

Titles each page of current .PROO or .FUNG .

Includes named textfile in the assembly.

II-205

Chapter 7 The Linker

Il-207

11-208

Introduction

The Linker provides a way to incorporate separately compiled or assembled
routines into your program. For example, you might have a real-time
application that requires an assembly-language routine to obtain the
necessary speed. You could assemble this routine separately and then use
the Linker to add it to your program.

All compiled or assembled codefiles include data that describe external
references and entry points. The Linker uses this data to resolve references
between separate codefiles. For details about the way Linker data is stored
in the codefiles, see Chapter 2 of Part IV.

A Pascal program or unit that calls linked subroutines is called a host
program. In order for your host program to use assembled routines, the
program must declare them as EXTERNAL. This notifies the Compiler that
the routines may be called, but have not yet been provided. The Compiler
sets a flag in the Linker data in the codefile to indicate that linking is
required before the program can be executed. The example in Chapter 6,
"The Assembler," shows a Pascal host program, a procedure and a function,
both in assembly language, and the linking process that combines them into
an executable codefile.

You also use the Linker to link in a Regular Unit, which is a group of
compiled routines that will be used together. You don't need the Linker to
use the Intrinsic Units that are provided with Apple Pascal, such as
TRANSCEND and APPLES TUFF; your Pascal program picks them up
directly from SYSTEM.LIBRARY or from the Program Library or Library
Name File. On the other hand, you sometimes use the Linker to build
Intrinsic Units of your own. For information about Regular Units and
Intrinsic Units, refer to Chapter 12 of Part III.

Chapter 7: The Linker

Linking Using the link Command

You invoke the Linker explicitly by typing L for Link from the Command
level. There are two situations in which this is the only way you can use the
Linker:

o The host file into which Regular Units or EXTERNAL routines are to be
linked is not the codefile resulting from a successful compilation initiated
by the Run command.

o Any of the Regular Units or EXTERNAL routines to be linked reside in
files other than the Pascal system disk's SYSTEM.LIBRARY.

Files Needed

The following files must be present for you to use the Linker explicitly:

o SYSTEM.LINKER
o the host codefile needing EXTERNAL routines or Regular Units
o the codefiles or library files containing the EXTERNAL routines and

Regular Units

Any time the Linker is invoked, SYSTEM.LINKER must be available in
some drive. This file is normally found on disk APPLE2:. After the Linker
prompt line appears, SYSTEM.LINKER is no longer needed, so the disk that
contains it may be removed from the system to make room for other disks.

Two 5%-lnch Disk Drives If you have two drives and you want to Link when the host program file
and library files are not already on APPLEl: or APPLE2:, you can replace
APPLEl: or APPLE2: with the disk containing the files to be linked after
the Linker prompt line appears on your display. When the linking process
is complete, the system will attempt to return to the Command level. If it
does not find the Pascal system disk in the startup drive, the system will
prompt you to put it in.

One 5114-lnch Disk Drive To Link with one 5\4-inch disk drive, you can replace the APPLEO:
system disk with APPLE2: and invoke the Linker by typing L. After the
Linker prompt line appears, you can remove APPLE2: and replace it with
the disk containing the files to be linked. When the linking process is
complete, the system will prompt you to insert APPLEO: in your disk
drive.

Linking Using the Link Command 11-209

II-210

The Host File

When you type L at the Command level to invoke the Linker explicitly, the
system displays the messages:

Linking ...

Apple Pascal Linker [1.31
Link what host codefile?

The host file is the Pascal program codefile into which the EXTERNAL
routines or Regular Units are to be linked. Note that the Linker will not
accept an assembly routine codefile as the host file; the host must be a
Pascal program codefile.

If you respond to the prompt by pressing RETURN, the Linker uses the
Pascal system disk's workfile SYSTEM.WRK.CODE as the host file. If either
the Run command or the Compile command has just caused the Compiler to
save a compiled codefile, the Linker uses that file as the host file even if it is
not SYSTEM.WRK.CODE.

You can also respond by typing the filename of any other Pascal codefile. If
the Linker cannot find a file with the exact filename you typed and that
filename does not end in .CODE or in .LIBRARY, it adds the suffix .CODE to
the filename and tries again. The Linker always displays the filename of the
last file it tried to find.

To cancel the Link command, respond to the prompt by pressing ESC and
then pressing RETURN.

If you press ESC followed by RETURN in response to any prompt in the
Linker, linking will terminate and you will return to the Command level.

The library Files

After the Linker finds the host file, it asks for the name of a library file that
contains the required Regular Units or EXTERNAL routines. The prompt is:

Using what library file?

You should respond by typing the filename of any codefile containing a
Regular Unit or EXTERNAL routine that you want linked into the host
program. This file can be either a codefile produced by the Compiler or by
the Assembler, or a library file created by the Librarian.

The Linker looks first for the exact filename that you type; then, if the
search is unsuccessful, it adds the suffix .CODE and looks again. In any
case, it always displays the local filename of the file actually found.

Chapter 7: The Linker

If you press RETURN in response to the first request for a library file, you
will see an error message.

When the Linker finds the first file specified, it displays another prompt and
waits for you to type the filename of another file containing a needed Unit
or routine. You can include up to eight library files in one linking operation.
If you type an asterisk (*) and then press RETURN, the Linker will look for
Regular Units or EXTERNAL routines in the file SYSTEM.LIBRARY on the
Pascal system disk. You will see this message:

Opening SYSTEM.LIBRARY

If a file you specify as a host file or a library file is not a codefile, the system
will display an error message. These files must contain either compiled
Pascal P-code or assembled 6502 assembly code. For information on library
files and the Librarian, see the next chapter.

When you have supplied the names of all the library files needed, respond
to the next prompt requesting Another 1 i bra r y f i le by pressing
RETURN.

The Map File

When you have finished specifying library files, the Linker will prompt
with:

Map file (<ret> for none)?

The map file is a textfile produced by the Linker. It contains a map or
directory of the labels involved in the linking process. If you respond by
typing a filename, the Linker writes the map file with that filename. You
need not type the suffix . TEXT; if the filename you type does not end with
.TEXT or a period(.), the Linker will add the suffix.

If you respond to this prompt by simply pressing RETURN, no map file will
be written. The map file is primarily a diagnostic and system programming
tool, and is not required for most uses of the Linker. Note: You can get a
more useful map of a library or codefile using the Library Mapper described
in Chapter 8, "The Librarian."

Linking Using the Link Command 11-211

II-212

The Output File

After you have specified the disposition of the map file, the Linker reads the
files required to start the linking process. Then it asks you

Output file (<ret> for workfile)?

Type the filename for the linked output codefile. This filename will often be
the same as that of the host file, but the Linker will not accept the dollar
sign($) same-name option used with the Compiler and the Assembler. You
need not type the suffix .CODE; the Linker will supply it for you, unless you
end the filename with a period (.).

If you respond with no filename, by pressing RETURN only, the linked
output will be saved in the Pascal system disk's workfile,
SYSTEM.WRK.CODE.

Unless you specify a different file size, the output codefile is opened with
the [OJ file size. The map file is opened after the output codefile. If you used
the default file size [OJ, and you try to put both files on the same disk, the
system may be unable to open the map file because the output codefile may
then occupy all the remaining disk space. This does not stop the linking
process, but you will not have a map file. You can solve this problem by
sending the map file to another disk, to the CONSOLE:, or to a PRINTER:.
You can also specify another file size for the output file.

After you type the output filename and press RETURN, the actual linking
will begin.

If a specified library file is not available in any drive, this message appears:

No file <filename>

Type <sp>(continue), <esc>(terminate)

If you elect to continue linking without some needed Regular Units or
EXTERNAL routines, the resulting codefile cannot be executed until you
explicitly link them in.

Chapter 7: The Linker

linking Using the Run Command

If the linking needed in your program is simple enough, you can let the Run
command invoke the Linker at the same time you compile and execute your
program. Linking is needed if your program contains EXTERNAL
declarations or uses Regular Units. Intrinsic Units needed at execute time
are not linked; they can be in either SYSTEM.LIBRARY, a Program Library,
or a Library Name File, on the same disk as the program codefile.

If all of the Regular Units and EXTERNAL routines to be linked reside in the
Pascal system disk's SYSTEM.LIBRARY, you can use the Run command to
compile, link, and execute your program. Otherwise, you'll have to use the
Link command explicitly, as described in the previous section.

Files Needed

The following disk files must be present if the Linker is invoked by the Run
command:

o SYSTEM.PASCAL
o the host program needing EXTERNAL routines or Regular Units
o SYSTEM.LINKER
o SYSTEM.LIBRARY containing EXTERNAL routines or Regular Units to

link and any Intrinsic Units needed at execution time
o the Program Library or Library Name File, containing Intrinsic Units

needed at execution time.

The following files must also be present under some conditions when you
use the Run command. You need the file if the condition shown applies:

o SYSTEM.COMPILER, if host program is a textfile
o SYSTEM.SYNTAX, for Compiler error messages
o SYSTEM.EDITOR, to fix errors found by the Compiler

Keep the System Disk in the Startup Drive: The system returns to
the Command level for an instant between any two of the system
programs invoked by the Run command. If the Pascal system disk is not
in the startup drive when this happens, the system will prompt you to put
it in.

Linking Using the Run Command· Il-213

If you use the Run command with a text workfile, the Compiler will be
invoked first, so the file SYSTEM.COMPILER must be available. It is
normally found on APPLE2:, but it may be on any disk in any drive. If the
workfile has already been compiled into its code version, the Run command
will not invoke the Compiler, so SYSTEM.COMPILER is not needed.

If linking is needed after the program has compiled successfully, the Linker
is invoked automatically, so the file SYSTEM.LINKER must be available in
some drive. This file is normally found on disk APPLE2:.

When the Linker is invoked by the Run command, it automatically uses the
codefile that resulted from the latest successful compilation as the host file,
even if this file is not the code workfile.

When invoked by the Run command, the Linker automatically looks for
needed Regular Units and EXTERNAL routines in the file
SYSTEM.LIBRARY. The file SYSTEM.LIBRARY must be on the Pascal
system disk, but the disk may be in any disk drive.

If the file SYSTEM.LIBRARY is not available on the Pascal system disk, this
message appears:

No file *SYSTEM.LIBRARY
Type <sp>(continue>, <esc>Cterminate)

If you see this message, press ESC to return to the Command level.

When the Linker is invoked by the Run command, it will not allow you to
specify a library file other than SYSTEM.LIBRARY; if you want to use any
other library files, you will have to invoke the Linker explicitly.

Finally, following successful compilation and linking, the program is
executed. At that time, if SYSTEM.LIBRARY is required for execution, it
must be on the Pascal system disk in the startup drive.

One 5%=1nch Disk Drive To Run a text workfile that needs linking to an EXTERNAL routine or
Program Unit, you will have to use the Filer to Transfer SYSTEM.LINKER
from APPLE2: onto your APPLEO: system disk. Before you make this
transfer, remove the files SYSTEM.SYNTAX (use the Compiler error
messages shown in the appendix, instead) and SYSTEM.CHARSET
(needed only if your program uses WCHAR or WSTRING from
TURTLEGRAPHICS) from APPLEO:. With this modified APPLEO: disk in
the drive, your system will have available all the files it needs to Edit,
Compile, Link, Execute, and Run. Unfortunately, this leaves almost no
space for your text and code workfiles. To make more room on your
system disk, you may want to remove SYSTEM.FILER (can be read in
from any disk, as long as that disk is in the drive when you invoke the
Filer).

11-214 Chapter 7: The Linker

Chapter 8 The Librarian

II-215

II-216

64K Pascal System

What Is a library?,

A library is a codefile containing routines that are used by your program.
Intrinsic Units in a library will be picked up automatically when your
program is executed. To learn about libraries, read Chapter 13 in Part III.

The Librarian is a Pascal utility program that lets you set up libraries.

I
The 64K Pascal system uses only SYSTEM.LIBRARY. You cannot use a
Program Library or Library Name File if you are using Pascal's 64K
system.

The System Librarian

The Librarian is the system utility that you use to combine separately
compiled or assembled codefiles into a single library file. One way you can
use it is to put all of your Pascal Units and assembly-language routines into
a single convenient library codefile for linking into your programs.

When you use the Run command, the system will automatically find and
link needed Regular Units and assembly-language routines if they are in the
file named SYSTEM.LIBRARY on the Pascal system disk. The system will
also find needed Intrinsic Units that are in SYSTEM.LIBRARY and use them
without linking. You can use the Librarian to add, change, and delete
routines in SYSTEM.LIBRARY.

A. Warning I If you remove Program Units from SYSTEM.LIBRARY, do not remove
units PASACALIO or LONGINTIO. See Chapter 13 of Part III to learn
more.

When you use the Link and Execute commands explicitly, you can use a
library file other than SYSTEM.LIBRARY. Using the Librarian, you can set
up a library file for the exclusive use of a particular program. For more
information about Regular and Intrinsic Units, see Chapter 12, "Program
Units," in Part III; for more information about libraries, see Chapter 13,
"Libraries," in Part III.

You cannot invoke the Librarian just by typing a letter from the Command
level; instead, you must use the Execute command and specify the
Librarian program codefile by name. System programs, such as the

Chapter 8: The Librarian

Librarian, that are invoked by the Execute command are frequently
referred to as utility programs, even though they may be substantial
software tools.

When you wish to add a new Pascal unit or EXTERNAL routine to a library
file, or to delete one, you must first use the Librarian to create a new, empty
library file. Next, you specify each item in the original library file that you
want to keep so that the Librarian can copy it into the new library file. You
can then add new items by having the Librarian transfer other codefiles
into the new library file. After you have created a library that you want the
system to use automatically, you must either move it to the Pascal system
disk and change its name to SYSTEM.LIBRARY, or move it to the same disk
as your program and change its name to the appropriate Program Library
name.

If the library you created will be used only during explicit linking, it may
have any name.

Files Needed

The following files must be in some disk drive for you to use the Librarian:

o LIBRARY.CODE
o Codefiles containing units and EXTERNAL routines to be put into the

new library
o Output file (after the Librarian has started)

The file LIBRARY.CODE is normally found on disk APPLE2:, but it may be
on any disk in any drive. Once the Librarian has started, this file is no
longer needed.

A file containing a unit or EXTERNAL routine to be put into the new library
is called an input file. Each input file needs to be available on some disk in
some drive only during the time it is being loaded. Once the Librarian
prompts you for the next input file, you can remove the disk containing the
previous one.

The Librarian builds the new library in a file called the output file. Once the
Librarian has started, you must leave the disk containing the output file in
its drive until the new library is complete.

Two 5%=1nch Disk Drives If you have two disk drives, you will need to have APPLE2: in the second
drive when you execute the Librarian codefile. After the first Librarian
prompt appears on the screen, you can remove APPLEl: and APPLE2:
and put in other disks as needed. Remember to leave the disk containing
the output file in its drive until you finish using the Librarian.

The System Librarian ll-217

One 5%-lnch Disk Drive

II-218

If you are using a single-drive system, you can use the Filer to Transfer
all necessary files onto your system disk before Executing
LIBRARY.CODE. You can also use the Librarian by Executing the file
APPLE2:LIBRARY with APPLE2: in the drive. When you see the first
prompt shown by the Librarian utility, you can put any other disk in the
drive. With one drive, the output codefile and all linked codefiles must be
on the same disk. If that disk is not the system disk, put your system disk
back in the drive before you Quit the Librarian utility.

When you finish using the Librarian, your Pascal system disk should be in
the startup drive. If it is not there, the system prompts you to replace it.

Using the Librarian

To invoke the Librarian, the system must be at the Command level and the
Librarian program codefile must be in some disk drive. Type x for Execute.
The system will prompt you with

Execute what file (<ret> to exit) ?

You should respond by typing the filename of the Librarian program
codefile:

APPLE2:L!BRARY

You do not need to type the suffix .CODE; the system will append the .CODE
suffix automatically. The system executes LIBRARY.CODE, which displays
the program identification message and the first prompt:

Apple Pascal Librarian [1.31

Output file ->

At this point, you can remove disk APPLE2: from its drive if you need to.

The Output File

You should respond to the output file prompt with the filename of your new
library file. This filename is used exactly as you type it; no suffix is added
by the system. If you respond to this prompt by typing SYSTEM.LIBRARY,
the system will remove the original SYSTEM.LIBRARY file when the
Librarian is finished, and replace it with your new library file. Typing an
asterisk (*)in response to this prompt is the same as typing
SYSTEM. L !BRARY.

Chapter 8: The Librarian

The Input Files

The Librarian now displays the prompt

Input File ->

You should respond to this prompt by typing the filename of a library or
codefile that contains units or routines you wish to include in your new
library file. If you want to copy units or routines from the system library,
you should type SYSTEM. LI BR ARY in response to this prompt. Typing an
asterisk(") here is the same as typing SYSTEM.LIBRARY.

The Librarian first looks on the specified disk for a file whose filename is
exactly as you typed it. If there is no file with that exact filename and that
filename does not end in .CODE, the suffix .CODE is added to the filename
and the search is repeated. If the search is still unsuccessful, the Librarian
will display one of two messages. If your file was not found, it displays this
message:

110 ERROR # 1W Type <space> to continue

If your disk was not found, it displays this message:

I/O ERROR # 9 Type <space> to continue

After you press the SPACE bar, the Librarian will prompt you to try again.
The only way to escape from the program at this point is by typing a correct
file specification or by pressing RETURN and then typing A for Abort.

Moving Segments Into a Library

There can be up to 16 code or data segments in any Apple II program
codefile or library codefile, and the Librarian assigns each one a numbered
slot. After you have specified the name of a codefile, the Librarian displays
a table that gives the slot number, the segment number (in parentheses),
the name, and the length in bytes of each unit or EXTERNAL routine in the
file.

An Intrinsic Unit can occupy two slots, one for the code segment and one for
the data segment. The segment numbers will already have been assigned:
see Chapter 12 in Part III. The number of bytes given for a segment is its
length as stored in the library. For Regular Units and EXTERNAL routines,
this length includes Linker data that are not placed in your program, so it is
a little larger than the number of bytes the segment will occupy when used
in your program.

The System Librarian II-219

I
Use a Segment Number Only Once: You should not put more than one
Program Unit with the same segment number into a library.

The slot table for the file you specify will be displayed immediately after
the input codefile prompt. It will look something like this:

Input File -) APPLE1:SYSTEM.LIBRARY
ll-C3f.I > LONG INTI 2452 8- Ill

1-(31) PA SCALI 0 1238 9- li'J

2-C29) TRANSCEN 1168 1 li'J- fl)

3-(22) APPLE STU 662 11 - li'J

4- ll 12- ll

5- 0 13- g

6- g 14- li'J

7- l?l 15- e

When the Librarian displays a slot table, it also displays this command line
at the top of the screen:

Slot to copy and <space>, = for all, ? for Select, NCew file, QCuit, ACbort

II-220

This command line shows the ways you can specify the slot or slots
containing segments that you wish to include in the new library you are
creating. To specify a particular segment, you refer to the table and type the
appropriate slot number and then press the SPACE bar or RETURN.

For each slot number you select from the table, the Librarian will display
the prompt:

Slot to copy into?

You should respond by typing the slot number that you want the previously
specified segment to occupy when it is placed in the new library file. After
you type the slot number, press the SPACE bar or RETURN to terminate
your entry. The Librarian will then transfer the specified segment into the
output codefile.

Segments may be placed in any available library slot, in any order. After
each segment is transferred, the Librarian displays a new slot table for the
output file, which is your new library file.

To copy the first and third of the four segments in the input file whose slot
table is shown above, you would type the slot numbers as shown below.
The repeated message slot to copy into? is displayed by the
Librarian.

Chapter 8: The Librarian

rlJ <space>
Slot to copy into? 0 <space>
2 <space>
Slot to copy into? 1 <space>

If you want to include all of the segments in the input file in your new
library, or even most of them, you can use one of the other options given in
the prompt line. If you type an equal sign (=), the Librarian will copy every
segment from its slot in the input file into the same slot in the output file. If
you type a question mark (?), the Librarian will step through the table and
give you the option to select each input segment in turn. If you type a
question mark with a table similar to the one shown above, the first prompt
will be

Copy slot 0?

You should type v if you wish the segment in slot 0 of the input file to be
copied into slot 0 of your new library file. Type N if you do not wish to copy
that segment. The Librarian will repeat the prompting message for each
occupied slot in the input file. When you use either of the multiple-slot
options, each segment copied from a slot in the input file will automatically
be placed in the slot with the same number in the output file, which
contains your new library.

If you attempt to put an input segment into an output slot that is already
occupied, this message will appear:

WARNING - Slot n already copied. Please reconfirm CY/N)

To abandon the current move, type N. If you type v, the segment you
previously placed in the specified slot will be replaced by the segment you
are currently moving.

Note that the actual code for the replaced segment is not removed from the
library. The best way to avoid this unwanted increase in the size of your
library file is to start a new library by copying only the old library segments
that you want, then adding the new ones, rather than replacing the
unwanted items.

When all of the segments that you want from this input file have been
copied into the output file, you can request a new input file by typing N for
New file. The Librarian will prompt you again:

Input File ->

Type the name of the next input file. The Librarian will prompt you to copy
the desired segments, as above.

The System Librarian 11-221

II-222

Each time the Librarian puts a segment into the output file, it displays a
new output slot table. For example, the output file prompt line and the
display of the output library table might look like this:

Output File -> MYDISK:NEW.LIBRARY
File length - 29

0-C31D LONG INTI 2452 8-
"' 1-(31) PASCAL IO 1238 9- l!

2-(29) TRANSCEN 1168 HJ-
"' 3-(22) APPLE STU 662 11 - kl

4- "' 12- 0

5- 0 13- fil

6- 0 14- 0

7-(25) PILFER 362 15- 0

The File length displayed with the table is the new library's length in
blocks-in this example, it is 29.

For more information about segments and units, see Chapter 15, "Large
Program Management," and Chapter 12, "Program Units," in Part III.

By the Way: You can cancel an attempt to create a new library by
typing A for Abort when you see the Librarian command line at the top of
the display.

Remember: A library file has the same internal format as a codefile.
This means that a codefile generated by the Compiler can be used as a
library.

Inserting a Copyright Notice

Once the needed segments from all input codefiles have been put into your
new library's output codefile, you tell the Librarian you are finished by
typing Q for Quit. The Librarian then displays this prompt at the bottom of
the screen:

Notice?

This prompt enables you to put a copyright notice in your library file. The
notice will be displayed each time a library map is produced for your file, as
described in the next section of this manual. For example, you might type:

Copyright (c) 1981 Apple Computer Inc.

or any other message up to one line long. If you do not want a copyright line
in your library file, simply press RETURN. When the Command prompt line
reappears, indicating that the Librarian is finished, your new library is
complete.

Chapter 8: The Librarian

Copyright Notice Lost: The Librarian program does not copy the
copyright notice from a input file into the output file. If you make a new
library file with the same name as the old one, any previous copyright
notice is lost.

Library Mapping

The Library Mapper program creates a map textfile for a library file, or for
any codefile. The map textfile lists information about multi-part programs
that you are creating, including

o Linker information for each segment;
o The interface section of each Pascal unit;
o Procedures and functions in each segment;
o Parameters for each procedure and function.

See the Chapter 18, "Procedures and Functions," Chapter 12, "Program
Units," and Chapter 15, "Large Program Management," in Part III for
information about procedures, functions, units, and segments.

Files Needed
AA@ii

The following files must be present in drives for you to use the Library
Mapper program:

o LIBMAP.CODE
o Library codefiles to be mapped
o Map output textfile (after the Library Mapper has started)

The file LIBMAP.CODE is normally found on disk APPLE2:, but it can be on
any disk in any drive. Once the Library Mapper program has started, you
can remove the disk with LIBMAP.CODE on it from its drive.

The library codefiles can be in any drives. Each library codefile has to be
present only while it is being mapped. As soon as the program prompts you
for the next codefile, you can remove the disk with the previous file on it.

The output file for the map itself must be present throughout the mapping
process. If you don't specify a file for the map, it will be sent to CONSOLE:.

When you terminate the library mapping utility program, your Pascal
system disk (APPLEl:) should be in the startup drive. If it is not there, the
system will prompt you to put it in.

Library Mapping 11-223

Two 5114-inch Disk Drives

One 5%-lnch Disk Drive

II-224

You will normally place your system disk in the startup drive and put
APPLE2: in the other drive. When the Library Mapper's identifying
message appears on the display, you can remove APPLE2: and put in
other disks as needed. If you are storing the map output textfile on a disk,
that disk must remain in its drive throughout the mapping procedure.

If you are using a single-drive system, you can use the Filer to Transfer
all necessary files onto your system disk before Executing
LIBMAP.CODE. However, you can also Execute LIBMAP.CODE with
APPLE2: in the drive. When you see the first prompt shown by the
Library Mapper, you can put any other disk in the drive. If you are storing
the map output textfile on a disk, you must put all the input library
codefiles on the same disk as the map output textfile. If you specify the
map output filename as PRINTER: or CONSOLE:, you may put, one at a
time, the disks containing the input library codefiles in the drive and
leave each one there while library files on it are being mapped. Put your
system disk back in the drive before you Quit the library mapping utility.

Using the library Mapper

With the Command prompt line showing, and with disk APPLE2: in any
available disk drive, type x for Execute. When the prompt

Execute what file (<ret> to exit) ?

appears, respond by typing

APPLE2:LIBMAP

Note that, as usual, the suffix .CODE is supplied automatically if you don't
type it. Soon this message appears:

Apple Library Map Utility [1.31

and the program prompts you to

Enter library name:

You should respond by typing the filename of a library file or codefile. The
program first tries to find the file exactly as specified. If this search fails,
the program adds the suffix .CODE to the filename and tries again. If the
specified file is not found, the following message appears:

Bad file
Enter library name:

Chapter 8: The Librarian

If the file you specify is not a codefile, this message appears:

lfot a codefile
Enter library name:

Typing an asterisk (*) in response to the library name prompt is the same
as typing *SYSTEM. LI BRA RY. The asterisk specifies the system library on
the system disk as the input library file.

The Library Mapper is normally used for listing the information in the
interfaces of the Program Units in a library, but the option is also available
to show unresolved symbol references. The program will offer you the
option by displaying this prompt:

Li5t linker info table CY/H)?

If you do not want this information, type an Hor just press RETURN. If you
respond to this prompt by typing v, the program will prompt you further:

Li5t referenced item5 CYIH>?

Pressing the SPACE bar or RETURN is the same as typing H.

The program now prompts you for

Map output file name:

You should respond by typing the filename of the file to which you want the
program to send the map information. Note that if you don't add the suffix
. TEXT to the filename, the system automatically adds it for you. To
override this feature, just type a period after the filename. If you respond by
pressing only RETURN, the program sends the map output to CONSOLE:.

Several codefiles can be mapped in succession. When the program has
finished mapping the current codefile, it prompts you again:

Enter library name:

The Library Mapper will create a map for each library or codefile you
specify. These maps will all be sent to the same map output textfile.

To quit the Library Mapper, press RETURN the next time the program
prompts

Enter library name:

When you finish using the Library Mapper, your system disk should be in
the startup drive. If it is not there, the system will prompt you to put it in.

Library Mapping 11-225

x

library Map Example

Here is an example showing the map information for the sample program
presented in Chapter 6, "The Assembler." The prompt messages are
described above; they are shown here just as they appear on the display.

Note: the lines of dashes separating map information for different files are
output by the program.

Execute what file(<ret> to exit) ? #S:libmap
Apple Library Map Utility [1.31
enter library name: #S:callasm
list linker info table CY/N)? y
list referenced items CY/N)? y
map output file name: { RETURN pressed to send }

{ map output to CONSOLE: }
LIBRARY MAP FOR HS:callasm.CODE

Segment "' 1:
System version~ A2/1.3, code type is P-Code (least sig. 1st)
CALLASM Pascal host outer block

AA public var base 5
I public var base = 4
K public var base = 3
INCARRAY external proc P #2
TIMES2 external proc P #3

enter library name: #S:asmsubs
list linker info table CY/N)? y
list referenced items {Y/N)? y

LIBRARY MAP FOR #S:asmsubs.CODE

Segment# 1:
System version= A2/1.3, code type is 65~2
TIMES2 separate procedure segment

TIMES2 separate proc P #1
TIMES2 global addr P #1, #0
INCARRAY separate proc P #2
JNCARRAY global addr P #2, #0

II-226 Chapter 8: The Librarian

enter library name: #S:sample
list linker info table CY/H)? y
list references items CY/H)? y

LIBRARY MAP FOR #S:sample.CODE

Segment# 1:
System version= A2/1.3, code type is P-Code Cleast sig. 1st>
SAMPLE completely linked segment

enter library name: { RETURN pressed to stop mapping }

Library Use Summaries

This section contains summaries of the operation of the system Librarian
and the Library Mapper.

The System Librarian

1. Type x from the Command level. When prompted Execute what
file?, type APPLE2: LI BR ARY

2. When prompted for an output file, type a filename for the new library
file, for example, MYDISK:NEW.LIBRARY

3. When prompted for an input file, type the name of the file containing
the first items to put in the new library, for example,
APPLEl:SYSTEM.LIBRARY

4. To transfer an item from the input file to the new library output file,
type the item's input file slot number (0 to 15) and press the SPACE bar
orRETURN.WhenpromptedforSlot to copy into?,typethe
number of the slot you want the item to occupy in the output file and
press the SPACE bar or RETURN.

5. Type H to begin taking items from a new input file.

Library Use Sununaries II-227

11-228

6. When all desired items have been transferred to the new library, type G

for Quit. When prompted for Notice, type a copyright notice or other
message or press RETURN.

7. To use Intrinsic Units from the new library automatically, you must
either move it to your system disk and name it SYSTEM.LIBRARY, or
move it to the same volume as your program codefile and make it the
program library by giving it the program name with the suffix .LIB.

Library Mapping

1. Type x from the Command level. When prompted Execute what
fi 1 e?, type APPLE2: LI BMAP.

2. When prompted Enter Library name:, type the filename of the
library or other codefile whose contents you wish to see mapped, for
example, APPLE 1: SYSTEM. LIBRARY.

3. When prompted for Linker info table?, type Y if you want that
information; otherwise press the SPACE bar or RETURN.

4. When prompted for Map OU t put fi 1 e name:, type the filename Of

the disk file or other device to which you wish the map sent. Just
pressing RETURN sends the map to CONSOLE:.

5. When prompted again to Enter Library name:, type the filename
of the next library file whose contents you wish mapped, or press
RETURN to quit the program.

Chapter 8: The Librarian

Chapter 9 Utility Programs

11-229

II-230

Introduction

In the Apple Pascal system, the components used most often can be
selected from the command line. Other programs, written to accomplish less
commonly needed tasks, are available through the Execute command. New
features can be added to the system at any time in this way. Several of
Apple Pascal's additions to the system, called utility programs, are
described in this chapter. The Librarian and Libmap programs described in
the previous chapter are important Pascal utility programs available
through the Execute command.

Formatting New Disks

Before a new disk (or one formatted for something other than Apple Pascal)
can be used with the Pascal system, it must first be "formatted." This
means that timing marks are recorded on the disk for the system's
reference, addresses are stored to identify each sector and block, and zeros
are stored in all data locations. Then a bootstrap program is stored in
blocks 0 and 1 (on the outermost track). Finally, a disk directory is written,
and the disk is given a volume name.

Disk Files Needed

The two files you need to run the Pascal Formatter are FORMATTER.CODE
and FORMATTER.DATA, found initially on the APPLE3: disk. You also
need the disks you are going to format. The files FORMATTER.CODE and
FORMATTER.DATA are required only to start and may be on any disk in
any drive on your system; they must both be on the same disk. The disks
you are going to format must be inserted and removed as directed by the
Formatter. You can format the disks in any disk drive.

You can use the Pascal Formatter to format rigid disks, 5\4-inch disks, or
3llz-inch disks. In almost every respect the process is the same regardless of
the disk type. If you are formatting a rigid disk, you will obviously not insert
or remove it from its drive.

Chapter 9: Utility Programs

Two 51/4-lnch Drives

One 51/4-lnch Drive

You will normally place your system disk in the startup drive and
APPLE3: in the other drive to Execute APPLE3:FORMATTER. When the
utility's first prompt appears on the screen, you can remove APPLE3:
from its drive and put in the first disk to be formatted.

You can start the disk formatting utility by Executing
APPLE3:FORMATTER with APPLE3: in the drive. When the utility's first
prompt appears, you can remove APPLE3: from the drive and put in the
first disk to be formatted. Do not remove the disk being formatted until
you are again asked FORMAT WH 1 CH DI SK?. Put the system disk back
in the drive before you quit the Formatter.

Using the Formatter

From the Command level, with the disk APPLE3: in any available drive,
type x for Execute. When you are asked

Execute what file C<ret> to exit) ?

respond by typing

APPLE3:FORMATTER

The .CODE suffix is added automatically if you don't type it. The system
then executes FORMATTER.CODE, and displays the following message:

Apple Pascal Disk Formatter Program [1.31

Format which volume#? C4, 5, 9 .. 12, <esc> to exit) ==>

You may now remove the APPLE3: disk from its drive, if you wish. Place
the new or used disk that you wish to format in any available drive. Then
type the volume number for that disk drive. For example, if you put your
new disk in #5:, you should respond by typing 5 and pressing RETURN.

First, the program checks the disk to be sure you are not accidentally
reform'htting (and thereby erasing) a disk previously formatted by the Apple
Pascal system. If you forget and leave APPLE3: in the specified drive, for
example, you will be warned by the question

Destroy directory of APPLE3 ? CY/H)

If you type H for No, you will again be asked

Format which volume#? C4, 5, 9 .. 12, <esc> to exit) ==>

Formatting New Disks II-231

If all goes well, the disk whirs and clacks, and this message appears:

Enter new volume name for this disk.

C<ret> for default name of BLANK:, <esc> to exit> ==>

After you answer the question about the disk's name, you see the message

Now formatting disk ...

Formatting successful.

unless the Formatter is unable to format the disk. When formatting is
complete, you will be asked to specify the next disk to be formatted:

Format which volume#? C4, 5, 9 .. 12, <esc> to exit) ==>

Again, put in any drive the next disk to be formatted and type that disk
drive's volume number.

When you have formatted all the disks you wish to format, respond to the
repeated question

Format which volume#? C4, 5, 9 .. 12, <esc> to exit) ==>

II-232

by pressing ESC to quit the formatting program. Be sure that your system
disk is in the startup drive before you quit. If the system cannot find the
system disk, it will instruct you to put it in.

If the program has trouble formatting a disk, you might see any of the
following messages:

D Disk is write protected

D Unable to format disk

D Drive speed is too slow (reported only for 514-inch disk drives)
o Drive speed is too fast (reported only for 514-inch disk drives)
o No disk in dri~e (reportedonlyfor3Y2-inchdiskdrives)

Check the obvious causes, s~ch as no disk in that drive, a write-protection
tab on the notch of the disk, or improper insertion of the disk.

Formatting a ProFile I You will see a warning message when you are about to format a disk with
more than 9000 blocks of storage (such as a ProFile). It insists that you
verify your choice to format. Think before you answer "yes."

Chapter 9: Utility Programs

Using an Ex:temal Terminal

The Apple Pascal operating system keeps information about the
configuration of your system in a file called SYSTEM.MISCINFO. During
each system initialization this file is read into memory, and from there it is
used by many parts of the system, particularly by the Editor.
SYSTEM.MISCINFO comes already set up to work correctly with your
Apple's keyboard and its monitor display. Unless you will be using an
external terminal such as the Hazeltine 1500, DEC VT52, or Soroc IQ120,
there is no reason for you to read any of the "Using an External Terminal"
section.

The APPLES: system disk contains a file named HAZEL.MISCINFO, which
contains the configuration information necessary to run the Apple Pascal
system with a Hazeltine 1500 external terminal. To use this particular
terminal, you only need to replace SYSTEM.MISCINFO with the
HAZEL.MISCINFO file, renaming it as SYSTEM.MISCINFO; and you must
also read "Changing GOTOXY Communication" later in this chapter, which
tells you how to bind a new GOTOXY routine into SYSTEM.PASCAL. In that
section, you will find an example of how to set up your Apple II computer to
use a Hazeltine 1500 terminal. You do not, however, need to read any other
parts of this section once you have set up your Hazeltine following the
example. You only need to read the rest of this section if you will be using
an external terminal other than the Hazeltine 1500 with the Apple Pascal
system.

If you will be using an external terminal with Apple Pascal, its interface
card must be installed in slot 3.

Requirements

To work well, the Pascal Editor requires a reasonably powerful CRT
terminal with the following features:

o Clear to end of line
o Clear to end of screen
o GOTOXY addressing-go directly to a given row and column of the

screen
o NDFS-nondestructive forward space (inverse of the backspace)
o LF-down one line (and if at the bottom of the screen, scrolls up)
o RLF-reverse line feed (up one line; not required to reverse scroll)

Using an External Terminal 11-233

II-234

Terminal Information

The following tables and lists describe the specifications and parameters
that you may need to know to set up and use your external terminal.

I Note: A parameter value of NUL (ASCII 0) usually means the parameter
does not apply to the system being set up.

General Terminal Information

Has Slow Terminal
Value: True or False.

When this field is true, the system issues abbreviated prompts and
messages. Suggested setting: 600 baud and under-True, otherwise False.
This field is normally False on the Apple.

Has Random Cursor Addressing
Value: True or False

Only applies to video terminals. On the Apple, this field is True.

Has Lower Case
Value: True or False

This is normally True for an Apple, except with II40.MISCINFO because the
40-column Apple II and II Plus do hot have lowercase.

Screen Width
Value: The number of characters per line of a terminal.

For most external terminals, this should be 80.

Screen Height
Value: The number of lines per display screen of a video terminal.

Set to 0 for a hard copy terminal or other terminal in which paging is not
appropriate. Some terminals may require you to set the screen to one more
than the number of available screen lines to insure proper scrolling. This
value is set to 24 for the Apple.

Nonprinting Character
Value: Any printing character.

Specifies what should be displayed by the terminal to indicate the presence
of a nonprinting character. Recommended setting: ASCII?.

Chapter 9: Utility Programs

Vertical Move Delay
Value: The number of nulls to send after a vertical cursor move.

Many types of terminals require a delay after certain cursor movements
that enables the terminal to complete the movement before the next
character is sent. This number of nulls will be sent after carriage returns,
Erase to End of Line, Erase to End of Screen, and Move Cursor Up. This
number is 0 on the Apple.

Miscellaneous Information

Has Clock
Value: True or False

Will be False for the Apple. No provision has been made for operation with
accessory real-time clocks.

Student
Val11e: True or False

If True, tells the system to simplify certain parts of the system for novice
use. For example, an error detected while compiling sends student back to
the Editor without choice.

Has 8510A
Value: True or False

This is always False on an Apple.

Control Key Information

You may choose which control keys suit your particular keyboard
arrangement and your taste. Control key functions have already been set up
for your Apple.

Some keyboards generate two codes when certain single keys are pressed.
If that is the case for any of the keys mentioned here, it must be noted in
the field PREFIXED [<fieldname>) which has either the value True or
the value False. The prefix for all such keys must be the same and must be
noted in the field LEAD IN FROM KEYBOARD. This feature may also be
used to access control functions with two-character sequences if your
keyboard is unable to generate many control characters. As an example,
suppose your keyboard had a vector pad which generated the value pairs
ESC-U, ESC-D, ESC-L, and ESC-R for the keys fort, i, +--,and~,

Using an External Terminal 11-235

11-236

respectively. Assume also that all other keys on the keyboard generate only
single codes. Then the user would give the following fields the following
values:

Key for Moving Cursor Up
Key for Moving Cursor Down
Key for Moving Cursor Left
Key for Moving Cursor Right
Lead in From Keyboard
Prefixed [Key for Moving Cursor Up]

ASCIIU
ASCIID
ASCII L
ASCIIR
ESC
True

Prefixed [Key for Moving Cursor Down] True
Prefixed [Key for Moving Cursor Left] True
Prefixed [Key for Moving Cursor Right] True

Key for Stop
Console output stop character. The stop character is a toggle; when it is
pressed, the system will cease writing to the OUTPUT file. When the key is
pressed again, the system will resume where it left off writing to the
OUTPUT file. This function is very useful for reading data that is being
displayed faster than one can read. Suggested setting: CONTROL-S.

Key for Flush
Console output cancel character. Similar in concept and usage to the Stop
key, the Flush key will cause output to the file OUTPUT to go undisplayed
until Flush is pressed again or the system writes to file KEYBOARD. Note
that, unlike the Stop key, the Flush key allows processing to continue
uninterrupted while output goes undisplayed. Suggested setting:
CONTROL-F.

Key for Break
Typing the character Break will cause the program currently executing to
be terminated immediately with a run-time error. Suggested setting:
something difficult to hit accidentally. This is set to ASCII 0 on the Apple
which, in this case, represents CONTROL-@ .

Key to End File
Console end-of-file character. When reading from the files KEYBOARD or
INPUT or the unit CONSOLE:, this key sets the boolean function EOF to
True. See the description of EOF in Part III. Suggested setting: ASCII ETX
(CONTROL-C).

Key to Delete Character
Each time you press this key one character is removed from the current
line, until nothing is left on that line. Suggested setting: ASCII BS (...._key,
or CONTROL-H).

Chapter 9: Utility Programs

Key to Delete Line
Pressing Line Delete will cause the current line of input to be erased.
Suggested setting: CONTROL-X.

Keys to Move Cursor Up, Down, Left, Right
These keys are used by the screen-oriented editor to control the basic
motions of the cursor. If the keyboard has a vector pad, set these fields to
the values it generates. Otherwise, we suggest that you choose four
keyboard keys that lie in the pattern of a vector pad, and use the control
codes that correspond to them. For example, the keys "O", ",", "K" and";" on
most keyboards encircle an imaginary vector pad. You may wish to use a
prefix character before such keys as described above.

Editor ESCAPE Key
The key that, in the system screen-oriented editor, is to be used to escape
from commands, reversing any action taken. Suggested setting: ESC.

Editor ACCEPT Key
The key that, in the system screen-oriented editor, is to be used to accept
commands, making permanent any action taken. Suggested setting: ASCII
ETX (CONTROL-C).

Video Screen Control Characters

This section describes the characters that, when sent to the terminal by the
computer, control the terminal's actions. You should consult the manual for
your terminal to find the appropriate values. If a terminal does not have one
of these characters, the field should be set to 0 unless otherwise directed.

Some screens require a two-character sequence to exercise some of their
functions. If the first character in all of these sequences is the same, it can
be set as the value of the field Lead in to Screen, and for each
<fieldname> that requires that prefix, the user must set the field
Prefix[<fieldname>] to True. For example, suppose Erase to End of Line
and Erase to End of Screen were respectively performed by the sequences
ESC-L and ESC-S but all the other screen controls were single characters.
The user would then set the following fields to the following values:

Lead in to Screen
Erase to End of Line
Erase to End of Screen
Prefixed [Erase to End of Screen]
Prefixed [Erase to End of Line]

Using an External Terminal

ASCII ESC
ASCII L
ASCII S
True
True

Il-237

Parameter Field Name

BACKSPACE

EDITOR ACCEPT KEY

EDITOR ESCAPE KEY

ERASE LINE

ERASE SCREEN

ERASE TO END OF LINE

ll-238

Erase to End of Screen
The character that erases the screen from the current cursor position to the
end of the screen.

Erase to End of Line
The character that, when sent to the screen, erases all characters from the
current cursor position to the end of the line the cursor is on.

Erase Line
The character that, when sent to the screen, erases all the characters on the
line the cursor is currently on.

Erase Screen
The character that, when sent to the screen, erases the entire screen.

Backspace
The character that, when sent to the screen, causes the cursor to move one
space to the left.

Move Cursor Home
The character that moves your cursor to the upper left of the current page.
IMPORTANT: If your terminal does not have such a character, set this field
to CARRIAGE RETURN, ASCII mnemonic CR.

Move Cursor Up and Move Cursor Right
The two characters which move your cursor nondestructively one space in
those directions.

Setup Parameters

The following is a list of all setup parameters.

Default Value for SYSTEM.MISCINFO

..--- key (CONTROL-H)

CONTROL-C

ESC

NUL (ASCII 0)

CONTROL-L

CONTROL-]

Chapter 9: Utility Programs

Parameter Field Name

ERASE TO END OF SCREEN

HAS 8510A

HAS CLOCK

HAS LOWER CASE

HAS RANDOM CURSOR ADDRESSING

HAS SLOW TERMINAL

KEY FOR BREAK

KEY FOR FLUSH

KEY FOR STOP

KEY TO DELETE CHARACTER

KEY TO DELETE LINE

KEY TO END FILE

KEY TO MOVE CURSOR DOWN

KEY TO MOVE CURSOR LEFT

KEY TO MOVE CURSOR RIGHT

KEY TO MOVE CURSOR UP

LEAD IN FROM KEYBOARD

LEAD IN TO SCREEN

MOVE CURSOR HOME

MOVE CURSOR RIGHT

MOVE CURSOR UP

NONPRINTING CHARACTER

PREFIXED [DELETE CHARACTER]

PREFIXED [EDITOR ACCEPT KEY]

PREFIXED [EDITOR ESCAPE KEY]

Default Value for SYSTEM.MISCINFO

CONTROL-K

FALSE

FALSE

TRUE (FALSE if II40.MISCINFO)

TRUE

FALSE

NUL (ASCII 0)

CONTROL-F

CONTROL-S

..__key (CONTROL-H)

CONTROL-X

CONTROL-C

CONTROL-J (CONTROL-L if II80.MISCINFO)

....__key (CONTROL-H)

~key (CONTROL-U)

CONTROL-K (CONTROL-0 if II80.MISCINFO)

NUL (ASCII 0)

NUL (ASCII 0)

CONTROL-Y

CONTROL-\

CONTROL-_

?

FALSE

FALSE

FALSE

Using an External Terminal Il-239

Parameter Field Name

PREFIXED [ERASE LINE]

PREFIXED [ERASE SCREEN]

PREFIXED [ERASE TO END OF LINE]

PREFIXED [ERASE TO END OF SCREEN]

PREFIXED [KEY FOR BREAK]

PREFIXED [KEY FOR FLUSH]

PREFIXED [KEY TO MOVE CURSOR DOWN]

PREFIXED [KEY TO MOVE CURSOR LEFT]

PREFIXED [KEY TO MOVE CURSOR RIGHT]

PREFIXED [KEY TO MOVE CURSOR UP]

PREFIXED [KEY FOR STOP]

PREFIXED [KEY TO DELETE CHARACTER]

PREFIXED [KEY TO DELETE LINE]

PREFIXED [KEY TO END FILE]

PREFIXED [MOVE CURSOR HOME]

PREFIXED [MOVE CURSOR RIGHT]

PREFIXED [MOVE CURSOR UP]

PREFIXED [NONPRINTING CHARACTER]

SCREEN HEIGHT

SCREEN WIDTH

STUDENT

VERTICAL MOVE DELAY

Default Value for SYSTEM.MISCINFO

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

24

80

FALSE

0

II 240 Chapter 9: Utility Programs

Reconfiguring the System

To use an external terminal, you must give the system certain information
about it and how you want to use it.

To use the system reconfiguration utility you must have the file
SETUP.CODE on any disk, in any drive. SETUP.CODE can be found
originally on the APPLE3: system disk.

It is also best to have a system disk to receive the new (I-block) .MISCINFO
codefile that will be created by using SETUP. This disk can be in any drive.

The system reconfiguration utility is executed from the Command level by
typing x for Execute while APPLE3: is on line in any drive. You will be
asked

Execute what file (<ret> to exit) ?

Respond by typing the filename

APPLE3:SETUP

You do not need to specify the suffix .CODE because it is supplied
automatically. Next you see

Initializing

SETUP: CChange T(each HCelp Q(uit [5.2J

Type H for Help to learn what the commands are at this level.

Type T if you want the program to Teach you how to use the
reconfiguration utility. This command tells you how to enter a nonprinting
character, how to avoid making a prompted change, how to delete a typing
error, how to change the default radix and other useful information.

A. Warning If you type T for Teach, make sure that APPLE3: is still in the drive it
occupied when SETUP was executed. If it is not there, your system may
"hang" and information on other disks in the system may be damaged. It
is not necessary to keep APPLE3: in its drive after you have completed
the Teach sequence, or if you do not use the Teach command.

Type c if you want to Change or examine any piece of information the
system has about your hardware configuration. You can choose to change
just a single item, skipping the rest, or you can have the program step
through the list of parameters with you. The SETUP PARAMETERS is what
you will be examining. The Teach option gives a full explanation of all these
choices.

Using an External Terminal 11-241

Type a when you wish to make your configuration changes permanent anq
leave the program. The reconfiguration utility offers several options when
you Quit:

o Disk update: creates the file NEW.MISCINFO, on the system disk in any
drive; it must later be renamed as SYSTEM.MISCINFO before the new
setup can be used by the system. No message is given if the system disk
is not found, but no NEW.MISCINFO file is created either. You are
returned to the Quit option.

o Memory update: places the changes in memory, where they change the
system setup until the next startup or initialization. You are returned to
the Quit option.

o Return: takes you back to the main prompt line of the reconfiguration
program, in case you are not finished.

o Help: explains the Quit options, and then returns you to Quit.
o Exit: returns you to the Command level of Pascal. Reinsert your system

disk into the startup drive before typing E.

The operation of this utility is self-teaching once you've typed T.

By the Way: The reconfiguration utility does not tell the system how to
do random-access cursor addressing on an external terminal (for those
that have that capability). To enable the system to use that feature,
please refer to the section to follow, "Changing GOTOXY
Communication."

Two 51/ii=lnch Disk Drives I

One 51/ii=lnch Disk Drive

You will normally place your system disk in the startup drive, and insert
APPLES: in the other drive. Ordinarily, you should leave these disks in
their drives throughout the use of the reconfiguration utility.

You will normally put APPLES: in the disk drive, and leave it there while
changing the setup information. When you are ready to Quit the
reconfiguration utility to do a disk update, you can remove APPLES: from
the drive and put in your system disk. Your system disk must be in the
drive if you do a disk update, which creates the file NEW.MISCINFO on
the system disk. Put the system disk in the drive before you Exit the
reconfiguration utility program.

II-242 Chapter 9: Utility Programs

Changing GOTOXY Communication

The GOTOXY procedure, which allows the Pascal operating system to
communicate with the video screen, is already set up for the Apple II
computers. It is included as one of the built-in procedures in the Apple
Pascal language. See Part III if you want to know more about the GOTOXY
procedure.

External Terminals Only I You do not need to read the rest of this section unless you will be using an
external terminal.

Be sure that you have read the previous sections of "Using an External
Terminal," then follow the steps given there to create a new
SYSTEM.MISCINFO file on your system disk.

The program BINDER.CODE on APPLE3: alters the SYSTEM.PASCAL file
on your system disk. You are asked to provide GOTOXY, a procedure that
must be created and bound into SYSTEM.PASCAL only once in order to
make the system communicate correctly with your external terminal's
screen.

The APPLE3: disk contains an example of a Pascal GOTOXY procedure
written for one of the popular terminals. The file HAZELGOTO.TEXT
contains the correct GOTOXYprocedure for the Hazeltine 1500.

If the GOTOXY cursor-addressing procedure for your terminal is not already
on the APPLE3: disk, you must create one by modifying HAZELGOTO, then
compiling it.

AWaming I Your procedure may NOT be named GOTOXY.

The GOTOXY procedure sends the cursor to a point on the screen
determined by a specified pair of coordinates (XCOORD,YCOORD). The
procedure assumes that

o You have a video screen terminal;
o You have an Apple Pascal system;
o The upper left corner of the screen is X=O, Y =0.

And because GOTOXY corrects for bad input data, it requires that

o X-coordinates be limited to the number of characters per line (generally,
integers in the range 0 through 79);

o Y-coordinates must be limited to the number lines per screen (generally,
integers in the range 0 through 23).

Using an External Terminal II-243

In writing your own GOTOXY procedure you can avoid these typical
mistakes.

Two Common Errors

Nil memory reference at compile
time

Value range error when executing
BINDER

Disk Files Needed

Possible Cures

Remove the progam heading and try
again

(* $U-*) should be the first thing in
the GOTOXY file

The following files are needed to use the binder utility to change GOTOXY
communication with the screen:

o BINDER.CODE (originally on APPLE3:) is needed on any disk in any
drive and only to start up.

o SYSTEM.PASCAL is required on the system disk in any drive throughout
the process.

o A codefile containing the new GOTOXY procedure is needed on any disk
in any drive throughout the process (for a Hazeltine 1500, use
HAZELGOTO.CODE).

Two 5114-lnch Disk Drives You will normally place your system disk in the startup drive, and place
APPLE3: in the other drive. You are then ready to Execute
APPLE3:BINDER.

II-244

One 51/4-lnch Disk Drive I First, use the Filer to Transfer APPLE3:BINDER.CODE and the file
containing your new GOTOXYprocedure onto your system disk. You are
then ready to Execute BINDER with your system disk in the drive.

Example: Setup for Hazeltine 1500

You are about to create a new system disk, so you should first make a copy
of your current system disk.

Now, from the Command level, with all the necessary files in the available
disk drives, type x for Execute. Answer the question

Execute what file (<ret> for exit> ?

by typing the file name

APPLE3:BINDER

The .CODE suffix is automatically added if you don't type it.

Chapter 9: Utility Programs

The screen will show

APPLE GOTOXY BINDER

The program now looks for the file SYSTEM.PASCAL, which must be on
your system disk in any drive. If you see the message

ERROR: No file SYSTEM.PASCAL
Press space to continue

your system disk was probably not in any drive. You should put your
system disk in the startup drive and press the SPACE bar to return to the
Command level. Then you can try to Execute the program again.

When the program has successfully found the file SYSTEM.PASCAL, it
prompts you to specify the

File which contains GDTOXY?

For this example, you should respond by typing

APPLE3:HAZELGDTD

(For a different terminal, this would be the new GOTOXY procedure you
compiled after modifying HAZELGOTO.TEXT for your terminal.) The
program looks first for a file whose filename is exactly as you typed it. If
that search is not successful, the suffix .CODE is added to the filename and
the search is made again. When your file is found, messages appear saying

Copying Segment 15

Copying Segment e
Copying Segment 1

Copying Segment 2

Copying Segment 3
Copying Segment 4

Copying Segment 5

and so on. When the Command line reappears, your system disk has the
new file NEW.PASCAL on it. This file is the old SYSTEM.PASCAL with the
new GOTOXY procedure for your terminal bound into it. Before the system
can use this new file, the old file SYSTEM.PASCAL must be removed from
the disk (or at least renamed) and NEW.PASCAL must be given the name
SYSTEM.PASCAL.

At this time, you should also replace the file SYSTEM.MISCINFO with the
file called APPLE3:HAZEL.MISCINFO (for a different terminal, this would
be the NEW.MISCINFO you generated with the SETUP program, described
above in "Reconfiguring the System").

The information you have just changed will not affect the system until you
restart the system with your new system disk in the startup disk drive.

Using an External Terminal II-245

The Printer Linefeed Utility

Depends on Your Printer I If your printer does not require an external line feed after RETURN, you
may need to use this utility program.

11-246

Different printers used with the Apple Pascal system have different
requirements for dealing with RETURN (carriage return, or ASCII CR)
characters. Some printers require that a line feed character follow every
RETURN character, whereas others automatically supply their own line
feed following every RETURN character.

The file SYSTEM.MISCINFO, which contains the system's information
about hardware configurations, does not include any information about your
printer requirements. Apple Pascal normally sends out a line feed after
every RETURN character, which is compatible with most printers but
which may cause double-spaced lines on others and cause some not to work
at all. For printers that do not work properly when sent a line feed after
every RETURN character, the Apple Pascal system provides the Linefeed
utility program.

Disk Files Needed

To make a change that will prevent a line feed from being sent to the
printer automatically after every RETURN, you need the file
LINEFEED.CODE, found initially on APPLE3:. The file can be used on any
disk, in any drive, and is required only to start up the utility. This utility
program only changes what is in memory when you use your printer; it does
not permanently change any file.

If you have one drive, Transfer LINEFEED.CODE from APPLE3: to your
system disk.

Chapter 9: Utility Programs

Using the Linefeed Utility

From the Command level, with APPLE3: in any drive, type x for Execute.
Answer the question

Execute what file (<ret> for exit) ?

by typing

APPLE3: LINEFEED

The suffix .CODE is supplied automatically. The system Executes the
Linefeed utility without displaying a message. You are returned to the
Command level.

Until you restart or reinitialize your system, line feeds will not be sent to
your printer following RETURN characters.

For Frequent Use

You can transfer LINEFEED.CODE permanently to your system disk, which
certainly simplifies this procedure, though you must still Execute Linefeed
every time you starup. If you also change the filename from
LINEFEED.CODE to SYSTEM.STARTUP, the utility will be executed
automatically each time you start up your system with that system disk.

Setting a 40-Co!umn Display

If you have an Extended SO-column Text Card installed in an Apple Ile,
allowing you to take advantage of the 128K Pascal system, but you still
need to use a 40-column video display, you can use the SET40COLS utility
to change your display from 80 to 40 columns. The file SET40COLS.CODE is
found on the APPLE3: disk. You might find that you are in this situation
because you are using a TV set rather than a monitor for your video display.

From the Command level, with APPLE3: in any drive, type x for Execute.
Answer the question

Execute what file C<ret> for exit) ?

by typing

APPLE3:SET40COLS

Setting a 40-Column Display II-247

You will see the following display:

SET40COLS

Copyright 1985 Apple Computer, Inc.

This program will set a flag in the directory of a Pascal disk so
that when Pascal is booted off the disk, it will run in 40-column
mode regardless of whether there is an 80-column card in the Apple.
If the flag has already been set for 40-column mode, the program
will give you the option of reseting it so that when Pascal is
booted off the disk, it will use an installed 80-column card.

Modify which volume II ? (4, 5, 9 ... 12, <esc> to exit) ==>

Enter the volume number of the disk drive containing the system disk you
wish to modify. The system disk should contain the file SYSTEM.APPLE.

After you enter a volume number, you will see the message

Flag is now set for 40-column mode.

Modify which volume II? C4, 5, 9 ... 12, <esc> to exit) ==>

11-248

The original prompt reappears at the bottom of the screen so that you can
alter another system disk if desired.

If you attempt to alter a system disk with a write-protect tab covering its
notch, the following error message will appear.

1/0 ERROR 1116 occurred while writing directory.

Remove the tab and try again.

If the disk in the drive you specified is already set to 40-column mode, you
will see the message

Flag is already set for 40-column mode.
Reset flag for 80-column mode CY/N) ?

Chapter 9: Utility Programs

If you respond by typing v for Yes, the flag will be reset and you will see the
message

Flag is now set for 80-column mode.

When you restart Pascal using the system disk you have altered, you can
see the changed display. You can change your disk back and forth as often
as you wish.

Setting a 40-Colurnn Display 11-249

Appendix 2A Command Summaries

11-251

11-252

This appendix contains summaries of the commands used with the system
programs described in this manual: the operating system (the main
Command level), the Filer, and the Editor.

All levels (System Commands)

You can use these commands at all levels of the system.

CONTROL-@

. CONTROL-F

CONTROL-S

CONTROL-RESET or
6-CONTROL-RESET

Powet off-on

40-Column Mode Only

CONTROL-A

CONTROL-Z

Apple II and II Plus Only

CONTROL-K

SHIFT-M

CONTROL-E

CONTROL-W

CONTROL-R,

Appendix 2A: Command Summaries

Interrupts the current program .

Flushes subsequent program output.

Stops any ongoing process or
program until the next CONTROL-S.

Causes a cold start.

Causes a cold start.

Toggles between the right and left
40-columns of the 80-column
display.

Causes the 40-column screen to
scroll right and left with the cursor.

Produces left bracket character [

Produces right bracket character]

Shifts between uppercase and
lowercase; turns on reverse video.

Forces keyboard into uppercase for
next character typed and turns on
reverse video.

Turns on reverse video without
altering keyboard case.

CONTROL-T Turns reverse video off.

CONTROL-0 Moves cursor up.

CONTROL-L Moves cursor down.

Shift-Key Modification on an Apple II or II Plus

SHIFT-N Produces character N

SHIFT-P Produces character P

SHIFT-M Produces character M

CONTROL-SHIFT-N Produces character

CONTROL-SHIFT-P Produces character @

CONTROL-SHIFT-M Produces character]

Command level

You reach the Command level automatically each time the system is started
up, RESET, or initialized. You also reach it when any program finishes
executing.

Use the Command level options to select any of the main subdivisions of the
language system.

File Invokes the Filer, which you use to save, move, and
retrieve information stored on disks.

Edit

Compile

Assemble

Command Level

Invokes the Editor, which you use to create and
modify text. Reads the workfile or other specified
textfile into memory for editing.

Invokes the Pascal Compiler, which converts the text
of a Pascal program found in the workfile or other
specified textfile into executable P-code.

Invokes the Assembler, to translate the text of 6502
assembly-language routines found in a specified
textfile into machine code.

II-253

II-254

Link

Swap

Execute

Run

User restart

Initialize

Make exec

Combines P-code and 6502 routines found in
SYSTEM.LIBRARY or other specified library codefiles
into a Pascal host program found in the code workfile
or other specified host codefile.

Swaps out parts of the Pascal operating system code in
order to make additional memory space available.

Loads and runs the specified program codefile and
executes exec files.

Executes the current workfile, automatically
compiling and linking (from SYSTEM.LIBRARY) first,
if necessary.

Attempts to execute the last program or option that
was executed.

Reinitializes the system.

Used to create exec files.

Filer Command Summary

This summary includes the conventions used to specify Apple Pascal files
and the commands available from the Filer command line.

File Specification

The special characters, filename conventions, and size specifications used
to specify Pascal files are summarized here.

Summary of Special Characters

* Specifies the system disk volume name

Specifies the prefix volume name

Wildcard used to specify a subset of filenames. For
example, BR= XT specifies all filenames beginning
with BR and ending with XT

Appendix 2A: Command Summaries

?

$

Same as = except the Filer requests verification
before acting on each filename. Example: BR?XT

Used with the Transfer command to specify a
destination filename that is the same as the source
filename

Separates any number of Filer command response
fields. Some commands use response fields in pairs.

Filename Conventions

Volume name with no filename

Filename with no volume name

Specifies the entire named disk

Specifies the named file on the
prefix disk

#4: or MYDISK:

#4:MYFILE.TEXT or
MYDISK:MYFILE. TEXT

Typical volume specification

Typical file specification (suffix
required unless otherwise noted)

MYDISK:MYFILE.TEXT[25] File specification, with size
specification

Size Specifications

[O]

[*]

[number]

Specifies that the file is to occupy all of the largest
unused area on the disk (generally the default
specification)

Specifies that the file is to occupy all of the
second-largest unused area or half of the largest
unused area, whichever is larger

Specifies that the file is to occupy the first unused
area that contains at least the specified <number>
of blocks

Filer Command Summary II-255

II-256

Volume Commands

Volumes

List-directory

Extended
directory-list

Krunch

Zero

Prefix

Shows the devices and disks currently in the system,
by volume number and by volume name.

Shows what files are on the specified disk. If desired,
list is sent to a second specified file or device.

Shows what files are on the specified disk, including
location information and file types. The list can be
sent to a second specified file or device.

Packs all files together on a specified disk so that
unused portions of the disk are combined into one area
at the end (or other designated location).

Renames and erases the directory of the specified
disk.

Changes the current default volume name to the
volume name or number specified.

Diskfile Commands

Transfer

Make

Change

Remove

Transfers information from the first specified volume
or file to the second specified volume or file.
Destination file uses the largest unused disk area or
the first unused area of specified [size]. Used to move
or save disk files, copy entire disks, or send files to a
printer or other device.

Creates a disk directory entry with the specified
filename and [size]. Produces a "dummy" file on the
disk.

Renames the specified disk or disk file to the newly
specified name.

Removes the specified file from a disk's directory.

Appendix 2A: Command Summaries

Workfile Commands

Get

Save

New

What

Designates a specified disk file as the next workfile
(no suffix needed: .TEXT and .CODE are supplied
automatically). The next Edit, Compile, or Run will
use this file.

Saves all components of the workfile SYSTEM.WRK
under the specified filename (do not specify a suffix:
.TEXT and .CODE are supplied automatically).

Clears the workfile, removing all SYSTEM.WRK files
from the main system disk.

Tells the name and state (saved or not) of the
workfile.

Disk Upkeep Commands

Bad-blocks

Examine

Tests all blocks on the specified disk to see that
information has been recorded consistently. Any bad
blocks found are reported.

Attempts to fix disk blocks reported as bad by the
Bad-blocks command. Allows you to mark blocks that
can't be fixed.

Date and Quit Commands

Date

Quit

Tells the current date last set for the system and
allows it to be updated.

Leaves the Filer and returns to the outermost
Command level.

Filer Command Summary II 257

II-258

Editor Command Summary

Special Commands

Here is a review of special commands that are used in the Editor but are not
shown on Editor command lines or prompts.

Cursor Moves

If You Press On anApple The Cursor Moves

t Ile, Ile up bylines

CONTROL-0 II, II Plus up bylines

i Ile, Ile down by lines

CONTROL-L II, II Plus down by lines

- any right by characters - any left by characters

SPACE any in the set direction by characters

TAB Ile, Ile in the set direction, to the next tab
stop*

CONTROL-I any in the set direction, to the next tab
stop*

RETURN any in the set direction, to the beginning of
the next line

Page any in the set direction, one full screen

=(equal) any to the beginning of the last text
Inserted, Found, or Replaced

• Tab stops are set every eight spaces across the screen.

Appendix 2A: Command Summaries

Repeat-Factor

An integer from 0 through 9999 typed before a cursor move or command. If
repeat-factor is/ the move or command is repeated as many times as
possible in the file.

Set Direction

<
> +

Change set direction to backward.

Change set direction to forward.

Moving Commands

Jump

Find

Jumps to file's Beginning or End, or to a previously set
Marker.

Looks in the set direction for the number of Literal or
Token occurrences of the <target> string set by the
repeat-factor. Must be typed with delimiters. s means
use the same string as before. u selects the Unease
option so that case is ignored when a search is made.

Text-Changing Commands

Insert

Delete

Zap

Copy

Inserts text. Use+- to backspace over insertion.
CONTROL-X deletes back to and including the most
recent RETURN character in the current insertion.

Deletes all text moved over by the cursor. Back up the
cursor to recover deleted characters.

Deletes all text between the current cursor position
and the point (at the start of the latest text found,
replaced, or inserted).

Copies another disk file or file portion, or the copy
buffer to the current file at the position of the cursor.

Editor Command Summary 11-259

II-260

Exchange

Replace

Replaces the character under the cursor with the
character you type. Each line must be done separately.
Pressing~ causes the original character to reappear.
Pressing ---+ allows you to copy over e:iisting text.
Pressing t causes lowercase letters to be replaced
with uppercase; and pressing i causes uppercase
letters to be replaced with lowercase.

Looks in the set direction for the next Literal or Token
occurrence of <targ> string, and replaces it with
<sub> string. Continues repeat-factor times. Both
strings must be typed with delimiters. Verify option
asks for permission to replace. s means use the same
<targ> or the same <sub> string as before. u
selects the Unease option.

Text-Formatting Commands .

Adjust

Margin

Adjusts indentation of the line the cursor is on. Type L

to Left justify text, R to Right justify text, and c to
Center text. +--- and ---+ move the line left and right.
Moving the cursor up or down adjusts lines above or
below by the same amount.

Starting at the cursor position, realigns all text
between two blank lines (one paragraph) to the
margins that you have set.

Appendix 2A: Command Summaries

Miscellaneous Commands

Set

Verify

Quit

Sets a Marker of the specified name at the current
cursor position. Sets options in the Environment for
Auto-indent, Filling, margins, default search mode,
and Command character.

Redisplays the screen with the cursor centered.

Leaves the Editor. You may Update the workfile, Save
a current copy of the file being edited, Exit without
updating, Return to the Editor, Write to any disk file,
or Change to another file.

Editor Command Summary II 261

Appendix 2B System Files

II-263

Command Files Needed

File SYSTEM.FILER

Files to be moved

Edit SYSTEM.EDITOR

Compile

Assemble

II-264

Textfile to be edited

SYSTEM.COMPILER

Textfile to be compiled

SYSTEM.LIBRARY

Other Libraries

SYSTEM.EDITOR

SYSTEM.SYNTAX

SYSTEM.ASSMBLER

6502.0PCODES

This appendix contains a list of the commands on the Pascal Command line
and the files required to perform them, a thorough file listing describing
how and when system files are used, and a listing of the files contained on
system disks.

System Files as Required by Pascal Commands

The following table lists the files needed by each of the commands. With a
few exceptions, the required files can be on any disk and in any drive. Some
of the commands listed require that certain files be on the Pascal system
disk and in the startup drive.

Where Files Must Be Found

Any disk, any drive; needed only at start

Any disks, any drives; Transfer requires presence of
source file; can prompt for destination file

Any disk, any drive

Any disk, any drive; optional; default is system workfile,
on Pascal system disk

Any disk, any drive

Any disk, any drive; default is Pascal system disk's system
workfile, startup drive

Pascal system disk, startup drive; required only if program
USES units contained in it

Any disk, any drive; required if Program Units contained
anywhere except the system library are used by program
being compiled

Any disk, any drive; optional; to fix errors found by
Compiler

Same disk as Editor, any drive; optional; provides error
messages on entering Editor

Any disk, any drive

Same disk as Assembler, any drive; required

Appendix 2B: System Files

Command

Link

Execute

Run

Files Needed

6502.ERRORS

Textfile to be assembled

SYSTEM.EDITOR

SYSTEM.LINKER

Host codefile

Library codefiles

Codefile to be executed

Program Library or Library Name
File

SYSTEM.LIBRARY

Text or Codefile to be run

SYSTEM.COMPILER

SYSTEM.EDITOR

SYSTEM.SYNTAX

SYSTEM.LINKER

SYSTEM.LIBRARY

Where Files Must Be Found

Same disk as Assembler, any drive; optional; provides
error messages in Assembler

Any disk, any drive; default is Pascal system disk's system
workfile

Any disk, any drive; optional; to fix errors found by
Assembler

Any disk, any drive; needed only to start

Any disk, any drive; default is Pascal system disk's system
workfile, startup drive

Any disk, any drive

Any disk, any drive

Same disk as program codefile, any drive; required if
program needs Intrinsic Units it contains

Pascal system disk, startup drive; required if the program
uses long integers, does file I/O using reals or SEEK, or
USES Intrinsic Units that are not in program library or
library name file

Any disk, any drive; default is Pascal system disk's system
workfile

Any disk, any drive; required only if file being Run is a
textfile

Any disk, any drive; optional; to fix errors found by
Compiler

Same disk as Editor, any drive; optional; provides error
messages for Editor

Any disk, any drive; required only if routines need to be
linked; no link needed to USE Intrinsic Units

Pascal system disk, startup drive; required if program uses
long integers, does file I/O using reals or SEEK, or USES
Intrinsic Units, or if it holds needed routines if linking

System Files as Required by Pascal Commands II-265

Command Files Needed Where Files Must Be Found

Program Library or Library Name
File

Same disk as program codefile, any drive; required if
program needs Intrinsic Units it contains

SYSTEM.PASCAL Pascal system disk, startup drive; required between
compiling, linking, and executing.

User restart All files needed by previous program Same setup and files required by previous program

Filename

SYSTEM.APPLE

SYSTEM.PASCAL

SYSTEM.MISCINFO

SYSTEM.EDITOR

11-266

The System Files by Filename

The next table gives more information about the files making up the
Apple II Pascal system.

Contents of File Use of File When Needed

Interpreter, written in 6502 Executes P-code on Power-on,
machine language Apple H's processor CONTROL-RESET,

6-CONTROL-RESET,
Quit

Command level portion of Lets you pick Edit, File, Power-on,
Pascal system Run, and so on CONTROL-RESET,

a-CONTROL-RESET,
Quit, Initialize, Return to
Command level

Information about system Tells system about system Power-on,
configuration hardware CONTROL-RESET,

a-CONTROL-RESET,
Quit, Initialize

Text Editor Lets you make and change Edit, Compile, Run,
text files Assemble

Appendix 2B: System Files

Filename Contents of File Use of File When Needed

SYSTEM.FILER Filer Lets you copy, delete, and File
move files

SYSTEM.LIBRARY Routines for long integers, Many programs use these Run, Execute, Link,
trigonometric functions, library routines Compile, if program uses
graphics, I/O, and optional library routines
user-defined Intrinsic Units

SYSTEM.SYNTAX Compiler error messages Provides message in Editor Run, Compile followed
after Compiler finds an by Edit after an error
error

SYSTEM.COMPILER Pascal Compiler Converts Pascal program Compile, Run
text to P-code

SYSTEM.LINKER Linker Combines separate codefiles Link, Run
into a single codefile

SYSTEM.ASSMBLER 6502 Assembler Converts 6502 assembly Assemble
text into machine code

6502.0PCODES Instruction set for Used by the Assembler Assemble
Assembler

6502.ERRORS Assembler error messages Optional; provides message Assemble
after Assembler finds an
error

LIBRARY.CODE Utility program Puts routines into library Execute LIBRARY

LIBMAP.CODE Utility program Displays contents of library Execute LIBMAP
file

FORMATTER.CODE Utility program Formats disks Execute FORMATTER

FORMATTER.DATA Formatting information Used by the Formatter Execute FORMATTER

SETUP.CODE Utility program Makes new file Execute SETUP
SYSTEM.MISCINFO
describing the system
configuration

The System Files by Filename 11-267

APPLEO:

SYSTEM.PASCAL 44
SYSTEM.COMPILER 78
SYSTEM.EDITOR 50
SYSTEM.FILER 30
SYSTEM.LIBRARY 38
SYSTEM.MISCINFO 1
SYSTEM.CHARSET 2
SYSTEM.SYNTAX 12

Il-268

The System Files by Disk

The following lists show the contents of each of the Pascal system disks
and the approximate block lengths of the files on them. The files making up
the Pascal 1.3 system are supplied on four 280-block 514-inch disks and one
1600-block 3llz-inch disk. lPASCAL: contains one each of the files shown on
the other four disks and so its files are not shown. The order of the files on
any disk is unimportant.

APPLEl: APPLE2:

SYSTEM.APPLE 32 SYSTEM.ASSMBLER 49
SYSTEM.PASCAL 44 SYSTEM.COMPILER 78
SYSTEM.EDITOR 50 SYSTEM.LINKER 25
SYSTEM.FILER 30 LIBRARY.CODE 8
SYSTEM.LIBRARY 38 LIBMAP.CODE 11
SYSTEM.MISCINFO 1 6502.0PCODES 2
SYSTEM.CHARSET 2 6502.ERRORS 7
SYSTEM.SYNTAX 12

Appendix 2B: System Files

APPLE3: lPASCAL:

SYSTEM.APPLE 32 Contains all the files
FORMATTER.CODE 7 listed on the
FORMATTER.DAT A
BINDER.CODE
LINEFEED.CODE
SET40COLS.CODE
II40.MISCINFO
II80.MISCINFO

7 four APPLE: 514-inch
5 disks
2
5

BALANCED.TEXT 12
CROSSREF.TEXT 8
DISKIO. TEXT 22
GRAFCHARS.TEXT 6
GRAFDEMO.TEXT 28
HAZEL.MISCINFO
HAZELGOTO.TEXT 4
HILBERT.TEXT 6
SETUP.CODE 33
SPIRODEMO.TEXT 6
TREE.TEXT 8
128K.APPLE 32
128K.PASCAL 45

The file SYSTEM.LIBRARY on APPLEO: and APPLEl: contains the units

APPLES TUFF
CHAINS TUFF
LONGINTIO
PASCALIO
TURTLEGRAPHICS
TRANSCEND

The System Files by Disk 11-269

·Appendix 2C Overview of Program Preparation Stages

11-271

11-272

A Complex Sample Program

This appendix shows how you use the Apple II Pascal system to create a
complex program. It shows the procedures for compiling, assembling,
linking, and using the Librarian to put together a sample program with a
Regular Unit, Intrinsic Units, and external procedures. The sample program
includes the use of .PUBLIC, .PRIVATE, and .CONST directives to access
data structures from assembly-language routines. This example assumes
that you are using the 128K Pascal system and a recommended system
configuration.

In creating the sample program, you will use features of the Pascal system
described in this Part and in Part III. These features are not described here.
You should read the appropriate sections of the manual and study the other
sample programs before you try to create the complex sample program.

Figure 2C-1 illustrates the different program sections and the sequence of
operations required to put together the sample program.

The text of each program section is given below. You should use the Editor
and type each one, then save it with the filename given. The procedures
used in creating the program are given in the last section of this appendix.

For this example, the system files are on two disks. Here, all program
textfiles and codefiles are on APPLEl: in the startup drive. The Assembler,
Compiler, Linker, and Librarian programs are all on APPLE2: in drive #5:.

Appendix 2C: Overview of Program Preparation Stages

Using a 64K System

If you are using the Pascal 64K system, and want to create the sample
program, you will need to modify the procedure described in this appendix
in the following ways.

o Add the "swapping" option \$S+\ as the first line of each unit (REGUNIT,
MAINLIBIU, and INTRINU).

o Don't transfer MAINLIBIU.CODE to LMAIN.LIB.
o When you create the new SYSTEM.LIBRARY, insert MAINLIBIU.CODE

into the library after inserting LINTRINU.CODE. Use the following
sequence:

N

MA INLI BI U RETURN
RETURN

10 RETURN

A Complex Sample Program 11-273

Figure 2C-l. Creating a Complex Program

MAINLIBIU. TEXT

COMPILE

MAINLIBIU.CODE

RENAME
(in Filer)

LMAIN.LIB

REGUNIT.TEXT

COMPILE

MAIN.TEXT

ASMPROCS.TEXT

ASSEMBLE

INTRINU.TEXT

COMPILE

LINTRINU.CODE

LIBRARIAN·

SYSTEM.LIBRARY

I
I
I

LMAIN.CODE I
I

t I
"----------<EXECUTE LMAIN>---------------'

11-274 Appendix 2C: Overview of Program Preparation Stages

The Host Program

Use the Editor to create a textfile named MAIN containing the following
text:

PROGRAM MAIN;

USES APPLESTUFF,
{ MAINLIBIU is first since REGUNIT uses it also }

{$U LMAIN.LIB} MAINLIBIU, {$U REGUNIT.CODE } REGUNIT,
{$U INTRINU.CDDE} INTRINU;

CONST LENGTH = 89;
VAR I,RESULT,INVAL,IDR:INTEGER;

MSTR:STRING;

{ Return INT multiplied by 2 }
FUNCTION MULT2CINT:INTEGER>:INTEGER; EXTERNAL;

{ Store INT in I if INT >= LENGTH }
PROCEDURE STOREICINT:INTEGER>; EXTERNAL;

BEGIN
WRITEC'Starting main, enter MSTR:'>;
READLNCMSTR);
REGUPROCCMSTR>;
MAINLIBP;
I : = til ;

{$!-} { Turn off system input checking; do it ourselves }
REPEAT

WRITEC'Value to multiply by 2:');
READCINVAL>;
I DR:= IDRESUL T;
READLN

UNTIL IDR=!I;
{$!+}

RESULT:=MULT2CINVAL);
STORE I CRESUL T>;
WRITELNC'l=',I,', RESULT=',RESULT>;
INTRINUPROC;
WRITEC'Press any key:'>;
WHILE NOT KEVPRESS DO ; { Wait for user to press a key }
WRITELNC'Done!')

END.

The Host Program 11-275

The Regular Unit

Use the Editor to create a textfile named REG UNIT containing the following
text:

UNIT REGUNIT;

INTERFACE

{ Regular Units can use Intrinsics but Intrinsics cannot use Regulars }
USES {$U LMAIN.LIB} MAINLIBIU;

PROCEDURE REGUPROCCST:STRING>;

IMPLEMENTATION

External procedures are only allowed in the
implementation parts of units.}

{ Return in SUM the added ASCII values of chars in STR }
PROCEDURE CHKSUMCVAR SUM:INTEGER; STR:STRING>; EXTERNAL;

PROCEDURE REGUPROC;
VAR CSUM:!NTEGER;

BEGIN
CSUM:=il;
CHKSUMCCSUM,ST>;
WRITELNC'ST=',ST,', CHECKSUM=',CSUM>

END;

BEGIN
END.

II-276 Appendix 2C: Overview of Program Preparation Stages

The Intrinsic Units

Use the Editor to create a textfile named MAINLIBIU containing the
following text:

UNIT MAINLIBIU; INTRINSIC CODE 10;
INTERFACE

PROCEDURE MAINLIBP;

IMPLEMENTATION

PROCEDURE MAINLIBP;
BEGIN

WRITELNC'ln mainlibp'>
END;

BEGIN
END.

Use the Editor to create a textfile named INTRINU containing the following
text:

UNIT INTRINU; INTRINSIC CODE 11 DATA 12;

INTERFACE

{ Nested Intrinsic Units}
{ <Regular Units can be nested too.) }

USES {$U LMAIN.LIB} MAINLIBIU;

{ This variable reguires a data segment }
VAR IUSTRING:STRING;

PROCEDURE INTRINUPROC;

IMPLEMENTATION

{ Just to show that Intrinsic Units can
have external procedures and functions. }

PROCEDURE DONOTHING; EXTERNAL;

The Intrinsic Units 11-277

PROCEDURE INTRINUPROC;
BEGIN

WRITELNCIUSTRING>;
WRITELNC'Calling DONOTHING');
DONOTHING;
WRITELNC'Called DONOTHING'>;
MAINLIBP

END;

BEGIN
{ This code is only executed once }

IUSTRING:='Hi, I am an Intrinsic Unit! What are you?'
END.

STRPTR
SUMP TR

11-278

.PROC CHKSUM,2

The Assembly-language Routines

Use the Editor to create a textfile named ASMPROCS containing the
following text:

as defined in Host Program:
PROCEDURE CHKSUMCVAR SUM:INTEGER; STR:STRING>;

EXTERNAL;

.EQU fl) ;Byte pair 0-1

.EQU 2 ;Byte pair 2-3

PLA ;save return address
STA RET
PLA
STA RET+1

;These parameters are pointers.
;The ADDRESS of a string is always passed to
;an external procedure even if the string is not a VAR parameter.
;The ADDRESS of SUM is passed since it is a VAR parameter
PLA
STA STRPTR ;Pointer to STR
PLA
STA STRPTR+1
PLA
STA SUMPTR ;Pointer to SUM
PLA
STA SUMPTR+1

Appendix 2C: Overview of Program Preparation Stages

NXTCHAR

FINISH

SUM
RET

LDY
STY
STY
LDA

BEQ
TAY

LDA
CLC
ADC
STA
LDA
ADC
STA
DEY
BNE

HIJ
SUM
SUM+1
@STRPTR,Y

FIN I SH

;Zero sum and set Y to 0.

;Get length of string. Y is still 0, in case
;we take the branch on zero length string.

@STRPTR,Y ;Start at last char and add sum of all chars.

SUM
SUM
#fa
SUM+1
SUM+1

NXTCHAR ;Add another char if more are left.

;We assume Y is zero on entry to FINISH
LDA
STA
INV
LDA
STA

LDA
PHA
LDA
PHA
RTS

.WORD

.WORD

SUM ;Store the results
@SUMPTR,Y ;low byte

SUM+ 1
@SUMPTR,Y ;high byte

RET+1 ;Go back to caller

RET

.PROC STOREI,1

Pascal declaration is:
PROCEDURE STOREICINT:INTEGER>; EXTERNAL;

.MACRO MOVA DR
LDA %1
STA %2
LDA % 1+1
STA %2+1
.EHDM

The Assembly-Language Routines II-279

ZI
ZRET

RETURN

II-280

;As you will see,
. CONST LENGTH
.PUBLIC I
. PRIVATE PRET

. EQU

.EQU

MOVA DR
MDVADR

LDY
PLA
STA
INV
PLA
STA
DEY

il
2

I I, Zl
RET,ZRET

@ZRET,Y

@ZRET,Y

using these requires the utmost care!
;All 3 of these are in the global data segment

;of MAIN, only PRET is not accessible by MAIN .

;Use macro MOVADR to
;move global addresses into zero page

;Store return address in private global area.
;Low byte.

;High byte.

; If
SEC
PLA
TAX
SBC
INV
PLA
STA
SBC
BCC

INT is >= LENGTH then store it in

;Store
DEY
TXA
STA
LDA
INV
STA

LDA
PHA
DEY
LDA
PHA
RTS

LEN

TMP
LEN+1
RETURN

INT in I

@ZI, Y
TMP

@ZI, Y

@ZRET,Y

@ZRET,Y

;Low byte of INT
; I NT - LENGTH

;High byte of INT

;Branch if INT < LENGTH

;Low byte

;High byte

;High byte.

;Low byte.

Appendix 2C: Overview of Program Preparation Stages

TMP
LEN
I I
RET

RET

.BYTE e

.WORD LENGTH

.WORD I

.WORD PRET

.FUNC MULT2,1

;FUNCTION MULT2CINT:INTEGER>:INTEGER; EXTERNAL;

PLA
STA RET
PLA
STA RET+1

PLA
PLA
PLA
PLA

PLA
ASL A
TAX
PLA
ROL A
PHA
TXA
PHA

LDA RET+1
PHA
LDA RET
PHA
RTS

.WORD

.PROC DONOTHING

RTS

.END

;Store return address

;Pull 4 bytes Function
;filler off stack

;Low byte of INT
;Low byte times 2 and
;high bit into carry.

;High byte times 2 with
;low bit from carry.
;Push result. No check
;for overflow.

;Push return and go
;back to caller.

;This is a simple one just to show that
;Intrinsic Units can have EXTERNAL procs too!

The Assembly-Language Routines II-281

c

Putting the Pieces Together

This section shows the command sequences for generating an executable
codefile named LMAIN.CODE. The messages exchanged between you and
the system are shown, with the responses you type in uppercase and the
messages from the system in lowercase. All sequences start from the main
Command line of the system.

The next command sequence, with a different textfile name, is used several
times during the development of the sample program. When the procedures
below call for the compile sequence, this is what they mean:

Compile what textfile C<ret> to exit) ? MAINLIBIU<RETURN>
To what codefile (<ret> for workfile) ? $<RETURN>
Listing file (<ret> for none or option in source): <RETURN>

F
T

First, compile MAINLIBIU by using the sequence above. Because
MAINLIBIU is an Intrinsic Unit, you might as well put it into a library. For
this example, use the Program Library. The executable codefile is named
LMAIN.CODE, so the Program Library is named LMAIN.LIB. When you
have a library with only one code file in it, you don't need to use the
Librarian. Instead, you can use the following shortcut:

Transfer what file? MAINL!BIU.CODE,LMAIN.LIB<RETURN>
Q

A

Next, you should perform the compile sequence shown above on the files
REGUNIT and INTRINU.

After that you should assemble the assembly procedures. For this example,
all of the assembly procedures are in one file called ASMPROCS.

Assemble what textfile (<ret> to exit) ? ASMPROCS<RETURN>
To what codefile (<ret> for workfile) ? $<RETURN>
Output file for Assembler listing (<ret> for none): <RETURN>

11-282

Now it is time to do the linking. First, link the Intrinsic Unit INTRINU, as
shown below. Note: the lines starting with Opening andReading are
output by the Linker.

Appendix 2C: Overview of Program Preparation Stages

L
Link what host codefile? INTRINU<RETURN>
Opening INTR!NU.CODE
Using what library file? ASMPROCS<RETURN>
Opening ASMPROCS.CODE
Another library file C<ret> for none) ? <RETURN>
Map file (<ret> for none) ? <RETURN>
Reading !NTRINU
Reading CHKSUM
Output file C<ret> for workfile>? LINTR!NU<RETURN>

Next, put this unit into SYSTEM.LIBRARY. Note: the slot tables and some of
the prompts displayed by the Librarian program are not shown here; all
responses are shown in the sequence typed.

x
Execute what file C<ret> to exit) ? #S:LIBRARY<RETURN>
Output file -> SYSTEM.LIBRARY<RETURN>
Input file -> SYSTEM.LIBRARY<RETURN>

N
Input file -> LINTRINU<RETURN>
1<RETURN>
B<RETURN>
2<RETURN>
9<RETURN>
Q

Notice? <RETURN>

Putting the Pieces Together II-283

L

Next you should perform the Compile sequence on MAIN. Once you have
done that, you can do the final link.

Link what host codefile? MAIN<RETURN>
Opening MAIN.CODE
Using what library file? ASMPROCS<RETURN>
Opening ASMPROCS.CODE
Another libarary file (<ret> for none) ? REGUNIT
Opening REGUNIT.CODE
Another library file (<ret> for none) ? <RETURN>
Map file (<ret> for none) ? <RETURN>
Reading MAIN
Reading REGUN IT
Reading CHKSUM
Output file (<ret> for workfile>? LMAIN<RETURN>
Linking REGUNIT #7

Copying proc CHKSUM
Linking MAIN #1

Copying proc STORE!
Copying proc MULT2

II-284

The file produced by the Linker is the executable codefile LMAIN. Type
x LMA r N to execute it.

Figure 2C-2 is a composite picture of the operations involved in creating any
complex program. It shows the different ways you can put a program
together a piece at a time. Compare it with Figure 2C-1, which shows the
program files making up the complex sample. Note that the Compiler
automatically picks up the interface text for embedded units. This means
that those units must be compiled first and the resulting codefiles must be
in some drive when the main program is compiled.

Appendix 2C: Overview of Program Preparation Stages

Figure 2C-2. Overview of Program Preparation

Source
Textfile

I~~
r-~;s-em_b_l~e --

J1
~nits

ource
xtfiles

'

Interface
Text for
Nested

~utines ~~--~--i

Intrinsic
Units

Codefiles

Assembly Codefiles
Routines
Used by

Intrinsic Units

Link Intrinsic
Units with

as Necessary

Linked
Intrinsic

Unit
Co defiles

Use Librarian to
Move Intrinsic Units
into the Appropriate

Library

Regular Unit
Codefiles

Putting the Pieces Together

Interface
Text for all

Units

Assembly Codefiles
Routines

Used by Main

Link Main Program
with Regular and

Assembly Routines

Main
Program
Source
Textfile

Main
Program
Code file

11-285

Appendix 2D Making a Turnkey Disk

II-287

11-288

Making a Tumkey Disk

It is sometimes convenient to have the Apple II start running a user
program as soon as the machine is turned on. A system that works this way
is called a turnkey system, because all the user has to do is turn power on
"turn the key" -and the system comes up running the desired program.
Using the Pascal system, you can set up a disk so that the Apple II will
automatically begin running your program when you insert the turnkey
disk and turn the computer on or restart the system.

To set up a turnkey system with a program you have created on the Pascal
system, you start with a formatted blank disk with a name you will
recognize: for example, TURNKEY:. Using the Filer's Transfer command,
transfer the necessary system files from disk APPLEl: onto TURNKEY:.

Then transfer a copy of your program codefile onto the turnkey disk, giving
this new copy of your program the filename SYSTEM.STARTUP. If your
program uses a Program Library or Library Name File, rename it
SYSTEM.STAR.LIB. Make sure your turnkey disk contains the following
files:

o SYSTEM.APPLE
o SYSTEM.PASCAL
o SYSTEM.MISCINFO
o SYSTEM.STARTUP (your program code file)
o SYSTEM.LIBRARY (if needed by your program)
o SYSTEM.STAR.LIB (if needed by your program)

To run your turnkey program, insert the turnkey disk into the startup drive
and do a cold start by pressing CONTROL-RESET or 6-CONTROL-RESET.
Soon, with no further action on your part, SYSTEM.STARTUP is executed.
Thereafter, the program file you named SYSTEM.STARTUP will be
executed each time the system is restarted, as long as the disk containing
your SYSTEM.STARTUP is in the startup drive.

Appendix 2D: Making a Turnkey Disk

Appendix 2E Making and Using Exec Files

11-289

Il-290

Exec Files

An exec file consists of a series of commands stored in a textfile. When an
exec file is executed, each command included in the file is executed, just as
if you were typing the commands from the keyboard. Exec files are used to
store sequences of commands that must be entered into the system over
and over again.

This section contains an explanation of exec files and an example
demonstrating how to create and execute one.

Using Exec Files

To create an exec file, type M for Make exec from the main Command level.
The system will prompt you with the message

New exec name:

Type the filename you want to give to your exec file, following the same
rules that govern the naming of other Pascal files. Now you will see the
prompt

Terminator=%, change it?

The terminator is a character that is used to signify the beginning and end
of an exec file. The terminator character that marks the beginning of the
file is automatically supplied by the system. Two terminator characters
indicate the end of the file, these must be typed by the user. If you answer
the above prompt by typing N for No, the system will use a percent sign as a
terminator. If you type v, meaning that you want to change the terminator
character, the system will ask for

New terminator:

The character you type becomes the terminator character for that exec file.
The % sign is a commonly used terminator. The system will accept any
character as the terminator character. Note that some keystrokes do not
produce characters, and thus cannot be used as the terminator character.
Do not use control characters as terminators.

Appendix 2E: Making and Using Exec Files

Terminator Characters: The terminator character that signals the
beginning of an exec file is supplied by the system. Do not begin an exec
file by typing the terminator character. If you do, the system-supplied
terminator immediately followed by your typed terminator will be
interpreted as the end-of-file signal and the system will close the exec
file.

Once the system knows what your terminator character is, you can begin
typing the series of commands that will make up your exec file. Commands
will be executed as you type them. To end the exec file, type the terminator
character twice.

Be Aware: The CONTROL-@, CONTROL-S, and CONTROL-F
commands cannot be read into an exec file. If you are using a 40-column
display, the CONTROL-A and CONTROL-Z commands cannot be read into
an exec file.

When you are ready to execute your exec file, type x for Execute from the
main Command level. When the system prompts with

Execute what file C<ret> to exit) ?

you should respond by typing

EXEC/<filename>

The system will start performing the series of commands listed in your exec
file, flashing the prompts and your previously entered responses as it goes.

When using an exec file, you must make sure that the system will be able to
go through exactly the same sequence of events that it went through when
you created the exec file. For example, suppose you create an exec file that
enters the Filer, transfers the file MYFILE.TEXT from disk OLDSTUF to
disk NEWSTUF and then returns to the main Command level. If you later
run your exec file without removing the original disk NEWSTUF from its
disk drive, the system would find MYFILE.TEXT already present on that
disk. Consequently, the system will ask

Remove old NEWSTUF:MYFILE ?

This is a question that was not asked when the exec file was created. The
system will use as its response the next character in the exec file which, in
this case, happens to be G for Quit. In order for the system to remove a file
under these conditions, it must receive an N for No or av for Yes as the
response to the above question. Thus, the old version of MYFILE will not be
removed and the new version of MYFILE will not be transferred. Because
the G was used to respond to this question, the exec file never uses the G to

Exec Files Il-291

II-292

Quit the Filer and the exec file closes with the system still at the Filer level.
Thus, when creating an exec file, you must make sure that the steps the
system goes through will not change from one execution to another.

There is no way to stop the execution of an exec file part way through
except by pressing CONTROL-RESET. You can use the control command
CONTROL-S to stop or freeze the output on the screen temporarily. The
control command CONTROL-F flushes the output: the program continues to
run but its output is not sent to the screen.

The keyboard remains open during the execution of an exec file. Thus
characters that you enter while an exec file is running are saved and then
used as console input once the exec file is closed.

If you use the Make command to create an exec file on a disk that already
has a file with the name you have given your exec file, the system will
eliminate the original file when you close the new exec file.

If you run a Pascal program while you are making an exec file, typed
responses to any UNITREAD procedures specifying unit 1 or unit 2
(CONSOLE:) are used by the Pascal program, but are not stored in the exec
file. The KEYPRESS function also will take its input from the console and
not from the exec file. READ, READLN, and GET procedures will take their
input from the exec file, if reading from the standard file INPUT.

The system error routine will close an open exec file if an error occurs while
the system is getting console input from the exec file.

Exec files may execute other exec files but control will not be returned to
the first exec file.

It is not permissible to create an exec file from within another exec file. If
you try, the system will warn you that

Nested exec commands illegal

After you see this message, you can continue entering commands into the
exec file.

Editing Exec Files

There are some conditions under which you may want to create your exec
file by using the Editor rather than the Make exec command. Suppose, for
example, that you want to create an exec file that will transfer several files
to the printer. If you were to use the Make exec command to create the file,
it would be necessary for you to wait at your terminal while each of the files

Appendix 2E: Making and Using Exec Files

is actually sent to the printer. A more sensible approach would be to create
the exec file in the Editor. Remember, however, that the exec file you create
must include every character required by each command. Forgetting to
include a single keystroke, such as a carriage return, will prevent the proper
execution of your exec file. If you do use the Editor to create an exec file,
make sure that you begin the file with a single terminator character and
end the file with two terminator characters .

.& Warning I The Editor will not put certain special characters, such as CONTROL-C,
into its text. Thus you cannot use the Editor to create an exec file that
creates a textfile.

If you decide to edit an existing exec file, you will notice that certain
characters, such as <backspace>, are included in the exec file but do not
appear on the screen. For this reason, exec files are often difficult to edit.

A Sample Exec File

Suppose you want to create an exec file that removes all the files on
whatever disk is in drive #5: and then copies all the files from the disk in
drive #4: onto the disk in drive #5:. To start making your exec file, type M

for Make from the Command level. The system will prompt you with the
message

New exec name:

In response, type

NEWSTUF:UPDATE

You have just started an exec file named UPDATE that will be saved on
disk NEWSTUF. Next the system will ask:

Terminator=%, change it?

Respond by typing N. Entering this response tells the system that the
terminator character used to signal the beginning and end of the exec file
will remain the percent sign.

Exec Files II-293

11-294

Now you are ready to enter the list of commands that will make up your
exec file.

Keystrokes

F

R

#5:=

RETURN
SPACE
SPACE
SPACE
y

T

#4:=

RETURN
#5:=

RETURN
Q

Explanation

Enter Filer
Execute Remove command
Response to prompt: Remove what f i 1 e? telling
the system to remove all files on the disk in drive #5:
RETURN ending the previous response
To handle Pre55 5pace to continue

prompts

Response to prompt: Update directory?

Execute Transfer command
Response to prompt: Tran5fer what file?

RETURN ending the previous response
Response to prompt: To where?

RETURN ending the previous response
Exit from the Filer
Terminator characters indicating the end of the exec
file

Note that each of these commands is executed in the normal fashion when
it is typed into the exec file, Thus, after the above list of commands is
carried out, the files on the disk in drive #5: will be replaced by copies of
the files on the disk in drive #4:.

When you are ready to execute the exec file, type x for Execute from the
Command Level, then type

EXEC/HEWSTUFiUPDATE

You then will see the system enter the Filer, Remove the files from disk in
drive #5:, transfer all the files from the disk in drive #4: to the disk in
drive #5:, and return to the Command level.

Appendix 2E: Making and Using Exec Files

Appendix2F Demonstration Programs

11-295

11-296

Introduction

This appendix presents a graphics program that is described in a narrative
explanation and comments in the source text. The graphics program is
followed by commentaries on the demonstration programs supplied with
Apple Pascal.

By the Way: The demonstration programs included here are intended as
examples that you can run without modification while simultaneously
providing you with the opportunity to study the accompanying source
text. They are not intended to be models of the best possible
programming technique. With this caution in mind, use the programs as
learning tools. One of the best ways to learn might be to try introducing
modifications into one of them.

An Annotated Graphics Program

The following demonstration program, PATTERNS, is intended to illustrate
some helpful points about Apple Pascal. The program creates pleasant
graphics by drawing a triangle on the screen and then repeatedly rotating it
by a few degrees and redrawing it. The points of the triangle are always on
the edge of an invisible circle of radius 95 (which fills the height of the
screen) but apart from that it is a random triangle. The angle by which it is
rotated each time it is drawn is also random, though it is always between 3
and 15 degrees.

The color used to draw the triangle is REVERSE, which has intriguing
effects when one image is drawn over another and the lines intersect at
small angles. Also, as the triangle is repeatedly rotated and redrawn a
circular pattern is built up; but eventually the triangle gets rotated back to
its original position. When this happens, each new image is exactly
superimposed on an old one. Because of the REVERSE color, this erases the
old image! When all the old images have been erased, the program clears
the screen, generates a new triangle with a different shape, and starts all
over.

This repetition continues until the user signals it to halt by pressing any
key. The KEYPRESS function, in the APPLESTUFF unit, can be used to
find out whether the user has pressed a key. (KEYPRESS is described in
Chapter 16of Part III.)

Appendix 2F: Demonstration Programs

What follows is a description of how a program like this can be developed.

This is a fairly complicated program, so we will develop it in sections. First
we can write a sketchy outline of the program:

BEGIN

REPEAT
{*Create a random triangular pattern*);
THETA:=(*random number from 3 to 15~)

REPEAT
(*Rotate the triangle, using the angle THETA*);
C*Draw the rotated triangle on the screen*>

UNTIL {*Complete pattern has been erased*)
UNTIL KEVPRESS

END.

To fill in this outline, we begin with a program heading, a USES declaration,
some useful constants, two variable declarations, and a skeleton of the
inner REPEAT statement:

PROGRAM PATTERNS;
USES TURTLEGRAPHICS,APPLESTUFF;

CONST MAXX=28B; MAXV=191; (*Maximum X and V coordinates*)
RADIUSz95; (*Radius of pattern*)

VAR CYCLES :!IJ. . 2;
THETA:3 •. 15;

BEGIN
REPEAT

(*Create a random triangular pattern*);
THETA:=(*random number from 3 to 15*);
CVCLES:sf/l
REPEAT

(*Rotate the triangle, using the angle THETA*>;
PENCOLORCREVERSE>;
C*Draw the rotated triangle on the screen*>;
IF C*the rotated triangle matches the original triangle*)

THEN CVCLES:~CVCLES+1

UNTIL CVCLES=2
UNTIL KEVPRESS

END.

An Annotated Graphics Program II-297

Il-298

The variable CYCLES is a counter for the number of times the triangle has
been rotated back to its original position. When CYCLES= 1, the circular
pattern begins to be erased because each new triangle is drawn in the
REVERSE color on top of a previous triangle. When CYCLES=2, the entire
pattern has been erased.

We can now begin replacing comments with actual statements. For
example, we already have a variable, THETA, which is the number of
degrees to rotate the pattern. So it is natural to replace the first comment in
the inner REPEAT with a call to a procedure named ROTATE, which takes
an INTEGER parameter. The value used for the parameter will be the
variable THETA. ROT ATE will need to be declared; now we have

PROCEDURE ROTATECANGLE:INTEGER>;
C*To be completed ... *)

BEGIN
REPEAT

(*Create a random triangular pattern*};

THETA:=C*random number from 3 to 15*);

CYCLES: =Ill
REPEAT

ROTATE<THETA);

To draw the triangle on the screen, we must first consider how the triangle
is represented in memory. We can think of the triangle as three points; how
shall we represent a point? A point can be represented by two rt umbers -
an X and a Y coordinate. Therefore we can define a type POINT, as shown
below. Then we can represent the triangle as an array named TRGL, of type
POINT. We will also declare a variable C to use as an index for the array
TRGL.

TYPE POINT=RECORD X:0 .. MAXX;
Y:l'J .. MAXY

END;

VAR CYCLES:il .. 2;
THETA:3 .. 15;
TRGL:ARRAYC1 .. 3l OF POINT;
C: 1. .3;

Appendix 2F: Demonstration Programs

Assuming that the ROT ATE procedure leaves the rotated coordinates in the
array TRGL and that it leaves the turtle at the third corner of the triangle,
we can use Cartesian graphics to draw the new triangle:

PENCOLORCREVERSE>;
FOR C:=1 TO 3 DO MOVETOCTRGLCCJ.X, TRGLCCJ.Y>;

The remaining comment in the inner REPEAT statement calls for testing
whether the rotated triangle matches the original one. To achieve this,
assume that when the triangle is first created the coordinates of the third
corner are saved in a variable named CORNER. Now we need only test as
follows:

IF TRGLC3l=CORNER THEN CYCLES:=CYCLES~1

At this point, the program is as follows:

PROGRAM PATTERNS;
USES TURTLEGRAPHICS,APPLESTUFF;

CONST MAXX•280; MAXY=191; <*Maximum X and Y coordinatesfi)
RADIUS=95; <*Radius of patternfi)

TYPE POINT=RECORD X:S .. MAXX;
Y:S .. MAXY

END;

VAR CYCLES:fll .. 2;
THETA:3 .. 15;
TRGL:ARRAYC1 .. 3J OF POINT;
c: 1. .3;
CORNER:POINT;

PROCEDURE ROTATECANGLE:INTEGER>;
c~To be completed; must leave new corner coordinates

in TRGL and leave turtle at third corner.*)

An Annotated Graphics Program 11-299

BEGIN
REPEAT

(*Create a random triangular pattern*);
THETA:=C~random number from 3 to 15*);
CVCLES:=!ll
REPEAT

ROTATECTHETA>;
PENCOLORCREVERSE);
FOR C:=1 TO 3 DO MOVETOCTRGLCCJ.X, TRGLCCJ.V);
IF TRGLC3l=CORNER THEN CVCLES:=CVCLES+1

UNTIL CVCLES=2
UNTIL KEVPRESS

END.

The inner REPEAT statement will repeatedly rotate the triangle and draw
it, using the REVERSE color, building up a circular pattern on the screen
and then erasing it by drawing over it. When the pattern has been erased,
the inner REPEAT terminates.

Now we can begin filling in the outer REPEAT. The statements added to the
outer REPEAT require another procedure, MAKETRGL, and a function,
ARBITRARY.

FUNCTION ARBITRARVCLOW, HIGH:INTEGER>:INTEGER;
(*To be completed; must return an integer value in the

range LOW .. HIGH.*)

PROCEDURE MAKETRGL;
C*To be completed; must leave corner coordinates in TRGL

and also initialize CORNER with coordinates of third
corner.*)

BEGIN
REPEAT

MAKETRGL;
THETA:=ARBITRARVC3,
CYCLES:=!ll;
REPEAT

ROTATECTHETA>;
PENCOLORCREVERSE>;

(*Make triangular pattern*)
15>; <*Choose angle for rotating triangle*)

(*Clear the cycle counter*)

FOR C:=1 TO 3 DO MOVETOCTRGLCCJ.X, TRGLCCJ.V>;
IF TRGLC3l=CORNER THEN CVCLES:=CVCLES+1

UNT! L CVCLES=2
UNTIL KEVPRESS

END.

11-300 Appendix 2F: Demonstration Programs

VAR CYCLES: fl •• 2;
THETA:3 .. 15;

The outer REPEAT first calls MAKETRGL. This procedure, still to be
defined, chooses three random points on a circle of radius 95 and stores
their coordinates in the array TRGL. It also stores the coordinates of the
third corner in the variable CORNER.

Next, the function ARBITRARY is used to assign a random value to THETA,
the number of degrees to rotate the triangle.

The main program is nearly complete. It remains only to add one new
variable named CENTER (of type POINT), and a few initializing statements
before the outer REPEAT:

TRGL:ARRAYC1 .. 31 OF POINT;
c: 1 .. 3;
CORNER:POINT;
CENTER:POINT;

BEGIN
RANDOMIZE;

INITTURTLE;
CENTER.X:=TURTLEX;
CENTER.V:=TURTLEV;

REPEAT

REPEAT

UNTIL CYCLES=2
UNTIL KEVPRESS

END.

(*To get a different seguence each time
program is executed*)

<*Always do this to use TURTLEGRAPHICS*>
C*The turtle is at the center because

!NITTURTLE leaves it there. Save
its coordinates in CENTER.*)

The main program is complete, and now we must define the two procedures
MAKETRGL and ROTATE and the function ARBITRARY.

The ARBITRARY function is a simplified version of the RANDl function
described in "Using the RANDOM Function" in Chapter 6 of Part III.

RANDI handles unacceptable parameters by setting a VAR parameter of
type BOOLEAN. ARBITRARY does not need this error-handling capability
because it will always be called with constants as parameters. Similarly,

An Annotated Graphics Program 11-301

VAR I: 1 .. 3;

FOR 1:=1 TO 3 DO BEGIN

RANDI has a special provision for the case where the HIGH and LOW
parameters are equal; ARBITRARY does not have this provision, and HIGH
must be strictly greater than LOW.

In other respects, ARBITRARY is the same as RANDl. Incidentally, the
complexity of the calculation in both versions is due to the fact that two
numbers cannot be added or subtracted if the result would exceed the value
MAXINT (32767). The function has to get around this limitation by using
the intermediate value MX.

The MAKETRGL procedure must choose three random points on a circle of
radius 95, with its center at CENTER. To select three random points, the
following method is used:

(*Move the turtle to the CENTER point:*)
MOVETOCCENTER.X, CENTER.V>;

(*Select a random direction to move the turtle away from CENTER,
and store this angle in an array named DIRECTION; this array will
need to be declared:*)
DIRECTIONCil:=ARBITRARVC0,359);

(*Turn the turtle in the selected direction:*)
TURNTOCDIRECTIONC!l);

(*Move out to the edge of the circle:*)
MOVECRADIUS>;

(*Store the turtle's coordinates in the TRGL array:*)
TRGLCil.X:=TURTLEX;
TRGLCil.V:=TURTLEV

END

II-302

The DIRECTION array will be used by the ROTATE procedure, so it will
need to be declared at the beginning of the program -not within the
MAKETRGL procedure.

Because we don't want to draw anything at this point, we set the color to
NONE before starting the FOR statement. After three times through the
FOR statement, the turtle is at the third corner of the triangle, so we save its

Appendix 2F: Demonstration Programs

position in the CORNER variable for use in the main program. The complete
procedure is

PROCEDURE MAKETRGL;
VAR !:1 .. 3;
BEGIN

PENCOLORCNONE>;
FOR 1:=1 TO 3 DO BEGIN

MOVETOCCENTER.X, CENTER.Y>;
DIRECTION[J]:=ARBITRARYC0, 359>;

TURNTOCDIRECTIONC!l;
MOVECRADIUS>;
TRGL[!l.X:=TURTLEX;
TRGL[!l.Y:=TURTLEY

END;
CORNER.X:=TURTLEX;
CORNER.Y:=TURTLEY

END;

The ROTATE procedure works very much like the MAKETRGL procedure,
but instead of using random angles it uses the angles found in the
DIRECTION array -after adding ANGLE to each of them and taking the
result MOD 360. It stores the resulting points in the TRGL array, but does
not change CORNER. The effect is to replace each point in TRGL with a
new point created by rotation through ANGLE degrees. The complete
ROT ATE procedure is

PROCEDURE ROTATECANGLE:INTEGER>;
VAR 1:1 .. 3;

BEGIN
PENCOLOR<NONE>;
FOR !:=1 TO 3 DO BEGIN

MOVETOCCENTER.X, CENTER.Y);
DIRECTIONCil:=CD!RECT!ONCIJ+ANGLf) MOD 360;

TURNTO CDIRECTION[ll>;
MOVE <RAD l US>;
TRGLCIJ.X:=TURTLEX;
TRGLC!l.Y:=TURTLEY

END
END;

Note that the MOD 360 operation is necessary because if the program ran
for a long time, the result of DIRECTION[!]+ ANGLE could eventually
exceed MAXINT and cause a run-time error.

An Annotated Graphics Program II-303

II-304

All that remains is to declare the array DIRECTION:

DIRECTIOH:ARRAY[1 .. 3] OF INTEGER;

Other Demonstration Programs

A set of demonstration programs is supplied with the Pascal system.
Although these programs are not fully annotated, they are worth study by
students of Pascal. The following are brief descriptions of the programs.

The .TEXT version of each program has been included on the APPLE3: disk
so that you can read the program's text into the Editor to see how the
program was written and to try modifications of your own. To execute the
programs, you will have to compile them first.

Disk Files Needed

The following disk files allow you to execute the various demonstration
programs. The notation xxxxxx stands for the name of a particular
demonstration program.

xxxxxx.CODE (any disk, any drive)
SYSTEM.LIBRARY (system disk, startup drive)
SYSTEM.CHARSET (any disk, #4: or #5: ; required if WCHAR or

WSTRING used)

If you just wish to examine the text version of a demonstration program,
there are two ways to proceed:

o For a quick look, put disk APPLE3: in any available drive, and then use
the Filer to Transfer the desired program's .TEXT file from APPLE3: to
CONSOLE:. To stop the program's listing on the screen, press CTRL-S.
Press CTRL-S again to continue.

o To examine the text in more detail, you can Edit the program's . TEXT
file.

One 51/4alnch Disk Drive I Use the Filer to Transfer the program's textfile from APPLE3: to your
system disk, APPLEO: or APPLEl:. Then Edit the file.

Appendix 2F: Demonstration Programs

If you wish to modify, compile, and execute a new version of a
demonstration program, the following diskfiles will be needed:

xxxxxx. TEXT (any disk, any drive; required only until read into
Editor)
(any disk, any drive)
(any disk, any drive)

SYSTEM.EDITOR
SYSTEM.COMPILER
SYSTEM.SYNTAX (same disk as Editor, any drive; optional Compiler

error messages)
SYSTEM.PASCAL
SYSTEM.LIBRARY
SYSTEM.CHARS ET

The Tree Program

(system disk, startup drive)
(system disk, startup drive)
(any disk, #4: or #5: ; required if WCHAR or
WSTRING used)

TREE shows the creation of an unbalanced binary tree to sort and retrieve
data elements (words, in this case). It lets you specify each new word to be
stored in the tree, and then shows you graphically just where the new word
was placed in the tree.

When you execute TREE.CODE, you are prompted to

ENTER WORD:

To quit the program at any time, you can just press RETURN in response to
this message. To continue, you should type the first word to be sorted (only
the first six characters are used). For example, you might type

FLIPPV

The program then lists the words entered so far, in alphabetical order.

THE WORDS IN ORDER ARE:
FLIPPY

No prompt appears, but you must press RETURN to proceed. When you do,
a picture is displayed, showing the binary tree as it now exists.

I
1--------1
I FLIPPY I
1--------1

I

\
\

Other Demonstration Programs 11-305

11-306

The box represents the binary tree's first "node," or sorting element. The
node has two "links," which can point the way to further nodes: the upper
link in the display can point to nodes that precede this node alphabetically,
whereas the lower link can point to nodes that follow this node
alphabetically.

To continue, press RETURN again. Again you are prompted to

ENTER WORD:

Suppose you now type

APPLE

The program responds

The words in order are:

APPLE
FLIPPV

and when you press RETURN, another picture of the binary tree is
displayed.

I
I

1--------1
I I APPLE I

I 1--------1
1--------1 \
I FLIPPY I \
1--------1

\
\

This is how the word APPLE is placed in the binary tree. The word APPLE
is compared to the word in the first node, FLIPPY. BecauseAPPLEprecedes
FLIPPY, alphabetically, the search continues by following the first node's
upper link. If another node is found at the end of that link, APPLE is
compared to the word in that node, and the search continues by following
that node's appropriate link. The search continues until, on following an
appropriate link, no node is found with which to compare APPLE. At that
point on the tree, a new node is created, containing APPLE.

Retrieving the words to list them in alphabetical order is harder to describe,
although the algorithm is fairly simple.

Appendix 2F: Demonstration Programs

1. Starting at the root node, FLIPPY, follow the tree taking only the upper
link from each node, until a node is found whose upper link does not
connect to a further node. The word in this node is the first word,
alphabetically, so print it.

2. Now follow this node's lower link.
o If a node is connected to the link, follow the tree taking only the

upper link from each node, until a node is found whose upper link
does not connect to a further node. Print that node's word as the next
one in alphabetic order, and repeat step 2.

o If no further node is connected to the link, go back down the tree to
the node whose upper link led to this node. Print that node's word as
the next one in alphabetic order, and repeat step 2. (If no link or a
lower link led to this node, the list is complete.)

Remember, to quit this program just press RETURN in response to the
message

ENTER WORD:

Caution: You must press RETURN twice between each word entry
(whether or not you wish to see the tree diagrammed). But if you press
RETURN three times, the program is terminated and your list is lost
forever.

Program TREE contains examples of the following:

o Inserting elements into an unbalanced binary tree (INSERTIT)
o Retrieving elements in order from such a tree (PRINTTREE)

The BALANCED Program

BALANCED is identical to TREE, except that it stores words by creating a
balanced binary tree. It is taken from an example shown on page 215 of the
book Algorithms+ Data Structures= Programs, by Nicklaus Wirth
(Prentice-Hall, 1976). An AVL-BALANCED BINARY TREE is rearranged
after each element insertion to ensure that, of the two branches at any
node, one branch is at most one node longer than the other branch. This
method of element insertion is slower than for an unbalanced tree, but
subsequent retrieval of elements is faster.

Other Demonstration Programs II-307

Jl-308

Read the description of the TREE demonstration program for details about
using this program. New words are added to the BALANCED tree in the
same way described for the unbalanced TREE, but the rearrangement of the
BALANCED tree following an insertion is more complex. The words are
retrieved in alphabetic order identically in the two programs.

The CROSSREF Program

CROSSREF is an example of a textual cross-reference generator using an
unbalanced binary tree to store and sort words. It is taken from an example
shown on page 206 of the book Algorithms + Data Structures =

Programs, by Nicklaus Wirth (Prentice-Hall, 1976).

When you execute CROSSREF.CODE, you are prompted for the name of an

Input File?

Respond by typing the filename of a text file that you wish cross-referenced,
on any available disk. It is not necessary to specify the filename's .TEXT
suffix. For example, you might type

APPLE9:MVSTUFF

The program then prompts you to specify a

Destination File?

for the resulting cross-referenced list. You should respond by typing

CONSOLE:

if you want the list to appear on the screen, or

PRINTER:

if you want the list to be printed on your printer (which must be connected
and turned on).

First, the INPUT textfile is displayed on the screen or printed, with each
line of text numbered. The words of the text are then stored in alphabetic
order in a binary tree, one word to each node. A word is defined as
beginning with an alphabetic character and containing all subsequent
characters until the next nonalphanumeric character. Finally, the text's
words are displayed or printed in alphabetic order, each word followed by
the text line numbers where that word appears.

Appendix 2F: Demonstration Programs

Program CROSSREF contains examples of the following:

o Set membership (TYPE defines items of the tree structure)
o Sorting into a binary tree
o Listing from a binary tree (PRINTTREE, also shows recursion)

For more information about tree-sorting, see the demonstration programs
TREE and BALANCED.

The SPIRODEMO Program

SPIRODEMO demonstrates the basic TURTLEGRAPHICS maneuver: move
the pen in a straight line, turn, move again in a straight line, turn again, and
soon.

The program lets you specify an ANGLE and a CHANGE, and then draws a
pattern on the screen. To make the pattern, SPIRODEMO moves the pen
one unit, turns through ANGLE, moves 1 +CHANGE, turns ANGLE, moves
1 +CHANGE+CHANGE, turns ANGLE, and so on.

When you execute SPIRODEMO.CODE, this message appears:
WELCOME TO WHILEPLOT
ENTER ANGLE 0 TO QUIT.

ANGLE:

If you wish to leave the program at any time, just wait until this prompt is
displayed, and then respond by typing a zero and pressing RETURN. If you
want to continue, type any positive or negative integer to specify the angle
(in degrees) through which you wish the TURTLEGRAPHICS pen to turn
between each move. For example, you might respond by typing

89

This tells the pen to turn clockwise, slightly less than a right angle between
each move. Now you are asked to specify a

CHANGE:

Starting with a straight-line pen move of one unit, each subsequent move
will increase in length by an amount specified by CHANGE. You must
respond by typing a positive integer greater than zero. For example, to make
each line one unit longer than the previous line, you would type

Other Demonstration Programs II-309

II-310

When you press RETURN, program SPIRODEMO (alias WHILEPLOT)
begins to draw its design on the screen, using the parameters that you
specified.

On completion of the design, the program continues to display the design
until you press any key on the Apple's keyboard. Just press the SPACE bar,
and the original prompt will replace the design on the screen. You are then
ready to specify a new CHANGE and DISTANCE for another design (or
specify an ANGLE of zero to quit the program).

I Caution: This program is terminated if the first character of an ANGLE
or CHANGE response is not a plus sign, a minus sign, or a numeric digit.

Program SPIRODEMO contains examples of the following:

o Using the TURTLEGRAPHICS unit, including the KEYPRESS function
o Reading the keyboard buffer without echoing on the screen

The HILBERT Program

HILBERT shows a historically famous example of recursion, using a
space-filling design to create an attractive display on the screen.

You can determine the density of the space-filling design by specifying an
integer ORDER from 1 through 7.

When you execute HILBERT.CODE, this message appears:

Enter ORDER 0 to quit.

ORDER:

If you wish to quit the program at any time, wait until this message appears,
and then type a zero. If you wish to continue, you must type an integer from
1 through 7. An ORDER of 1 fills the space most "loosely," taking barely one
repetition of the design to fill the screen. Each higher order fills the screen
more and more densely, by repeating the basic design on a smaller and
smaller scale. Order 7 fills the screen to solid white, and takes quite a long
time doing it. There is no way to stop a display while it is being created,
except to press CONTROL-RESET. To get the idea, respond by typing

4

Appendix 2F: Demonstration Programs

On completion of the design, the program continues to display the design
until you press any key on the Apple's keyboard. Just press the Apple's
SPACE bar, and the original prompt message will replace the design on the
screen. You are then ready to specify a new ORDER for another design (or
specify an ORDER of zero to quit the program).

I Caution: This program is terminated if the ORDER response is not a
numeric digit from 1 through 7.

The GRAFDEMO Program

GRAFDEMO is a collection of interesting graphic displays generated by a
number of very useful procedures.

The program runs without any interaction; just watch the pictures and then
study GRAFDEMO.TEXT to see examples of how these things can be done
using TURTLEGRAPHICS. You may even find it handy to use some of
GRAFDEMO's procedures directly, in your own programs.

When you execute GRAFDEMO.CODE, this message appears:

Press any key to guit.
Please wait while creating butterfly

Just wait; soon you will see butterflies and many other pictures. Pressing
any key on the Apple keyboard will terminate this program on completion
of whichever display is currently being created.

Program GRAFDEMO contains examples of the following:

o Using TURTLEGRAPHICS to draw frames, crosshatching, and so on
o Creation of an array (BUTTER) for use by procedure DRA WBLOCK
o Handling of a procedure that is too long, by breaking it into smaller parts

(BUTTER) and calling those parts from another procedure
(INITBUTTER)

The GRAFCHARS Program
GRAFCHARS shows the characters found in the file SYSTEM.CHARSET,
and their use from TURTLEGRAPHICS. The program runs without
interaction.

Other Demonstration Programs 11-311

Il-312

When you execute GRAFCHARS.CODE,this message appears:

PRESS RETURN FOR MORE ...

From here on, each time you press RETURN another display is placed on
the screen. The first display shows all the characters available in
SYSTEM.CHARSET . When you have examined any display to your
satisfaction, just press RETURN again to go on to the next display.

Program GRAFCHARS contains examples of the following:

o All the uppercase, lowercase and special characters available through
TURTLEGRAPHICS

o Use of TURTLEGRAPHICS' WCHAR and WSTRING functions
o How to put a border around a string (BOXSTRING)
o Use of CHARMODE to keep the characters' boundaries from interfering

with the background

The DISKIO Program

DISKIO shows a sample use of random-access disk files, with
terminal-independent output.

I
By the Way: This program is not a real application, and it is definitely
not a database manager. Its only purpose is to demonstrate some of the
principles that would be involved in writing a real file-handling program.

When you execute DISKIO.CODE, you are asked to specify a

File name:

You should type a valid diskfile identifier. For example, you might respond
by typing

APPLEB:MYFILE.TEXT

The program looks on the specified disk (or the default disk) for a file with
the specified filename. If an existing file by that name is found, it is opened
and the main program command prompt line is displayed. If no file by that
name is found, the program asks if it should

Start a new file?

Appendix 2F: Demonstration Programs

If you type N for No, you will again be asked to type a filename. You can exit
from the program at this point by pressing RETURN. If you type v for Yes,
the program asks

Reserve how many records?

Respond by typing an integer that specifies the number of records your new
file will initially contain. For example, if you type 6 your new file will start
out containing seven records, numbered 0 through 6.

Now the program's main command prompt line appears on the screen:

VCiew CChange NCext FCile QCuit

Typing a v for View causes this message to appear:

View which record?

You should respond by typing a number from zero through the maximum
record number in your file. For instance, typing s lets you view the contents
of record number 5.

If you then wish to view the contents of the next record, type N for Next. In
this way, you can look at as many records as you wish.

Typing a c for Change causes this message to appear:

Change which record?

Again, you should respond by typing a number from zero through the
maximum record number in your file. For instance, typing s lets you
change the contents of record number 5. To change an entry, just start
typing. To leave an entry as it is, and go on to the next entry, just press
RETURN.

If you then wish to change the contents of the next record, type N for Next.
In this way, you can change as many records as you wish.

If the Next command takes you beyond the last record specified for your
file, the program will attempt to extend the file by appending additional
records. This is possible if

o There is room for the record in the current last block of the file;
o The next contiguous block on the disk is available for use by this file.

If it is not possible to extend your file, a message appears to inform you of
the problem. You can then type a to Quit this program, enter the Filer, and
move files on the disk until your file has a few free blocks immediately
following it. (Use the Filer's Extended-directory command to see the
locations of free blocks.) Then you are ready to execute DISKIO again, and
extend your file with additional records.

Other Demonstration Programs II-313

II-314

Typing F for File, in response to the main command prompt line, lets you
start a new file or reopen another old file. As at the beginning, you are asked
for a

File name:

Again, you can exit from this part of the program by pressing RETURN.

Program DIS KIO contains examples of the following:

o Terminal-independent output, by reading the file SYSTEM.MISCINFO
and using the terminal setup parameters found there (GETCRTINFO)

o Bullet-proof character input (GETCHAR)
o Bullet-proof string input, with defaults
o Use of random-access disk files and system procedure SEEK
o How to extend a disk file in place.

Appendix 2F: Demonstration Programs

Appendix 2G Pascal 1/0 Device Volumes

II-315

The Apple II Pascal system assigns standard volume numbers and volume
names to the various input/output devices as shown in the following table.

Table 2G-1. Pascal I/O Device Volumes

Pascal Volume Number

#():

#l:

#2:

#3:

#4:

#5:

#6:

#7:

#8:

#9:

#10:

#ll:

#12:

II-316

Pascal Volume Name

CONSOLE:

SYS TERM:

<disk name>:

<disk name>:

PRINTER:

REMIN:

REMO UT:

<disk name>:

<disk name>:

<disk name>:

<disk name>:

Description of 1/0 Device

(not used)

Screen and keyboard (echo on input)

Screen and keyboard (no echo on input)

(not used)

Startup drive (slot 4, 5, or 6, drivel; or internal drive on
an Apple Ile)

2nd disk drive (same slot as #4:, drive 2; or external port
on an Apple Ile)

Printer (card in slot 1)

Remote input (card in slot 2)

Remote output (card in slot 2)

(slot 4, 5, or 6, drive 1)

(same slot as #9:, drive 2)

(slot 4, 5, or 6, drive 1)

(same slot as #ll:, drive 2)

Appendix 2G: Pascal 1/0 Device Volumes

Appendix 2H Error Messages

11-317

II-318

Execution Error Messages

When an error is detected during execution of a user program, it is reported
in one of the following forms:

By Number:

Execution error #6
S# 1 , P# 7, I# 56
Pre55 <5pace> to continue

By Name:

Divide by Zero
S# 1 , P# 7, l# 56
Pre55 <5pace> to continue

The first line of the message reports the error by number or by a short
description. The second line of the message gives the location in the
program where the error was detected. The number after s 1 is the segment
number, the number after p1 is the procedure number within that segment,
and the number after r 1 is the byte offset in that procedure. The Compiler
will list segment, procedure, and byte-offset information when you compile
a program. See Chapter 5.

After you press the SPACE bar to continue, the system will reinitialize itself
by invoking the system Initialize command. Some errors force you to
perform a cold start of the system by asking you to press CONTROL-RESET
instead of the SPACE bar.

Error
Number Error Message

1 Value range error
2 No procedure in segment table
3 Exit from uncalled procedure
4 Stack overflow
5 Integer overflow
6 Divide by zero
7 NIL pointer reference
8 Program interrupted by user
9 System I/O error

Appendix 2H: Error Messages

Error
Number Error Message

10 I/O error (This error is further reported as an I/O error. See
table of I/O error messages, below.)

11 Unimplemented instruction
12 Floating-point error
13 String overflow
14 Programmed HALT
15 Programmed break-point
16 Codespace overflow

For a discussion of Execution Errors #4and#16, see Chapter 1 of Part IV.

i/0 Error Messages

When an I/O error occurs during execution of a user program, it is reported
in one of the following forms:

By Number:

Execution error #10

1/0 error #9

S# 1, P# 7, I fl 57

Press <space> to CoDtinue

By Name:

I/O error: Volume not found
SH 1 , P# 7, I# 57

Pre5s <5pace> to continue

See Part III for information about the Apple Pascal function IORESULT,
which returns the error numbers shown below.

Error
Number Error Message

1 Parity (CRC)
2 Illegal volume number
3 Illegal I/O request
4 Data-com timeout
5 Volume went off line
6 File lost in directory

1/0 Error Messages II-319

Il-320

Error
Number Error Message

7 Bad filename
8 No room on volume
9 Volume not found
10 File not found
11 Duplicate directory entry
12 File already open
13 File not open
14 Bad input format
16 Disk write-protected
17 Illegal block number
18 Illegal buffer address
19 Must read a multiple of 512 bytes
20 Unknown ProFile error
64 Device error

Assembler Error Messages

When the Pascal Assembler discovers an error in your assembly-language
routine, it displays an error message taken from the file 6502.ERRORS. If
the file 6502.ERRORS is not available on the disk containing
SYSTEM.ASSMBLER, the Assembler will report errors by number only.

The error message for each Assembler error number is given in the table
below. If you wish, you can gain some additional disk space by removing
the file 6502.ERRORS and looking up error numbers in this table.

Error
Number Error Message

1 Undefined label
2 Operand out of range
3 Must have procedure name
4 Number of parameters expected
5 Extra garbage on line
6 Input line over 80 characters
7 Not enough .IF's
8 Must be declared in .ASECT before used

Appendix 2H: Error Messages

Error
Number Error Message

9 Identifier previously declared
10 Improper format
11 .EQU expected
12 Must .EQU before use if not to a label
13 Macro identifier expected
14 Word addressed machine
15 Backward .ORG currently not allowed
16 Identifier expected
17 Constant expected
18 Invalid structure
19 Extra special symbol
20 Branch too far
21 Variable not PC relative
22 Illegal macro parameter index
23 Not enough macro parameters
24 Operand not absolute
25 Illegal use of special symbols
26 Ill-formed expression
27 Not enough operands
28 Cannot handle this relative expression
29 Constant overflow
30 Illegal decimal constant
31 Illegal octal constant
32 Illegal binary constant
33 Invalid key word
34 Macro stack overflow: 5 nested limit
35 Include files may not be nested
36 Unexpected end of input
37 This is a bad place for an .INCLUDE file
38 Only labels & comments may occupy column 1
39 Expected local label
40 Local label stack overflow
41 String constant must be on one line
42 String constant exceeds 80 characters
43 Illegal use of macro parameter

Assembler Error Messages II-321

Error
Number Error Message

44 No local labels in .ASECT
45 Expected key word
46 String expected
47 Bad block, parity error (CRC)
48 Bad unit number
49 Bad mode, illegal operation
50 Undefined hardware error
51 Lost unit, unit is no longer on line
52 Lost file, file is no longer in directory
53 Bad title, illegal file name
54 No room, insufficient space on disk
55 No unit, no such volume on line
56 No file, no such file on volume
57 Duplicate file
58 Not closed, attempt to open an open file
59 Not open, attempt to access a closed file
60 Bad format, error in reading real or integer
61 Nested macro definitions illegal
62 '='or'<>' expected
63 May not .EQU to undefined labels
64 Must declare .ABSOLUTE before 1st .PROC
65 Too many .PROCS and/or .FUNCS
76 Index register required
77 'X' or 'Y' expected
78 Zero-page address required
79 Illegal use of register
80 Index register expected
81 Ill-formed operand
82 'X' expected for indexed addressing
83 Must use 'X' index register

II-322 Appendix 2H: Error Messages

Compiler Error Messages

When the Pascal Compiler discovers an error in your program, it reports
that error immediately; by error number. If you then enter the Editor to fix
that error, a more complete error message is given, taken from the file
SYSTEM.SYNTAX. If the file SYSTEM.SYNTAX is not available on the disk
containing SYSTEM.EDITOR, errors will be reported by number only.

The Pascal Compiler error message corresponding to each error number is
given in the table below. Some people will prefer to gain some additional
space on their disks by removing SYSTEM.SYNTAX and using the table
instead. You can also print your own copy of this table by transferring the
file SYSTEM.SYNTAX to a printer.

Some additional helpful information is provided here, enclosed in [square
brackets]. This information is not part of the file SYSTEM.SYNTAX; it
cannot be printed, and it will not appear on your screen.

Error
Number Error Message

1 Error in simple type
2 Identifier expected
3 'PROGRAM' expected
4 ')'expected
5 ':'expected
6 Illegal symbol (maybe missing or extra';' on line above)
7 Error in parameter list
8 'OF' expected
9 '(' expected
10 Error in type
11 '(' expected
12 ']' expected
13 'END' expected
14 ';' expected (possibly on line above)
15 Integer expected
16 '='expected
17 'BEGIN' expected
18 Error in declaration part
19 Error in field-list
20 ',' expected

Compiler Error Messages II-323

II-324

Error
Number Error Message

21 '.'expected
22 'Interface' expected
23 'Implementation' expected
24 'CODE' expected
50 Error in constant
51 ':='expected
52 'THEN' expected
53 'UNTIL' expected
54 'DO' expected
55 'TO' or 'DOWNTO' expected in FOR statement
58 Error in factor (bad expression)
59 Error in variable
101 Identifier declared twice
102 Low bound exceeds high bound
103 Identifier is not of the appropriate class

[Maybe a packed variable is being used where an unpacked
variable is required.]

104 Undeclared identifier
105 Sign not allowed
106 Number expected
107 Incompatible subrange types
108 File not allowed here

[A file may not be part of a record or an array; a file may not be
the object of a pointer]

109 Type must not be real
110 Tagfield type must be scalar or subrange
111 Incompatible with tagfield part
113 Index type must be a scalar or a subrange
114 Base type must not be real
115 Base type must be a scalar or a subrange
117 Unsatisfied forward reference
119 Respecified params not OK for a forward declared procedure
120 Function result type must be scalar, subrange or pointer
121 File value parameter not allowed
122 Result type of forward declared function cannot be respecified

Appendix 2H: Error Messages

Error
Number Error Message

123 Missing result type in function declaration
124 TREESEARCH and IDSEARCH no longer supported
125 Error in type of standard procedure parameter
126 Number of parameters does not agree with declaration
128 Result type does not agree with declaration
129 Type conflict of operands
130 Expression is not of set type
131 Only tests on equality are allowed
132 Strict inclusion not allowed
133 File comparison not allowed
134 Illegal type ofoperand(s)
135 Type of operand must be boolean
136 Set element type must be scalar or subrange
137 Set element types must be compatible
138 Type of variable is not array
139 Index type is not compatible with the declaration
140 Type of variable is not record
141 Type of variable must be file or pointer
142 Illegal actual parameter
143 Illegal type of loop control variable
144 Illegal type of expression
145 Type conflict
146 Assignment of files not allowed
147 Label type incompatible with selecting expression
148 Subrange bounds must be scalar
149 Index type must not be integer
150 Assignment to standard function is not allowed
152 No such field in this record
154 Actual parameter must be a variable
155 Control variable cannot be formal or non-local
156 Multidefined case label
158 No such variant in this record

Compiler Error Messages II-325

II-326

Error
Number Error Message

159 Real or string tagfields not allowed
160 Previous declaration was not forward
161 Forward declared twice
162 Parameter size must be constant

[Optional parameters in NEW must be constants]
165 Multidefined label
166 Multideclared label
167 Undeclared label
168 Undefined label

[165-168: In order to "declare" a label you must include it in the
LABEL declaration section; in order to "define" a label you
must specify it before that statement to which it refers in the
body of the procedure. A label must be declared and defined
exactly once.]

169 Base type of set too large
175 Actual parameter max string length < formal max length
182 Nested units not allowed
183 EXTERNAL declaration not allowed at this nesting level
184 EXTERNAL declaration not allowed in interface section
185 Segment declaration not allowed in unit
186 Labels not allowed in interface section
187 Attempt to open library unsuccessful
188 Unit not declared in previous uses declaration
189 'Uses' not allowed at this nesting level
190 Unit not in library
191 No private files in unit
192 'Uses' must be in interface section
194 Comment must appear at top of program
195 Unit not importable (interface text not available)
201 Error in real number-digit expected

Appendix 2H: Error Messages

Error
Number Error Message

202 String constant must not exceed source line
203 Integer constant exceeds range
250 Too many scopes of nested identifiers
251 Too many nested procedures or functions
253 Procedure too long

[A procedure is too long when it overflows the internal code
buffer used by the Compiler.]

254 Procedure too complex
[A procedure is too complex when it generates too many long
jumps (that is, too many control structures).]

273 No such unit or segment
277 String too long
301 No case provided for this value
302 Not enough room for case jump table

[When a case statement is compiled, a jump table is generated
with one entry for each value between the minimum and
maximum case selectors. A short case statement with a wide
range between minimum and maximum selectors may result in
a very large piece of code.]

350 No data segment allocated
[An Intrinsic Unit with global variables in either the
INTERFACE or the IMPLEMATATION requires a data
segment. The data segment must not be declared unless it is
used.]

352 No code segment allocated
353 Non-Intrinsic Unit called from Intrinsic Unit
354 Too many segments for segment dictionary
355 Data segment empty

Compiler Error Messages II-327

11-328

Error
Number Error Message

399 Implementation restriction
[May be one of the following: subrange of real is not allowed;
segment procedures, segment functions, and units must be
declared before regular procedures; the word SEGMENT must
apply to PROCEDURE or FUNCTION only; the defining text of
a forward-declared segment must repeat the word SEGMENT;
no external segments are allowed.]

400 Illegal character in text
401 Unexpected end of input

[Possible causes include:
-mismatched BEGIN and END;
-omitting the period after the final END;
-unterminated comment;
-procedure without a body.]

402 Error in write to code file, maybe not enough room on disk
403 Error while opening or reading include file
404 Bad open, read, or write to Linker file SYSTEM.INFO

[See Chapter 5.]
405 Error while reading library
406 Include file not legal in interface nor while including
408 (* $S+ *)needed to compile units
409 General Compiler error

Appendix 2H: Error Messages

Part III Language Manual

PREFACE

CHAPTER 1

CHAPTER2

III-ii

Contents

Figures and Tables

Information Resources xxv
Contents of This Part xxvi

Apple II Pascal 1.3
Basic Concepts 2

A Compiled Language 2
Block Structure 2
Controlled Scope of Variables 3
Strong Typing 3
Free-Form Source Text 3
Built-in Hardware Controls 3

Comparison With Other Languages 3
Pascal Versus BASIC 4
Pascal Versus FORTRAN 5

Comparison With Apple Pascal 1.2 5

Program Structure
A Sample Program 8
Pascal Terminology 10
Pascal Syntax 13

Program, Procedure, and Function Syntax 13
The Program Heading 13

Contents

xviii

xxv

1

7

Block Syntax 13
Declarations 14
Constant Declarations 14
Type Declarations 14
Variable Declarations 15
Procedures and Functions 15
The Main Program 16

A More Complex Example 17
Statement Syntax 17

Syntax Diagrams 17
Semicolons 18
BEGIN ... END 18

Expression Syntax 19
Symbol Syntax 19

Delimiters 20
Identifiers 20
Numbers 21
Characters and Strings 22

Comments 23
Formatting for Readability 23

CHAPTER3 Simple Data Types 25
User-Defined Data Types 26
Constants 27

TRUE and FALSE 29
MAXINT 29

Variables 29
The INTEGER Type 31

Contents III-iii

CHAPTER4

III-iv

The REAL Type 31
The Long Integer Type 32
The BOOLEAN Type 33
The CHAR Type 34
User-Defined Scalar Types 34
Subrange Types 35

Structured Data Types
The STRING Type 38

String Size 38
String Indexing 39

The SET Type 40
Set Declarations 40
The Set Constructor 41
The IN Operator 42

The ARRAY Type 43
Array Formation and Indexing 43
Packed Arrays 45

Multidimensional Packed Arrays 47
One-Dimensional Packed Character Arrays 48

Congruent Array Types 48
BYTESTREAM and WORDSTREAM 49

The RECORD Type 50
Variant Records 53

Free Union Variant Records 55
Packed Records 56
Congruent Record Types 57
WITH ... DO 58

Contents

37

CHAPTER5

CHAPTER6

Dynamic Variables
Using Dynamic Variables 63
Pointer Variables 64

The NIL Constant 65
The NEW Procedure 65

Dynamic Variant Record Variables 66
Memory Management for Dynamic Variables 67

MEMAVAIL 67
MARK and RELEASE 68

Operations on Data
Expressions 72
Assignments 77
Arithmetic Operations 79

Negation, Addition, Subtraction, Multiplication 79
Division and Modulus Reduction 80
Rounding and Truncating 82
Absolute Value Function 82
Exponential Functions 83
Trigonometric Functions 83
Logarithmic Functions 84
Random Number Functions 85

Using the RANDOM Function 85

Contents

61

71

IIl-v

III-vi

Relational Operators 87
Logic Using Relational Operators 89

Logical Operations 89
Scalar Operations 90
Byte Operations 92

The SIZEOF Function 92
The SCAN Function 93
The FILLCHAR Procedure 93
The MOVELEFT and MOVERIGHT Procedures 94

String Operations 96
The LENGTH Function 96
The POS Function 96
The CONCAT Function 97
The COPY Function 97
The INSERT Procedure 97
The DELETE Procedure 98
The STR Procedure 98
Using String Operations 98

Set Operations 99
Bit Operations 100

Bit Interpretation of Scalar Types 101
Bit Interpretation of Structured Types 101
Bit Pattern Logic 102
Bit Logic Examples 103

Precedence of Operations 104
Range Checking 105

Contents

CHAPTER7

CHAPTERS

Program Controls
Repetition Statements 109

FOR ... TO ... DO 109
WHILE ... DO 111
REPEAT ... UNTIL 112
Loop Control: A Comparison 113

Conditional Statements 114
IF ... THEN ... ELSE 114

Nested IF Statements 115
CASE ... OF ... OTHERWISE 117

Other Program Controls 119
The GOTO Statement 120
The EXIT Procedure 122
The HALT Procedure 123

Procedures and Functions
Defining Procedures and Functions 127

Variable and Value Parameters 130
Calling Procedures and Functions 131
Rules of Scope 133
Size and Complexity Limits 136
SEGMENT Procedures and Functions 137
FORWARD Procedures and Functions 137
Recursion 138

Contents

107

125

III-vii

CHAPTER9

CHAPTERlO

III-viii

Assembly-Language Routines
Using the 6502 Assembly Language 142
EXTERNAL Procedures and Functions 143
Calling and Returning From 6502 Routines 144
Pascal and 6502 Intercommunication 149
Using System Memory 150
An Example 151

Input/Output
Introduction to File 1/0 156
File Variables 158

Predeclared Files 159
External Files 160

Specifying External Files 160
Wildcards 162

General File 1/0 Operations 162
Opening and Closing Files 163
The REWRITE Procedure 163
The RESET Procedure 164
The CLOSE Procedure 166
The EOF Function 167
The IORESULT Function 168
Controlling 1/0 Checking 169

Typed File 1/0 Operations 169
External Device Actions 169
The GET and PUT Procedures 170
The SEEK Procedure 171

Contents

141

155

CHAPTER 11

Character File I/O Operations 173
INTERACTIVE Files 173
The WRITE and WRITELN Procedures 17 4
The READ and READLN Procedures 176
The EOLN Function 179
The PAGE Procedure 180

Untyped File I/O Operations 180
The BLOCKREAD and BLOCKWRITE Functions 181

Device I/O Operations 183
The UNITREAD and UNITWRITE Procedures 183

UNITREAD Modes 185
UNITWRITE Modes 186

The UNITCLEAR Procedure 187
The UNITSTATUS Procedure 187

UNITSTATUS With Disk Devices 188
UNITSTATUS With Printers 188
UNITSTATUS With Remote Devices 188
UNITSTATUS With the Keyboard 189
UNITSTATUS Demonstration Program 191

UNITBUSY and UNITW AIT 193
Other I/O Operations 193

Screen Graphics
Screen Coordinates 197
INITTURTLE 198
GRAFMODE and TEXTMODE 198
VIEWPORT 199

Contents

195

III-ix

CHAPTER 12

CHAPTER13

III-x

The SCREENCOLOR Type 200
PENCOLOR and FILLSCREEN 201
TURNTO, TURN, MOVETO, and MOVE 201
TURTLEX, TURTLEY, TURTLEANG, and SCREENBIT 203
DRA WBLOCK 203
Adding Text to Graphics 206

Making Your Own Character Set 207

Program Units
The USES Declaration 210
Regular Units and Intrinsic Units 211
Writing a Program Unit 213

The Unit Heading 215
The Interface Section 216
The Implementation Section 218
The Initialization Section 219
A Sample Program Unit 220

Nesting Program Units 222
Changing Units and Host Programs 223
Controlling Loading of Units 223

Libraries
Libraries in the 64K and 128K Pascal Systems 227
SYSTEM.LIBRARY 229
Program Libraries 230

Contents

209

225

CHAPTER14

CHAPTER15

Library Name Files 231
Making a Library Name File 232
Using the Library Name File 232

Using One Library File With Two Programs 233
Using Several Library Files With One Program 234
Using the Pascal Prefix in a Library Name File 234
Using Several Library Files With Several Programs 235
Using the Percent Prefix in a Library Name File 235

The "Using" Compiler Option 236
How the System Searches Libraries 237

Compiler Options
Compiler Option Syntax 240
Compiler Option Summary 241

Large Program Management
Editing Large Programs 244
Compiling Large Programs 244
Linking Large Programs 245
Executing Large Programs 246

64K Memory Versus 128K Memory 246
Efficient Programming 246
Using Operating-System Memory 247

Program Segmentation 248
The Segment Dictionary 249

Contents

239

243

III-xi

CHAPTER 16

III-xii

The Run-Time Segment Table 249
Segment Numbers 250
The "Nextseg" Option 251

Loading of SEGMENT Procedures and Functions 253
Loading of Program Unit Segments 254
The "No Load" Compiler Option 254
The "Resident" Compiler Option 255

Miscellaneous Information
Improving Execution Speed 260
Defeating Strong Typing 261
Direct Memory Access 262

PEEKs and POKEs 262
Finding Variables 263

Miscellaneous I/O Information 265
Screen Controls 266
The GOTOXY Procedure 266
Reading f and i Values 267
The KEYPRESS Function 268
Game Input 269
Apple Key and Button Inputs 269
The Audio Output 269
Setting the High Character Bit 270
Disabling Control Characters 270
Special Handling of Control Characters 271

Control Characters With GET and PUT 271
Control Characters With WRITE and WRITELN 273
Control Characters With READ and READLN 273

Miscellaneous READ and READLN Effects 273

Contents

259

APPENDIX3A

Program Chaining 275
The SETCHAIN Procedure 276
The SETCV AL Procedure 277
The GETCVAL Procedure 277
SWAPON, SWAPGPON, and SWAPOFF 278
Examples of Chaining 278

Selecting From a Menu of Programs 278
Accessing the Filer From a Program 280

Programming Techniques 281
Record Linking 281

. Screen Dumping 283
Creating a Dynamic Text Array 285
Binary Tree Construction 287

Syntax Diagrams
Identifier 290
Type Declaration 290
Constant Declaration 290
Variable Declaration 291
Long Integer Type 291
User-Defined Scalar Type 291
Subrange Type 291
String Type 292
Set Type 292
Set Constructor 292
Array Type 293
Record Type 293

Contents

289

III-xiii

III-xiv

Record Type Field List 293
Record Type Variant Part 294
WITH Statement 294
Pointer Type 294
NEW Procedure 295
MARK and RELEASE Procedures 295
Expression 296
Simple Expression 296
Term 297
Factor 298
Unsigned Constant 298
Unsigned Number 299
Function Call 299
Assignment Statement 299
Variable Reference 300
CONCAT Function 300
FOR Statement 301
WHILE Statement 301
REPEAT Statement 301
IF Statement 302
CASE Statement 302
CASE Statement Case Clause 302
GOTO Statement 303
EXIT Procedure 303
Procedure Definition 303
Function Definition 304
Parameter List 304
Parameter Declaration 304

Contents

APPENDIX3B

Procedure Call 305
File Type 305
REWRITE Procedure 305
RESET Procedure 306
CLOSE Procedure 306
EOF Function 306
WRITE Procedure 307
WRITELN Procedure 307
Value Specifier 307
READ Procedure 308
READLN Procedure 308
EOLN Function 308
BLOCKREAD and BLOCKWRITE Functions 309
UNITREAD and UNITWRITE Procedures 309
Program Unit Compilation 310
Program Unit Syntax 310
Regular Unit Heading 310
Intrinsic Unit Heading 311
Interface Section 311
Implementation Section 312

Floating-Point Numbers
Definitions 314
Exceptions 315

Overflow 315
Underflow 316
Division by Zero 316

Contents

313

III-xv

APPENDIX3C

APPENDIX3D

III-xvi

Inexact Result 316
Invalid Operation 316

Floating-Point Format 317
Accuracy 317

Rounding Modes 317
Input/Output Conversions 317
Input: Decimal to Binp,ry 318
Output: Binary to Decimal 319

Memory Allocations for Data Types
Variable Sizes 322

Records 322
Arrays 324
Sets 325
Files 325

Memory Formats 326

Useful Assembly-Language Macros
The POP Macro 330
The PUSH Macro 330
The RMVBIAS Macro 331
The MOVE Macro 331
The DEBUGS TR Macro 331
The SAVEREGS Macro 332
The RESTREGS Macro 333
The SET Macro 334

Contents

321

329

APPENDIX3E

APPENDIX3F

The RESET Macro 335
The SWITCH Macro 335
The MOVEDAT A Macro 336
The MOVEDINC Macro 337
The BITBRANCH Macro 338
The NOTBITBR Macro 339

Summary of 6502 Opcodes
Notation 342
6502 Microprocessor Instructions 343
Programming Model 344
Instruction Codes 345
Hex Operation Codes 351

Tables
Reserved Words and Predeclared Identifiers 355
IORESULT Values 358
Summary of Size Limits 359

Contents

341

353

III-xvii

CHAPTER2

CHAPTERS

CHAPTER4

III-xviii

Figures and Tables

Program Structure
A Typical Syntax Diagram 18
Compound Statement Syntax 19
Identifier Syntax 20

Simple Data Types
Type Declaration Syntax 27
Constant Declaration Syntax 28
Variable Declaration Syntax 30
Long Integer Type Syntax 32
User-Defined Scalar Type Syntax 34
Subrange Type Syntax 35

Structured Data Types

Figures and Tables

String Type Syntax 39
Set Type Syntax 40
Set Constructor Syntax 41
Array Type Syntax 43
Record Type Syntax 50
Record Type Field List Syntax 51
Record Type Variant Part Syntax 53
WITH Statement Syntax 58

7

25

37

CHAPTER5

CHAPTER6

CHAPTER7

Dynamic Variables
Pointer Type Syntax 64
NEW Procedure Syntax 65
MARK and RELEASE Procedure Syntax 69

Operations on Data

Program Controls

Figures and Tables

Expression Syntax 73
Simple Expression Syntax 73
Term Syntax 7 4
Factor Syntax 7 4
Unsigned Constant Syntax 75
Unsigned Number Syntax 75
Function Call Syntax 75
Set Constructor Syntax 76
Assignment Statement Syntax 77
Variable Reference Syntax 77
CONCAT Function Syntax 97

FOR Statement Syntax 109
WHILE Statement Syntax 111
REPEAT Statement Syntax 112
IF Statement Syntax 114
CASE Statement Syntax 118
CASE Statement Case Clause Syntax 118

61

71

107

III-xix

CHAPTERS

CHAPTER9

CHAPTERlO

III-xx

GOTO Statement Syntax 120
EXIT Procedure Syntax 122

Procedures and Functions
Procedure Definition Syntax 127
Function Definition Syntax 127
Parameter List Syntax 128
Parameter Declaration Syntax 128
Procedure or Function Call Syntax 131
Example of Scope of Identifiers 135

125

Assembly-Language Routines 141

Input/Output
Table 10-1

Table 10-2

Figures and Tables

Evaluation Stack at the Start of 6502 Execution 147
Evaluation Stack After 6502 Execution 149

File I/O Relationships 157
File Type Syntax 158
Volume Names and Numbers for Devices 161
REWRITE Procedure Syntax 164
RESET Procedure Syntax 165
CLOSE Procedure Syntax 166
EOF Function Syntax 167
WRITE Procedure Syntax 17 4
WRITELN Procedure Syntax 17 4

155

CHAPTER12

CHAPTER13

CHAPTER14

Program Units

Value Specifier Syntax 17 4
READ Procedure Syntax 177
READLN Procedure Syntax 177
EOLN Function Syntax 179
BLOCKREAD and BLOCKWRITE Function Syntax 181
UNITREAD and UNITWRITE Procedure Syntax 184

Regular Unit Compilation Process 212
Intrinsic Unit Compilation Process 213
Program Unit Compilation Syntax 213
Program Unit Syntax 214
Regular Unit Heading Syntax 215
Intrinsic Unit Heading Syntax 215
Interface Section Syntax 217
Implementation Section Syntax 218
Initialization Section Syntax 219

209

Libraries 225
Table 13-1 Pascal Library Options: 64K and 128K Systems 228

Compiler Options 239
Table 14-1 Compiler Options 242

Figures and Tables III-xxi

APPENDIX3A Syntax Diagrams

III-xxii Figures and Tables

Identifier 290
Type Declaration 290
Constant Declaration 290
Variable Declaration 291
Long Integer Type 291
User-Defined Scalar Type 291
Subrange Type 291
String Type 292
Set Type 292
Set Constructor 292
Array Type 293
Record Type 293
Record Type Field List 293
Record Type Variant Part 294
WITH Statement 294
Pointer Type 294
NEW Procedure 295
MARK and RELEASE Procedures 295
Expression 296
Simple Expression 296
Term 297
Factor 298
Unsigned Constant 298
Unsigned Number 299
Function Call 299
Assignment Statement 299
Variable Reference 300

289

Figures and Tables

CONCAT Function 300
FOR Statement 301
WHILE Statement 301
REPEAT Statement 301
IF Statement 302
CASE Statement 302
CASE Statement Case Clause 302
GOTO Statement 303
EXIT Procedure 303
Procedure Definition 303
Function Definition 304
Parameter List . 304
Parameter Declaration 304
Procedure Call 305
File Type 305
REWRITE Procedure 305
RESET Procedure 306
CLOSE Procedure 306
EOF Function 306
WRITE Procedure 307
WRITELN Procedure 307
Value Specifier 307
READ Procedure 308
READLN Procedure 308
EOLN Function 308
BLOCKREAD and BLOCKWRITE Functions 309
UNITREAD and UNITWRITE Procedures 309
Program Unit Compilation 310

III-xxiii

APPENDIX3C

APPENDIX3F

III-xxiv

Program Unit Syntax 310
Regular Unit Heading 310
Intrinsic Unit Heading 311
Interface Section 311
Implementation Section 312

Memory Allocations for Data Types 321

Tables
Table F-1
Table F-2A
Table F-2B
Table F-2C
Table F-3
Table F-4

Figures and Tables

INTEGER Type Memory Format 326
REAL Type Memory Format 326
CHAR Type Memory Format 327
STRING Type Memory Format 328

ASCII Character Codes 354
Apple Pascal Reserved Words 355
Apple Pascal Predeclared Identifiers 356

353

Identifiers Declared in Apple Pascal Program Units 357
IORESULT Values 358
Summary of Size Limits 359

Preface

This part of the Apple II Pascal 1.3 manual describes the Apple Pascal
language. It gives you the information you need to write and understand
Apple Pascal programs.

This part, the Language Manual, does not attempt to teach beginning
programming. It assumes that you have some previous programming
experience, although you may never have tried writing Pascal. It also
assumes that you understand general programming terminology. However,
you can always look up unfamiliar terms in the Glossary in Part V.

Information Resources

You can find many general books about the Pascal language in the computer
sections of bookstores. Some of the more popular ones are listed in the
Bibliography in Part V. In addition, major colleges and business schools
offer courses in Pascal theory and programming. These general resources
are based on versions of Pascal that are similar to Apple Pascal.

The only book specifically about Apple II Pascal 1.3 is the one you are
reading now.

Preface III-xxv

III-xxvi

Contents of This Part

Here is an overview of what this Language Manual contains:

o Chapter 1: Apple II Pascal 1.3. A description of the language and
some of its basic concepts, including a comparison with other
programming languages.

o Chapter 2: Program structure. The structure and syntax of Apple
Pascal source text.

o Chapters 3 and 4: Data types, simple and structured. How to
create static data variables, using the built-in types of Apple Pascal.

o Chapter 5: Dynamic variables. How to create and use dynamic
variables.

o Chapter 6: Data operations. How to use the built-in data operations of
Apple Pascal.

o Chapter 7: Program control. How to use Pascal statements to build
your program.

o Chapter 8: Procedures and functions. How to write your own Pascal
procedures and functions.

o Chapter 9: Assembly-language routines. How to write your own
6502 assembly-language routines, to link into your Pascal program.

o Chapters 10 and 11: Input and output, including screen
graphics. How to get data into and out of your Pascal program, both as
text and as graphics.

o Chapters 12 and 13: Program units and libraries. How to increase
the power and versatility of your Pascal programs by creating Program
Units.

o Chapter 14: Compiler options. A listing of these handy tools.
o Chapter 15: Large program management. What to do when your

program gets too big for ordinary techniques.
o Chapter 16: Miscellaneous techniques. Improving execution speed,

defeating strong typing, accessing memory, performing miscellaneous
1/0 operations, chaining programs.

Preface

Supporting these chapters are several valuable appendixes. They put this
information at your fingertips:

o Syntax diagrams. These helpful guides to writing correct Pascal text
are sprinkled throughout the book. Here they are gathered together in
one place. Appendix 3A.

o Explanation of floating point numbers. An explanation of how
Apple Pascal handles floating-point numbers. Appendix 3B.

o Memory allocations for data types. How Apple Pascal variables are
stored in memory. Appendix 3C.

o Useful assembly-language macros. Helpful when you write 6502
routines to support your Pascal programs. Appendix 3D.

o 6502 Opcodes. A listing of the assembly-language instruction set for
the Apple II microprocessor. Appendix 3E.

o ASCII character codes. Appendix 3F, Table 1.
o Reserved words and predeclared identifiers. Words to avoid when

creating your own identifiers. Appendix 3F, Table 2.
o Details of data operations. IORESULT values; data and memory size

limits. Appendix 3F, Tables 3 and 4.

The Index for this part is contained at the end of Part V.

Contents of This Part III-xxvii

Chapter 1 Apple II Pascal 1.3

III-1

III-2

Apple II Pascal 1.3 is a version of the Pascal programming language for the
Apple II computer. It is based on UCSD Pascal, which in turn is based on the
original definition of Pascal by Kathleen Jensen and Niklaus Wirth in the
Pascal User Manual and Report (Springer-Verlag, 1974).

Basic Concepts

To understand how the Pascal language works, you must first understand
some of its underlying ideas. The most important ones are described in this
chapter.

A Compiled Language

Apple Pascal programs must be compiled before they are executed. To
construct a Pascal program, you first create a textfile of program
statements, resembling English sentences; this textfile is called the source
text. Next, you run a special program called the Pascal 1.3 Compiler. The
Compiler reads your source text and creates a corresponding Pascal
codefile. The codefile contains an intermediate code called P-code.

When you run your program, the P-code is read by the Apple Pascal
Interpreter program, which accepts P-code instructions and executes
them immediately. The Interpreter is also known as the P-machine.

Block Structure

Pascal is a block-structured language; it helps you divide your programs
into logical areas called blocks. Each block is a self-contained part of your
program; it can have its own data and subroutines. Yet blocks can be freely
nested within one another. Indeed, every program is simply the outermost
block of a series of nested blocks.

As a result, every Pascal programming job breaks down into the
construction of a hierarchy of blocks. Some, like the outermost program
block, accomplish general tasks. Other blocks.accomplish specific data
manipulations. The power of Pascal lies in the fact that the rules for
constructing blocks at every level are the same.

Chapter 1: Apple II Pascal 1.3

Controlled Scope of Variables

Pascal's block structure means that every constant or variable in a Pascal
program has a specific scope. Generally speaking, constants and variables
are accessible inside the block where they are declared, and all blocks
nested within that block. They are unknown in higher level blocks. This
feature allows you to create "local" data structures for specific
programming tasks.

Strong Typing

When introducing variables into a Pascal program you must normally
specify their type. You must state whether their values are going to be
integers, strings, arrays, or whatever. This requirement helps prevent your
programs from misinterpreting data.

Free-Form Source Text

Pascal is written free-form, without fixed line divisions. Thus you have
wide latitude to arrange your source text for maximum readability. As long
as you follow its syntax rules, Pascal does not care how your program looks.

Built-in Hardware Controls

An important part of the philosophy of high-level languages is to separate
the programmer from the details of the computer hardware. In Apple
Pascal, for instance, you usually don't need to refer to specific physical
addresses in memory. The system also provides control of most special
machine features via Pascal statements; you don't need to write
machine-language routines for detailed control of the hardware. However,
you can link machine-language routines into any Apple Pascal program if
you want to.

Comparison With Other Languages

If you are familiar with another programming language, but have never
tried to write in Pascal, you may find the following comparisons useful.
They can help you gain a perspective of Pascal as well as illustrate some of
its essential features.

Comparison With Other Languages III-3

III-4

Pascal Versus BASIC

If you are a BASIC programmer, you will find that Pascal is different in
some fundamental ways:

o Line Numbers: Pascal has no line numbers. In fact, line breaks mean
nothing in a Pascal program. You can break up a statement into several
lines or put several statements on one line. Statements are separated
from each other by semicolons. You will find that the mechanics of
writing, editing, or modifying a Pascal program are easier than with
BASIC because you don't need to maintain line numbers.

o Variables: You must declare variables in a Pascal program before you
can use them. A variable declaration associates an identifier (variable
name) with one of the many data types of Pascal. (In BASIC, only arrays
need to be declared, via the DIM statement.)

o Flow of Control: Pascal has several methods for controlling the
sequence in which statements are processed. These methods go beyond
the IF, FOR, GOTO, and GOSUB/RETURN of BASIC. As a result, most
Pascal programs are easier to read and understand than comparable
BASIC programs. Pascal has a GOTO statement, but it is seldom used.

o Procedures: In Pascal you write procedures, which act like
subprograms. The main program can execute any procedure by
mentioning its name. This feature replaces the GOSUB/RETURN
mechanism of BASIC. It is also more powerful, because Pascal offers you
a choice of ways to pass parameter information to procedures.

o Functions: A Pascal function is just a procedure that returns a value,
in the same way as a BASIC user-defined function. A Pascal function
definition can contain any number of statements, where a BASIC
user-defined function is usually severely limited in the number of
statements it can contain.

o Block Structure: Block structure means that a procedure or function
can have its own variables which are independent of the main program.
A procedure or function can even have a variable of its own which has
the same name as a variable in the main program. Because of this, a
Pascal programmer can use a kind of discipline that is not possible in
BASIC. The result is cleaner, more comprehensible programs.

o Physical Addresses: There are no POKE, PEEK, or CALL statements
in Pascal. A Pascal program doesn't use physical addresses; various
mechanisms in Pascal make them unnecessary.

Chapter 1: Apple II Pascal 1.3

Pascal Versus FORTRAN

If you are a FORTRAN programmer, you'll notice these differences:

o There are no line numbers.
o Identifiers (names) are less restricted.
o The format of the program text is less restricted.
o The program control structures are more constrained.
o Procedures and functions can be recursive: that is, they can call

themselves either directly or indirectly.
o Block structure (see above) allows better program organization and

eliminates the need for common blocks. Subprograms (procedures and
functions) are written within the main program, and automatically have
access to the main program's data.

o There is no equivalencing of variables.
o Variables can be created dynamically as the program runs, and

referenced through pointers.
o There is no implicit typing of variables. The type of every variable is

explicitly declared.
o There are no OWN (SA VE) variables.
o I/O formatting facilities are simpler.

Comparison With Apple Pascal 1.2

Apple Pascal 1.3 is the latest in a series of improved versions of Pascal for
Apple II computers. It includes several enhancements and changes. The
language differences from Pascal 1.2 are the following:

o Two new data types, BYTESTREAM and WORDSTREAM, have been
added. They are described in Chapter 4.

o The CASE ... OF statement now accepts an optional OTHERWISE clause.
o The UNITST ATUS procedure has a number of new features.
o IDSEARCH and TREESEARCH can no longer be called from a program.
o The REMSTATUS procedure has been removed from APPLESTUFF. The

UNITSTATUS procedure should be used instead.
o It is now possible to invoke the Filer from a program, using SETCHAIN.
o On the 128K Pascal system, the space in auxiliary memory occupied by

6502 procedures is reclaimed for use by P-code.

Comparison With Apple Pascal 1.2 III-5

Chapter 2 Program Structure

Ill-7

PROGRAM FIRSTEXAMPLE;

VAR COUNT : I l'ITEGER;

This chapter explains the general structure of Pascal programs. It also
introduces you to some of the fundamental Pascal programming terms that
you will encounter in subsequent chapters.

Apple Pascal helps you design logically structured programs. Once you
understand its underlying concepts, you will find that

o You can divide your programming requirements into logical pieces, each
of which is handled by a separate block of program text.

o By controlling the scope of variables and constants, you can give each
part of your program access to the specific data it needs.

o You can write programs that are easily understood by human beings, not
just by your Apple computer.

A Sample Program

Here is a very simple Apple Pascal program, to give you an idea of what one
looks like. When executed, it displays ten lines of text on the monitor
screen; each line contains a different number, counting from 1to10. The
comments enclosed in jbraces} identify some key program parts.

{program heading}

{start of program block}

{declaration of variable COUNT}

PROCEDURE DISPLAY CNUMR : INTEGER>;
BEGIN

{procedure heading}
{5tart of procedure block}

WRITELN;
WRITELN C'The number i5 ', NUMR>

END; {end of procedure block}

BEGIN
FOR COUNT := 1 TO 1i DO

DISPLAY CCOUNT>
END.

III-8

{5tart of main program}

{a statement}
{end of program block}

In Pascal terminology this sample program consists of two blocks, a
program block and a procedure block. The text of the procedure block is
written in the middle of the program block, but the two are logically
distinct. Pascal blocks are explained more fully later in this chapter.

Chapter 2: Program Structure

The program block contains a single statement:

FOR COUNT := 1 TO 10 DO
DISPLAY CCOUNT>

Pascal executes this statement ten times, giving the integer variable
COUNT successive values from 1 to 10. Each time this statement is
executed, it calls the procedure DISPLAY and passes the value of COUNT to
it.

DISPLAY is written so that it requires one parameter, NUMR, with an
integer value. NUMR is used only within DISPLAY, to hold the value passed
to that procedure; it is a variable with local scope.

Each time DISPLAY is called, it does two things:

l. It calls the built-in Pascal procedure WRITELN without passing it any
parameter information. As a result, WRITELN displays a blank line on
the screen.

2. It calls WRITELN again, giving it two parameters. The first parameter is
the string constant 'The number is '. Thesecondparameteristhe
integer value NUMR, which now has the same value as COUNT.
WRITELN displays these values on one line on the screen.

Thus the output of FIRSTEXAMPLE consists of alternate blank lines and
text lines, like this:

The number is 1

The number is 2

The number is 3

The number is 4

The number is 5

The number is 6

The number is 7

The number is 8

The number is 9

The number is HJ

A Sample Program III-9

III-10

Although this example is deliberately trivial, it illustrates several important
features of Apple Pascal. Compare these points with the corresponding
"Basic Concepts" discussed in Chapter 1:

o Block structure. The original program task-writing ten different
messages on the screen-has been broken down into two subtasks. One
of them (counting from 1 to 10) is performed by the main program. The
other (displaying a message with specified content) is performed by a
procedure. The two separate program blocks accomplish the two
separate subtasks.

o Controlled scope of variables. A variable (NUMR) is introduced into a
procedure (DISPLAY) for use only inside that procedure. It is a variable
with local scope.

o Free-form source text. The finished source text of the program is
relatively easy to read. Pascal ignores its visual format, letting you
arrange it the way you want.

Pa.seal Terminology

Just as written English consists of letters, words, sentences, and
paragraphs, Pascal source text is structured on several levels:

o Symbols
o Expressions
o Statements
o Blocks
o Programs, procedures, functions, and Program Units.

At each level, Pascal has its own terminology for the things you write in
your source text. Following are definitions of some of the more important
Pascal terms.

Symbols are the smallest meaningful parts of Pascal source text. There are
several kinds of Pascal symbols:

o Reserved words such as FOR, DO, and BEGIN have a fixed meaning in
every Pascal program. A list of them is included in Appendix 3F, Table 2.

Chapter 2: Program Structure

o Identifiers are the names of such things as variables, data types, and
procedures. FIRSTEXAMPLE, COUNT, DISPLAY, NUMR, and WRITELN
are identifiers used in our sample program. Most of them are made up by
the programmer; some (such as WRITELN) are the names of types and
procedures that are built into Apple Pascal. The built-in identifiers are
listed in Appendix 3F, Table 2.

o Constants are fixed data quantities that are written into source text. 1,

1 e, and "The number is "are examples of constants.
o Delimiters are symbols that separate other symbols from each other.

Some delimiters are also operators; they also perform mathematical or
logical operations. Spaces, semicolons, parentheses, and commas are
delimiters, as well as symbols such as+ and:=.

Expressions are built from symbols. Constants and variable identifiers are
expressions; so are many of their combinations with mathematical and
logical operators. The full rules for forming expressions are given in
Chapter 6. At this point the important thing to understand is that every
Pascal expression has two characteristics: its type and its value. In the
example above, both COUNT and NUMR are type INTEGER. The value
(1, 2, 3, etc.) of COUNT is determined in the program block; it is then passed
to the procedure block, where it becomes the value of NUMR.

Statements are made up of expressions combined with certain reserved
words. They are discussed in detail in Chapter 7. Statements perform the
actual work of the Pascal program; they do such things as giving a value to
a variable or providing conditional execution of other statements. An
important kind of statement is the compound statement. It consists of the
reserved word BEGIN, followed by practically any number of Pascal
statements, followed by the reserved word END.

Blocks contain all the source text necessary to perform specific
programming tasks. A block starts by declaring all the constants, types,
and variables it requires, and then using them in a series of statements.
Thus every block has the following outline:

o Optional constant declarations
o Optional type declarations
o Optional variable declarations
o Optional procedure and function definitions, containing their own blocks
o One compound BEGIN ... END statement which may contain many other

statements.

Pascal Terminology III-11

III-12

Programs, procedures, and functions are simply Pascal blocks with
headings and endings. The outline of a program is

program heading
block
period

The outline of a procedure or function is

procedure or function heading
block
semicolon

This combination is called a procedure or function definition. Note how it
permits nesting: the block that is contained within any program, procedure,
or function can include its own procedure or function definitions. Here, for
example, is the outline of a procedure nested within another procedure:

outer procedure heading
outer block:

declarations
procedure definition:

nested procedure heading
nested block:

declarations
compound statement

semicolon
compound statement

semicolon

Program Units, finally, are special features of Apple Pascal. A Program
Unit is compiled from a separate source text, like a program, but cannot be
executed by itself. Instead it contains declarations, procedures, and
functions that can be used by any number of programs or other Program
Units. A program accesses a Program Unit with a USES declaration,
which is written just after the program heading. The USES declaration
allows it to use data and routines in the Program Unit as if they were part of
the program's source text. Program Units and USES declarations are fully
described in Chapter 12.

Chapter 2: Program Structure

Pascal Syntax

Pascal has its own syntax rules-the equivalent of grammar and
punctuation rules in English. The following sections define the rules for
writing source text at these levels:

o Creating programs, procedures, and functions
o Constructing blocks
o Writing statements within blocks
o Writing expressions within statements
o Using symbols within expressions

Program, Procedure, and Function Syntax

As we explained earlier, a program, procedure, or function consists of a
block with a heading and ending. The rules for the ending are simple:

o A program ends with a period.
o A procedure or function ends with a semicolon.

Program, procedure, and function headings are all written differently.
Program headings are described below; procedure and function headings
are described in Chapter 8, "Procedures and Functions."

The Program Heading

The program heading simply tells the Pascal Compiler that the text it is
reading is a program and gives it a name. It looks like this:

PROGRAM MYSOURCE;

The name MYSOURCE is a Pascal identifier; the rules for making up
identifiers are discussed below under "Symbol Syntax." Note that the
program heading ends with a semicolon.

Block Syntax

A block consists of declarations, procedure and function definitions, and a
compound statement. All parts except the compound statement are
optional. When it is the program block-the part that follows a program
heading-the compound statement is also called the main program. The

Pascal Syntax III-13

Ill-14

various kinds of declarations and definitions, as well as the main program,
are described below. The compound statement is described later under
"Statement Syntax."

Declarations

In Pascal, you create constants, types, and variables for subsequent use in a
block by means of declarations. Each declaration establishes a new
identifier and gives the Compiler certain information about it. Declarations
come first in the block, before any other text. There are three principal
kinds:

o constant declarations
o type declarations
o variable declarations

Declarations of each kind must be grouped, and written in the order listed:
all the constant declarations, then all the type declarations, then all the
variable declarations.

You may include any or all of these kinds of declarations, depending on the
block's subsequent requirements. They are all optional.

I
By the Way: A fourth kind, label declarations, can be written before the
constant declarations. Labels are rarely used, however. They are
discussed in Chapter 7 under "The GOTO Statement."

Constant Declarations

The constant declaration assigns a fixed value to each of one or more
identifiers. For example:

CONST NUM_PLANETS = 9;
POE= 'Purity Of Essence';

After writing these declarations at the beginning of a block, you can use
NUMJLANETS instead of 9 in numerical calculations and POE instead of
the string Purity Of Essence in string operations. The reason for writing
NUM_pLANETS instead of the shorter numeral is that it makes your
program more understandable. Constant declarations are discussed more
fully in Chapter 3.

Type Declarations

With some exceptions, every quantity handled by a Pascal program must be
assigned a type. The Compiler must be told whether it is an integer or a

Chapter 2: Program Structure

string or an array or some other type. Several data types are predeclared in
the Pascal language. You can create others by writing type declarations
near the top of a block, below the constant declarations (if any). Such
user-defined types are discussed at length in Chapters 3 and 4. Here is a
simple instance of two type declarations:

TYPE TEAM= ARRAY C1 .. 9l OF STRING;
GAME= ARRAY C1 .. 2J OF TEAM;

In this example, any data of the type TEAM is declared to be an array of
nine strings (for instance, nine ballplayer's names); STRING is a
predeclared Pascal type and needs no declaration. Any GAME data, then,
will refer to an array of two teams. Any number of types can be declared in
this way.

By the Way: In the foregoing example, the type TEAM was used to help
declare the type GAME. Using one type immediately to declare another is
legal in Pascal, and permits you to construct powerful hierarchies of data
structures.

Variable Declarations

In Pascal, variables must be declared before they can be used. A typical
variable declaration looks like this:

VAR YANKEES, DODGERS : TEAM;

Assuming that this variable declaration is preceded by our sample type
declaration of TEAM, this tells the Compiler that both YANKEES and
DODGERS are arrays of nine strings. If your program tries to assign any
other value to one of these variables-say, an integer representing league
standing-the Compiler will stop and display an error message. Variables
are discussed more fully in Chapter 3.

Procedures and FuB'lctions

Procedures and functions are the "subroutines" of Pascal. You write their
definitions inside a block, after all declarations but before the compound
statement.

Pascal Syntax III-15

Jil-16

Each procedure or function definition looks like a small Pascal program. It
contains these elements:

o A heading, consisting of the reserved word PROCEDURE or FUNCTION
followed by an identifier and an optional list of parameters to be passed.

o A block.
o A semicolon.

The declarations and definitions inside a procedure or function block have
local scope; they can be accessed in that block or nested blocks, but not in
the block that contains the procedure or function definition. The rules for
communication between a host program and the procedures or functions
inside it are given in "Rules of Scope" in Chapter 8.

Additional Information: Besides writing procedure and function
definitions in a block, you can write them in two other places:

o In a Program Unit. Program Units are separately compiled collections
of declarations, procedures, and functions accessible to your program.
They are described in Chapter 12.

o In an assembly-language routine that you write, assemble, and link
into your Pascal program. Chapter 9 tells you how Pascal
communicates with assembly-language routines.

The Main Program

At first glance, Pascal programs may seem peculiar because the start of
execution is often located more than halfway down the source text. It is
located there because all the declarations and procedure and function
definitions must come first in the program's block. You must tell the
Compiler about all these things before it can consider the program
statements that are going to use them.

The main program is therefore the last thing that appears in your Pascal
source text. It starts with BEGIN and ends with END followed by a period.
This final END-period tells the Compiler your source text is complete.

When you run your program, Pascal executes the compound statement that
constitutes the main program. Because this compound statement is usually
made up of a series of other statements, the result is that Pascal executes
the other statements sequentially. To accomplish their tasks, these
statements then use the constants, types, variables, procedures, and
functions written at the beginning of the program.

Chapter 2: Program Structure

PROGRAM SECONDEXAMPLE;

A More Complex Example

Here is another example of Pascal source text, to illustrate the elements of
program syntax just discussed. The comments are in jbraces}.

{program heading}

CONST PLAYER= 'Joe Dimaggio';
TEAMSIZE = 9;

{constant declarations}

TYPE TEAM= ARRAY C1 •• TEAMSIZE1 OF STRING; {type declaration}

VAR DODGERS : TEAM;
COUNT INTEGER;

{variable declarations}

PROCEDURE FILLTEAM <VAR X : TEAM>;
BEGIN

{procedure definition}

FOR COUNT := 1 TO TEAMSIZE DO
X C COUNTl : = PLAYER

END;

BEGIN {beginning of main program}
FILLTEAM CDODGERS);
FOR COUNT := 1 TO TEAMSIZE DO

WRITELN CDODGERS CCOUNTl>
END. {end of program}

In this example the main program calls the procedure FILL TEAM, giving it
the array DODGERS as a parameter. FILLTEAM assigns the constant string
Joe Dimaggio to all 9 elements of DODGERS. Note that the number 9 is
supplied by the constant TEAMSIZE. The main program then writes on the
monitor screen 9 lines of players' names, now all Joe Dimaggio.

Statement Syntax

Every statement that you write in Apple Pascal source text must conform to
a specific structure. This section discusses the general rules for writing
statements. The next sections cover the syntax rules you must follow when
writing individual Pascal expressions and symbols within statements.

Syntax Diagrams

In this book, valid Pascal statements are illustrated by means of syntax
diagrams. These diagrams appear in the text where specific statements

Pascal Syntax III-17

III-18

and expressions are being discussed; they are also collected together in
Appendix 3A. Here is a typical syntax diagram, telling you how to write a
FOR ... TO ... DO statement:

FOR identifier expression

TO DO statement

DOWN TO

Words and symbols enclosed in round "bubbles" must be present in your
source text exactly as they are written in the diagram. Material in
square-cornered boxes represents other things written in the Pascal
language. The arrows show you in what order the various parts must be
written. Compare this diagram with the actual FOR statements written in
the two sample programs earlier in this chapter.

Semicolons

Pascal source text does not use line numbers. Generally speaking, line
divisions within the source text are meaningless; instead, Pascal statements
are set apart by semicolons. You can place several statements on one line,
separated by semicolons. Alternatively, you can write a long Pascal
statement on several lines; the Compiler will treat it as a single statement
until it reads a semicolon.

BEGIN ... END

When writing Pascal programs, you often need to treat several statements
as if they were one-for example, when they are all executed by a single
control statement. To do this, preface the group with BEGIN and terminate
it with END, separating the internal components with semicolons. The

Chapter 2: Program Structure

result is called a compound statement. As noted earlier, the body of every
Pascal procedure and function, as well as every main program, consists of a
single compound statement. Here is the syntax diagram for the compound
statement:

1--..,,....-M statement 1---....-H

The arrow coming back through the semicolon indicates that many
statements may be placed between BEGIN and END, as long as they are
separated by semicolons.

You can nest any number of BEGIN ... END statements. Within any block,
the Compiler will associate the last BEGIN with the first END, the
next-to-last BEGIN with the second END, and so on. If you haven't written
an equal number of BEGINs and ENDs, the Compiler will stop and display
an error message. In complicated programs it is advisable to mark BEGINs
and ENDs with comments, so you can keep them straight. Comments are
discussed at the end of this chapter.

Expression Syntax

An expression may consist of a single symbol, or a sequence of symbols of
practically any length. Every expression contains at least one constant or
variable reference, which has a value. The expression may also contain
other symbols (such as arithmetic or logical operators) that modify or
combine the values of its constants or variable references. As a result, every
expression as a whole also has a value. This value is used or manipulated
by the statement of which the expression is a part.

The rules for composing valid expressions are complex. They are discussed
in detail at the beginning of Chapter 6.

Symbol Syntax

Within each Pascal expression, there are general rules you must follow
when writing individual symbols. They are explained in this section.

Pascal Syntax III-19

III-20

Delimiters

Although you might write your Pascal source text in a single lump, as
illustrated below under "Formatting for Readability," you cannot run
everything together without spaces. The Pascal Compiler must find certain
characters between symbols and expressions in order to read them
separately. These separating characters are called delimiters. The most
common ones are space, tab, and return; these have meaning only as
delimiters. In addition, however, many symbols that have specific meanings
in Pascal also act as delimiters. Beside space, tab, and return, the
one-character delimiters are

' . ; : ' () [l
+-/*=<> 1l
and the two-character delimiters are

:= .. (* *) <= >= <>
Thus the following assignment statement is correctly written, even though
it contains no spaces, because arithmetic operators also act as delimiters:

FRUIT:=APPLES+DRANGES;

Identifiers

Identifiers are names used in Pascal source text. They identify programs,
Program Units, constants, data types, variables, procedures, and functions.
Most identifiers are created and defined by the programmer. Others are part
of Apple Pascal's built-in vocabulary. Either way, their syntax is

letter

letter

digit

underscore

Chapter 2: Program Structure

Here are the rules for composing your own identifiers:

o An identifier must begin with a letter.
o After the initial letter, it may contain any number of letters, digits, or

underscore characters; it may not contain any other punctuation.
o Only the first 8 characters (ignoring underscores) are significant.
o Capital and lowercase letters are equivalent.

Thus the following six identifiers are equivalent and interchangeable:

MY NUMBER

MLNUMBER
MV_NUMBER_VALUE

mynumber
My_Number
my_number_symbol

When inventing your own identifiers, it is important to avoid colliding with
the built-in Apple Pascal vocabulary. See Appendix 3F, Table 2, for
alphabetized lists of terms that are already meaningful in Apple Pascal. If in
doubt, check your new identifier with these lists. The following rules apply:

o If a new identifier is the same as an Apple Pascal reserved word, the
Compiler will refuse to accept it.

o If a new identifier is the same as an Apple Pascal predefined or
predeclared identifier, the Compiler will accept it but the original Pascal
identifier will become unavailable within the scope of the new meaning.

Numbers

Apple Pascal provides seve~al ways for writing numbers in source text:

o Whole numbers up to 36 digits long can be written normally. If preceded
by a minus sign they will be interpreted as negative. If preceded by a
plus sign or nothing they will be interpreted as positive. If within the
range -32767 to +32768 they can be assigned to Pascal integers;
otherwise they must be assigned to long integers. Integers and long
integers are discussed in Chapter 6.

o Numbers with decimal parts can be written normally, like whole
numbers with a period included. However, their precision will not be
more than 6 or 7 significant digits.

o Numbers with decimal parts may also be written in scientific notation.
Here is a typical example:

3.14159e+02

This format is discussed in more detail in Appendix 3B.

Commas, spaces, and other kinds of punctuation may not appear inside
numbers written in Pascal source text.

Pascal Syntax III-21

'Smith' '$4fll8.23'

'a' 'A' 'llJ'

'Don''t worry'

III-22

Here are some samples of numbers as they might appear in a program:

123
123456789
123.456
1.23456e+1!2

Characters and Strings

{ordinary integer}
Uong integer}
{number with decimal part}
{scientific notation}

When you want to write characters or strings as data in a Pascal source
text, set them off by single quotation marks. The Compiler will read
material between the single quotation marks exactly as you wrote it,
according to these rules:

o Capital and lowercase letters are distinguished from each other.
o CONTROL-C and RETURN cannot be included in a string; other control

characters, including the null character (ASCII code 0), are legal. Special
procedures for entering CONTROL-C and RETURN in your source text,
using the CHR function, are described under "Scalar Operations" in
Chapter 6.

o A single apostrophe is not accepted; to enter a single apostrophe, type
two apostrophes in a row.

o Just two single quotation marks with nothing between them is
interpreted as the null string (a string of zero length).

Here are some examples:

'Type your name: {5trings}

, .. 8 {characters}

{string containing an apostrophe}

{apostrophe character}

{null string}

Chapter 2: Program Structure

Comments

Good programming practice includes writing enough comments in the
source text that you and others can figure out what is going on. Comments
are ignored by the Compiler; they are there only to help human beings
understand the program. Apple Pascal provides two ways to delimit
comments in the source text-parentheses with asterisks, and braces:

(* This is a comment *)

{This is another comment}

Whenever it sees either of the beginning symbols for a comment, the
Compiler ignores subsequent text until it sees the matching closing symbol.
A comment may contain any combination of text or control characters and
may be any length.

I A Restriction: Don't begin a comment with a dollar sign($). This
syntax is reserved for Compiler options. See Chapter 14.

You can nest comments one deep, provided you use the other set of
delimiters inside the original comment. Thus you can "comment out" a
section of your source text (temporarily remove it from your program) even
though it may contain comments itself. Just enclose it within the other set
of delimiters:

(* X := 1; {Original comment here}

IF Y > 0 THEN X := Y ELSE Y := 0 - Y; *)

Here the unwanted bit of program, containing a comment in braces, has
been temporarily rendered invisible to the Compiler by enclosing it in
parenthesis-asterisk delimiters.

Formatting for Readability

Because the Pascal Compiler takes no notice of line breaks, you have wide
latitude to arrange your Pascal source text so that it is easier for human
beings to understand. You'll see examples of readable formatting in the
sample programs given in this book.

Formatting for Readability III-23

As far as the Compiler is concerned, however, the second example given
earlier could have been written like this:

SECDNDEXAMPLE; CONST PLAYER = 'Joe Dimaggio'; TEAMSIZE = 9;
TYPE TEAM = ARRAY [1 .. TEAMSIZEl OF STRING; VAR DODGERS : TEAM; COUNT:
INTEGER; PROCEDURE FILLTEAM CVAR X : TEAM>; BEGIN FDR COUNT := 1 TO
TEAMSIZE DO X [COUNTl := PLAYER END; BEGIN FILLTEAM <DODGERS>; FOR
COUNT := 1 TO TEAMSIZE DD WR!TELN <DODGERS [COUNTJ> END.

Ill-24

Although it may make no difference to the Pascal Compiler, you'll agree
that the earlier form, arranged in indented lines, is much easier for us
mortals to follow. Normally, nested BEGIN ... END statements are indented
so that corresponding BEGINs and ENDs are arranged in columns. The
various declarations and user-defined procedures and functions are
separated by blank lines. Comments are arranged so they distract as little as
possible from the structure of the program itself. The result is a source text
that is equally comprehensible to the Pascal Compiler and to the average
programmer.

Chapter 2: Program Structure

Chapter 3 Simple Data Types

Ill-25

III-26

The Pascal language has a characteristic called "strong typing": in most
cases the data manipulated by any Pascal program must be identified by
type. For example, before a Pascal program can accept the datum 123 it
must know whether this datum represents the number one hundred and
twenty-three or a written string of three numeral characters.

A Special Case: A variable parameter passed to an assembly-language
procedure or function can be left untyped in Pascal. This technique in
effect lets you create new data types at the machine-language level. It is
discussed in Chapter 9, "Assembly-Language Routines."

Apple Pascal has 15 built-in data types. They are discussed in different
chapters of this Language Manual, as indicated below:

Chapter 3 Chapter 4 Chapter 5 Chapter 10

INTEGER STRING Pointer FILE
REAL SET TEXT
Long Integer ARRAY INTERACTIVE
BOOLEAN RECORD
CHAR BYTESTREAM

WORDSTREAM

The types INTEGER, BOOLEAN, and CHAR are also called scalar
types. Every value of a scalar data type can be stored in a single word (2
bytes, or 16 bits) of memory.

User=Defined Data Types

The 15 types listed above represent the forms in which data are most
commonly handled. However, Pascal is capable of accepting an unlimited
number of data types. You can add new types to your Pascal program in
several ways:

o You can create a new identifier for an existing type.
o You can modify an existing type by further specification.
o You can define new scalar types.
o You can create subrange types from existing scalar types.

These techniques are discussed in this chapter and the next.

Chapter 3: Simple Data Types

TYPE YEAR = INTEGER;

New data types are created by the type declaration:

Type declarations may occur in programs, Program Units, and user-defined
procedures and functions. They are placed after label and constant
declarations, but before variable declarations. Here are some examples of
type declarations illustrating the techniques listed above:

HRS-MINS= ARRAYC1 .. 2] OF INTEGER;
DAY = il •. 31;

{new name for old type}
{specification of array}
{subrange type}
{user-defined scalar} DAV_WEEK = CMO,TU,WE,TH,FR,SA,SU>;

Note that the whole group is introduced by the reserved word TYPE, and
that each declaration ends with a semicolon. You can write only one group
of type declarations in any block.

Constants

Fixed data, given to a Pascal program at the time it is written, are called
constants. Constants may have any of the following built-in data types:

INTEGER REAL Long Integer

BOOLEAN CHAR STRING

All but the last of these types are described in this chapter. The type
STRING is discussed in Chapter 4.

Although you can simply write constants as they are needed in your
program, your source text often becomes more understandable when you
give them names. Naming constants also makes it easier to modify your
program, because you can change a fixed datum sprinkled through your
source text by editing the one place where it is given a value. You name

Constants III-27

IIl-28

constants by writing a group of constant declarations in your source text
after the program heading but before any variable declarations:

Note that the whole group is introduced by the reserved word CONST, and
that each declaration ends with a semicolon.

After mentioning them in the constant declaration, you can use the new
identifiers in your program as if they were the constants to which they are
set. Here is an example of a constant declaration containing one of each of
the six types listed above:

CONST DAYSWEEK = 7; {type INTEGER}
PI = 3. 14159; {type REAU
MEGA = 1!l0 lil!l !lllJ; <type Long Integer}
REJECT = FALSE; {type BOOLEAN}
TOPGRADE = , A,; {type CHAR}
OPEN = 11 Sesame 11 ; Hype STRING}.

By the Way: You can also use the constant declaration to set an
identifier to the pointer constant NIL, thereby typing it as a pointer. For a
discussion of pointers, see Chapter 5.

When a constant is declared, its type is declared implicitly at the same time.
If a number appears to the right of the = symbol, the Compiler assigns it a
type as follows:

o If it does not contain a decimal point and is within the range -32767 to
+32767, it is assigned the type INTEGER.

o If it does not contain a decimal point and is outside the integer range it is
assigned the type Long Integer.

o If it contains a decimal point or is written in scientific notation, it is
assigned the type REAL. Scientific notation is explained in Appendix 3B.

I
Caution: Long Integer constants may not contain more than 36 digits
and a sign. Constants of type REAL may not exceed plus or minus
3.4028234e38.

If the words TRUE or FALSE appear to the right of the = symbol, the
constant is assigned the type BOOLEAN. When material inside single
quotation marks appears, the constant is assigned the type STRING. If it is
one character long, it is assigned the type CHAR.

Chapter 3: Simple Data Types

String and CHAR constants may not contain CONTROL-C or RETURN
characters (ASCII codes 3and13), although they may contain the "high
ASCII" equivalents (codes 131 and 141). These "high ASCII" characters may
be entered by holding down 6 while pressing CONTROL-C or RETURN.

TRUE and FALSE

The range of boolean constants and variables, as well as the results of
boolean operations, are limited to the two constant values TRUE and
FALSE. These are predeclared constants in Pascal.

MAXI NT

Apple Pascal has one predeclared numerical constant, MAXINT. It is the
number 32767, constituting the highest possible positive integer value.

Variables

Pascal allows variables of two sorts: static variables and dynamic
variables. Static variables are named explicitly in the program and their
memory locations are allocated when the program is loaded. Dynamic
variables are identified indirectly, by pointers, and their memory locations
are allocated while the program is running. The discussion in this chapter
and Chapter 4 concerns static variables; dynamic variables are covered in
Chapter5.

All static variables must be declared. When you declare a variable, you
create an identifier and associate it with a specific data type. When your
program is executed, the variable can take on any of a range of values
depending on its type. All variable declarations are grouped together and
introduced by the reserved word VAR.

The following example declares two variables:

VAR RATIO : REAL;
ITERATION : INTEGER;

As before, each declaration ends with a semicolon. Note, however, that the
parts of each declaration are linked by a colon, not by an equal sign. The
first variable, RATIO, is type REAL, and the second, ITERATION, is type

Variables III-29

III-30

INTEGER. When two or more variables of the same type are declared, you
can combine the declarations:

VAR I , J, K : Il'ITEGER;
X, Y, Z : REAL;

This declaration establishes three integer variables: I, J, and K; and three
real variables: X, Y, and Z.

In the remainder of this chapter, you will see many examples of variable
declarations, using many different data types. However, all of them follow
the general form of the examples just given. Their syntax form is

new
identifier type

The word "type" in the diagram stands for any of a wide range of
possibilities. In this chapter we are concerned with certain predeclared
types, which are represented by identifiers such as INTEGER and REAL;
we will also explain ways in which you can define new data types.

The following rules apply to variable declarations:

o There can only be one group of variable declarations in any block.
o Variable declarations are written after label, constant, and type

declarations.
o Variable declarations can employ either built-in or user-defined data

types. When referencing a user-defined type, the variable declaration
must be located within the scope of the type. Rules of scope are
explained in Chapter 8.

o You cannot use a variable unless it has been previously declared. The
converse, however, is not true; it is legal (although wasteful) to declare a
variable and then never use it.

Declaring a variable does not automatically assign it any particular value.
Your program must give each variable a value before using it as a piece of
data.

Parameter Declarations: Variables are also declared when they are
mentioned in the parameter list of a procedure or function. Such
variables, however, may be used only within the procedure or function
block. For a discussion of parameter lists see Chapter 8.

Chapter 3: Simple Data Types

The INTEGER Type

Integers are whole signed numbers in the range from -32768 to +32767.
Integer variables and constants, integer subranges, and expressions that
return integer values can be used with the following operations:

+ - * / DIV MOD := < > <= >= = <>
ABS SQR PWROFTEN SQRT

SIN COS ATAN LOG LN EXP

STR CHR ORD SUCC PRED ODD

For a description of the results of combining integers with each other and
with other data types in arithmetic and relational operations, see Chapter 6.

The REAL Type

Pascal data of the type REAL are signed floating-point numbers. They can
range from plus or minus 1.401298464e-45 to plus or minus
3.402823466e38. 0.0 is also a real value. Each real number is stored in
memory as 32 bits. This gives it a precision of about seven significant digits,
depending on the actual value. For a full discussion of floating-point
numbers, see Appendix 3B. For a description of the memory format, see
Appendix 3C.

I
A Technical Point: Don't confuse the Pascal type REAL with the
mathematical concept of a real number. The Pascal type REAL only
designates a particular way of storing a number.

Pascal variables and constants of the type REAL, plus expressions that
return values of this type, can be used with the following operations:

+ - * / TRUNC ROUND

:= < > <= >= = <>
ABS SQR SQRT SIN COS ATAN LOG LN EXP

For a description of the results of combining data of type REAL with each
other and with other data types in arithmetic and relational operations, see
Chapter 6.

The REAL Type III-31

III-32

Some arithmetic operations using real data yield only approximate answers,
as the results are rounded to fit the 32-bit format. Such rounding errors can
build up, causing significant problems with chain calculations. It is a wise
precaution to analyze your program carefully for this effect. The ground
rules are set forth in Appendix 3B.

Extended Arithmetic: To calculate large numbers precisely, use the
Apple II SANE (Standard Apple Numerics Environment) software. Ask
your Apple dealer for details. To use SANE, you must be running the
128K Pascal system.

The Long Integer Type

Apple Pascal long integers are signed whole numbers of up to 36 decimal
digits. They are calculated exactly, without rounding errors. Thus they are
particularly useful for business calculations where the amounts are too
large for integer variables. If any intermediate or final result of long integer
calculations exceeds a positive or negative 36-decimal-digit number,
program execution halts with a run-time error.

Program Unit Required! The Program Unit LONGINTIO must be
present in an accessible library at the time any program using a long
integer variable is executed. LONGINTIO does not require a USES
declaration, however. This Unit is originally supplied in the file
SYSTEM.LIBRARY. For further information about libraries, see
Chapter 13.

The long integer type is specified by the word INTEGER followed by a
length attribute number in square brackets:

INTEGER
length

attribute

The length attribute represents the maximum number of decimal digits the
variable can contain; it may be any whole number up to and including 36. A
typical long integer variable declaration looks like this:

VAR POPULATION : INTEGER C 9 l ;

This declaration tells Pascal that numbers stored in the variable
POPULATION may have up to nine decimal digits; that is, they may range
from -999,999,999 to +999,999,999.

Chapter 3: Simple Data Types

I
A Technical Note: Pascal often sets aside extra memory for long
integers, permitting larger numbers to be stored without a run-time error.
For the rules governing long integer memory allocation, see Appendix 3C.

Long integer variables and constants, as well as expressions that return
long integers, can be used with the following operations:

+ - * DIV TRUNC

:= < > <= >= = <> STR

Long integers may never be mixed with numbers of the type REAL in
calculations, but under certain conditions they may be mixed with integers.
The applicable rules, together with those for relational operations, are given
in Chapter 6.

Passing a long integer to a user-defined procedure or function requires a
special technique; see "Defining Procedures and Functions" in Chapter 8.

The BOOLEAN Type

In 1854 George Boole published the first complete book on symbolic logic. In
his honor, data that have only logical (true or false) values are called
boolean. In Pascal, the two predeclared constants TRUE and FALSE
represent the two boolean quantities.

A typical boolean variable declaration looks like this:

VAR FLAG1, FLAG2 : BOOLEAN;

This declaration creates the two boolean variables FLAGl and FLAG2.

Boolean variables and constants, together with expressions that return
boolean values, can be used with these operations:

:= < > <= >= = <> NOT AND OR

CHR ORD SUCC PRED

Ordinary boolean variables are stored in memory as 16-bit words, of which
only the least significant bit is used. If this bit is 0 the boolean value is
FALSE; if it is 1, the value is TRUE. In comparisons, therefore, FALSE is
"less than" TRUE. However, you can also pack boolean values into single-bit
array elements or record fields. These techniques are described in
Chapter4.

The BOOLEAN Type III-33

III-34

The CHAR Type

Pascal data of the type CHAR are single alphanumeric characters. They
may be selected from any of the 256 ASCII codes, including code 0 (the null
character). Variables and constants of the type CHAR and its subranges, as
well as expressions that return CHAR values, can be used with these
operations:

:= < > <= >= = <>
CHR ORD SUCC PRED

The indexed elements of a string are type CHAR; see "The STRING Type"
in Chapter 4.

Constants of the type CHAR may be introduced anywhere in your Pascal
program, by enclosing a character in single quotation marks. If the
character you want is inconvenient to type into the source text (for
example, a control character) or does not appear on your keyboard, you can
use the CHR function to convert an integer to the character equivalent of its
ASCII code value. See "Scalar Operations" in Chapter 6.

User-Defined Scalar Types

The Pascal data types INTEGER, BOOLEAN, and CHAR are called scalar
types. Calling them "scalar." means that they have a distinct set of possible
values that occur in a strict order.

You can create other scalar types simply by naming their possible values:

new
identifier

Recall the example given earlier in this chapter, under "User-Defined Data
Types":

TYPE DAV_WEEK = CMO,TU,WE,TH,FR,SA,SU>;

Chapter 3: Simple Data Types

TYPE MINUTES= B .. 59;
WORKDAY= MO .. FR;

VAR GRADE : 'A' .. 'F';

This declaration creates the new data type DAY_ WEEK. With it, you can
then declare a user-defined scalar variable:

VAR TODAY : DAY_WEEK

The variable TODAY can take just one out of seven values-namely, the
value MO or the value TU or the value WE, and so on.

You can also declare TODAY directly, without a prior type declaration:

VAR TODAY : CMO,TU,WE,TH,FR,SA,SU>;

User-defined scalar variables and their subranges can be used with the
following operations:

:= = CHR ORD SUCC PRED

The values of any user-defined scalar type are implicitly associated with
the positive integer range 0,1,2 ... Thus, for example, the function
ORDCTDDAY> would return the integer 3 if the value of TODAY were TH.
Scalar operations such as ORD are described in Chapter 6.

Subrange Types

A subrange type may be defined for any scalar type, including
user-defined scalars:

constant constant

The two constants must be units of the same scalar type and the second
constant must have a higher value than the first in the scalar order. Here
are some examples:

{integer subrange type}
{subrange of user-defined type}

{variable of CHAR subrange type}

Subranges may also be defined for boolean types and variables; but because
there are only two boolean units, every such subrange is equivalent to a
constant.

Subrange Types III-35

III-36

When declaring and using subrange types, remember that

o Every subrange type is itself a scalar type;
o Its values cannot be distinguished from the values of the superordinate

scalar;
o Your program can use a subrange type with any operation it could use on

the superordinate type.

Chapter 3: Simple Data Types

Chapter4 Structured Data Types

IIl-37

III-38

The Pascal types discussed in the previous chapter are simple linear ways
of representing data. Now we shall consider the more complex data types
STRING, SET, ARRAY, and RECORD, plus two special types,
BYTESTREAM and WORDSTREAM.

The STRING Type

Pascal strings are sequences of up to 255 alphanumeric characters. String
variables are used to hold all kinds of written text: names, words,
sentences, sequences of keyboard symbols, and numbers when they are not
being treated arithmetically. Each character element of a string variable
may correspond to any of the 256 ASCII codes, including 0.

String constants may be introduced anywhere in your Pascal program, by
enclosing a sequence of 2 to 255 characters inside single quotation marks.
The Compiler will reject any string constants that contain CONTROL-C or
RETURN (ASCII codes 3 and 13), although it will accept the "high ASCII"
equivalents (codes 131 and 141). Other control characters may cause
editing problems when you are writing program text.

String variables have no such restrictions. To add CONTROL-C, RETURN,
or other control characters to a string variable, you can follow the special
procedures described under the CHR function in Chapter 6.

Pascal strings may be used with the following operations:

:= < > <= >= = <>
LENGTH POS CONCAT COPY DELETE INSERT STR

For a description of the results of using relational operations to compare
strings, see "Relational Operators" in Chapter 6.

String Size

When a variable is declared as type STRING without further specification,
Pascal sets aside enough memory to contain 80 characters. If your program
will never try to place that many characters in the variable, you can
conserve memory by declaring a shorter maximum length. If your program
might try to place more than 80 characters in the variable, you must

Chapter 4: Structured Data Types

declare a longer maximum. In both cases, you add an integer expression in
brackets after the word STRING:

STRING 11--...---------------,.-1--

unsigned
integer

constant

The number in brackets, if used, can be any integer from 1 to 255. If your
program attempts to place more than the declared number of characters in
a string variable, it will halt with a run-time error. This feature can be
suspended, however; see "Range Checking" at the end of Chapter 6.

String Indexing

The individual characters within any string variable are indexed from 1
(not O!) to the length of the string. Any one can be identified by writing its
index number in brackets after the string identifier. Thus if the string
variable TITLE contained the string ' under t he App l e Tree ' then
TITLE[I] would designate its first character, a capital u. TITLE[l 4] would
designate the lowercase 1 in 'App 1 e '; and so on.

The following rules apply to string indexing:

o The index expression inside the brackets of a string element identifier
may be any expression that returns a positive nonzero integer value.

o An index value may never be larger than the length of the string actually
contained in the string variable. In the example above, referring to
TITLE[21] would cause a run-time error, even though the maximum
capacity of the variable TITLE might be larger.

o When a string variable contains the zero-length (nuli) string it ceases to
be indexable at all. Any attempt to refer to its elements will cause a
run-time error.

o A string variable that has been declared but never given a value has a
random length, which is often zero. Do not try to refer to its elements
before it has been given a specific string value.

o String constants cannot be indexed at all.

Because of the potential problems with out-of-bounds indexing, it is often
advisable for your program to check the length of the contents of a string
variable (using LENGTH) before executing any statements referring to its

The STRING Type Ill-39

III-40

elements. If you turn off range checking with the j$R-f Compiler option
(described at the end of Chapter 6) you can also read or set the value of a
string's zeroth element, which contains its length.

Elements of string variables designated by indexing are themselves
variables of the type CHAR. They can be used in the following operations:

:= < > <= >= = <>
CHR ORD SUCC PRED

If you attempt to write a one-character string constant, Pascal will give it
type CHAR. But a string variable, even when it contains a single character,
is always type STRING and not type CHAR.

The SET Type

A Pascal set is an unordered collection of up to 512 members, each of
which must be a value of the same scalar type. This type is the set's base
type. Thus a Pascal set may have any one of these base types or their
subranges:

INTEGER CHAR BOOLEAN User-defined scalar type

All these types are discussed in Chapter 3.

Pascal sets can be created in two ways:

o By writing a set type or variable declaration.
o By writing a set constructor.

Sets provide an easy way to determine whether a scalar quantity falls
within a specific definition. They have the added feature that set operations
generally execute very rapidly.

Set Declarations

A type designation of the following form is used to create set types and
variables:

Chapter 4: Structured Data Types

Here are some examples:

TYPE ALPHANUM = SET OF CHAR; {whole scalar range}
MINUTES = SET OF 0 .. 59; {integer subrange}
PRIMES= SET OF C2,7,5,3,19,13,17,11); {selected integers}

VAR CAPITALS : SET OF 'A' .. 'Z'; {CHAR subrange}
NOTES : SET OF CDO,RE,MI,FA,SO,LA,TI>; {user-defined scalars}

[1f1j •• 99]

CDO,RE,M!l

The following rules apply to Pascal set formation:

o Only one base type may appear in a set.
o A set may not have more than 512 members. Thus SET OF CHAR is

allowed because the type CHAR has only 256 values. But SET OF
INTEGER or SET OF 1..513 is not permitted.

o A set cannot contain any member whose scalar ordinality is less than 0
or greater than 512. Thus SET OF 501..513 is not permitted, even though
it contains only 13 members. Similarly, SET OF -1..99 is not permitted.

o Set members may be specified in any order, although subranges must
obey the rules for designating subrange types.

The Set Constructor

You cannot declare a set constant. However, you can designate Pascal sets
of fixed membership inside your program by using the set constructor:

~~-_,...___.,,. expression rr--..----+11 expression ~_____,.,....__,------,....,,._~

Here are examples of some typical set constructors:

{integer subrange}
{selected CHAR values}
{user-defined scalars}
{mixed CHAR subranges and values}

The SET Type III-41

NOTES
NOTES

CDO,MI,SOJ;
CMI .. LA,DOl;

13+X IN PRIMES
'H' IN CAPITALS
MI IN NOTES
ENTRY IN CH! .. 99l

The rules given above for creating set types and variables also apply to the
contents of set constructors, with two new rules added:

o You can write user-defined scalars in a set constructor only if they
have previously been used in a set type or variable declaration.

o Set constructors, unlike set declarations, may contain expressions as
members. Such expressions may range from simple constants, as shown
in the examples above, to complex strings of calculations. The only
restriction is that the value produced by each expression be within the
range for a set member.

If it has the same base type, a set constructor can be used to modify the
membership of a previously declared set, using the assignment operator:

{selection of user-defined scalars}
{mixed subrange and selection}

The set constructor [] denotes the empty set, which has no members.

The IN Operator

The IN operator is used to test whether a particular scalar value is a
member of a particular Pascal set. It is a relational operator and has a
boolean result. It has the same precedence as the other relational operators
(<,=,and so on). For an explanation of precedence, see "Precedence of
Operations" in Chapter 6.

To create an IN expression, write a scalar expression, the reserved word IN,
and a set identifier or constructor. The scalar expression before IN and the
set identifier or constructor after IN must have the same base type. Here are
examples of boolean expressions using the IN operator, based on some of
the set examples given above:

{true if 13+X in set PRIMES}
{true if 'H' in set CAPITALS}
{true if MI in set NOTES}

LETTER IN C'a','o','i','e','u'l
{true if integer ENTRY is 2 digits}
{true if value of CHAR variable

LETTER is a lower-case vowel}

III-42 Chapter 4: Structured Data Types

The ARRAY Type

A Pascal array is an ordered collection of elements, all of the same type.
Each element of an array can be treated as a variable by itself; or the array
can be manipulated as a whole.

When an array is treated as a whole entity, it can be used with the following
operations:

:= = <>
Packed character arrays can be used with the following additional
operations (see below, "One-Dimensional Packed Character Arrays"):

< > <= >=
The elements of a Pascal array can be any Pascal type except a file type. All
the elements in an array must be the same type. They can be used with any
operation applicable to their type.

Array Formation and Indexing

The elements in a Pascal array are distinguished by index values
associated with them. These index values are scalar types-integers,
booleans, type CHAR, or user-defined scalars. The index values may be
ordered in any number of dimensions, producing arrays in which the
elements are identified by an ordered series of scalar values.

Array types and variables are formed by type and variable declarations.
The array type is written with this syntax:

index
type

Thus a typical array type declaration looks like this:

TYPE TEAM= ARRAY [1 .. 91 OF STRING;

element
type

This declaration defines a type, identified as TEAM, that specifies an
indexed collection of nine strings.

The ARRAY Type III-43

The following rules govern the formation of array types and variables:

o The elements of an array can be any type except a file type; in
particular, they can be arrays or records.

o An array can have any number of dimensions.
o The index scalars in an array may have from 1 to 32767 (MAXINT)

values on each dimension. Thus they may be type CHAR or BOOLEAN or
any subrange of CHAR. They may be a subrange of INTEGER up to that
limit.

o Scalars indexing different dimensions may be of different types.
o Index scalar ranges may begin and end at any values, including negative

integers. However, the end index must always have higher ordinality
than the beginning index.

o To access an array element, you may specify its index by using any
expression that returns a scalar value within the index range. Such
expressions include variables, constants, complex calculations, and array
elements themselves. Expressions are defined in "Data Expressions" in
Chapter 6.

o In array declarations, only constants may be used to specify array
indices.

Caution: It is easy to specify array variables that are too large to fit into
the available memory space when your program is run. Doing so will not
cause a Compiler error. It is up to you to forestall this happening; for
helpful hints, see "Executing Large Programs" in Chapter 15.

Multidimensional arrays are the same as arrays having other
arrays for their elements. Thus, for example, declaring

ARRAY [Iii •• 7, Ill .. 31 OF BOOLEAN

is exactly the same as declaring

ARRAY [0 .. 7l OF ARRAY [0 .. 31 OF BOOLEAN

These two ways of declaring the same array are interchangeable when
arrays are not packed. With packed arrays, however, they have different
effects. See below, "Multidimensional Packed Arrays."

To illustrate some Pascal arrays, let us assume we are writing a program to
handle job costing data. We make the following scalar type declarations:

TYPE DAY_WEEK=CMO,TU,WE,TH,FR,SA,SU);
EMP_NUM=1 .. 21!i;

{user-defined scalar}
{integer subrange}
{integer subrange}
{CHAR subrange}

JOB_NUM=1 .. 99;
PAY_RATE•'A' .. 'KJ;

III-44 Chapter 4: Structured Data Types

We could now make the following array declarations, either as types or as
variables; let us assume variables:

VAR EMP-PAY : ARRAY CEMP_NUMl OF PAY_RATE;
ALL_HRS : ARRAY CEMP_NUM,DAY_WEEK,JOB_NUMl OF REAL;
JOB_COST : ARRAY [JOB_NUM,PAY_RATEl OF REAL;

EMP-PAY C17l
ALL-HRS [17,WE,631

JOB_COST [63,'F'l

The array variable EMP _p AY now has 20 elements (one for each employee
number in the scalar subrange EMP _NUM), each able to hold a capital
letter from A to K representing the employee's pay grade. It is a
one-dimensional array. The variable AL1-HRS is a three-dimensional array
containing numbers of the type REAL, each of which designates a number
of hours worked. Each such element is addressed by three indexes: the
employee number, the day of the week, and the job number. This array has
13860 elements (20 times 7 times 99). Finally, JOB_COST is a
two-dimensional array, again containing hours worked (type REAL). Its
elements are addressed by specifying the job number and the pay rate.

As whole entities, these array variables can be compared, assigned, or
passed to procedures or functions, as described later in this chapter. You
can also use their elements as variables in your program by writing the
array identifier followed by index values in brackets:

{employee 17's pay grade; a CHAR value}
{hours worked by employee 17 on Wednesday on

job number 63; a REAL value}
{hours charged to job number·63 in pay

grade F; a REAL value}

Because index values can be any scalar expression, you could even specify
the hours charged to job number 63 by everyone with the same pay grade as
employee 17:

JOB_COST [63,EMP_PAY C17ll

Although for simplicity we have written fixed index numbers in these
examples, it is more common to use index variables of the correct scalar
type. Using variables permits the arrays to be searched and their elements
accessed by giving different values to the variables.

Packed Arrays

When arrays are declared normally, Pascal allocates a minimum of one
word (two bytes, or 16 bits) of memory for each element. When the array's

The ARRAY Type III-45

Ill-46

elements are of a type that can be stored in less than a whole word, you can
conserve memory space by declaring the array as packed. To do this, simply
write the word PACKED just before the word ARRAY.

For example, the declaration

VAR CHBUF : ARRAY [0 .. 2~471 OF CHAR;

creates an array that occupies 2048 words of memory (4096 bytes)-one
word for each element. On the other hand, the declaration

VAR CHBUF : PACKED ARRAY [0 .. 20471 OF CHAR;

creates a packed array that occupies only 1024 words (2048 bytes). This is
because the type CHAR requires only one byte of storage space. In general,
when its elements are of a type with a range of 256 or fewer values, you can
conserve memory space by packing an array. Thus the following element
types are candidates for packing:

o Type BOOLEAN (one bit per element)
o Type CHAR (one byte-8 bits-per element)
o Any subrange of CHAR
o Subranges of INTEGER in which no value is greater than 255
o User-defined scalars in which no value is greater than 255

Array elements are never packed across 16-bit word boundaries.
After as many whole elements are packed into a word as will fit, the
remaining bits in the word are wasted. For example, consider the variable
declaration

VAR NUMBUF : PACKED ARRAY C1 •• 5J OF 0 .. 63

To store values in the integer subrange 0 .. 63 takes just 6 bits (2 to the 6th
power equals 64). The 5 elements of the array should therefore need only 30
bits, or less than two words, of storage. However, this variable actually
occupies three words because NUMBUF[l] and NUMBUF[2] are packed into
12 bits of the first word, with four bits wasted. These four bits cannot be
used to store part of the next six-bit element, because then the element
would have to straddle a word boundary. Similarly, NUMBUF[3] and
NUMBUF[4] are packed into the next word; and NUMBUF[5] occupies the
third word alone.

The rules given earlier for declaring arrays hold for declaring packed
arrays, with one change: the maximum range of values of index scalars for
each dimension is one less. Each dimension may be indexed with up to
32766 (MAXINT-1) scalar values.

Chapter 4: Structured Data Types

You can manipulate the elements of packed arrays just like the elements of
ordinary arrays, with one exception: an element of a packed array cannot
be passed as a parameter to a procedure or function.

I
A Tradeoff: Packing and unpacking elements in packed arrays takes a
significant amount of execution time. Thus execution efficiency is a
tradeoff against memory conservation when using packed arrays.

Multidimensional Packed Arrays

There are two additional factors you must take into consideration when
declaring packed arrays with more than one dimension.

An array itself always occupies at least one whole word. As a result,
you must be careful about placing the word PACKED when declaring
multidimensional arrays-that is, arrays containing arrays. The following
rule holds: With arrays containing arrays, the word PACKED is effective
only before the last occurrence of the word ARRAY. Consider these
examples:

PACKED ARRAY [0 .. 9, 0 .. SJ OF ARRAY [0 .. 31 OF CHAR
ARRAY £0 .. 9, e .. SJ OF PACKED ARRAY [0 .. 31 OF CHAR
PACKED ARRAY [9 .. 9, e .. s, e .. 3] OF CHAR

{241! words}
{12(1) words}
{120 words}

All three of these examples define the same array structure. But the first
example is not actually packed, even though it contains the word PACKED.

Only the last dimension of a packed array is actually packed. Thus in
arrays where the packing process wastes bits rounding up to the next whole
word, the order in which dimensions are declared can make a difference.
For example:

PACKED ARRAY ce .. 3, 0 .. 71 OF BOOLEAN
PACKED ARRAY ce .. 7, e .. 3] OF BOOLEAN

{4 words}
{8 words}

In the first case, the 0 .. 7 dimension is packed. Thus 8 boolean bits are
packed into each of 4 words, wasting 8 bits per word. In the second case,
the 0 .. 3 dimension is packed; 4 boolean bits are packed into each of 8 words,
wasting 12 bits per word.

I
A Suggestion: To make sure of the size of any array, packed or
unpacked, you can use the SIZEOF function described in Chapter 6 under
"Byte Operations."

The ARRAY Type III-47

III-48

OneaDimensional Pa.eked Characte~ Arrays

Beside all the foregoing characteristics of arrays and packed arrays, packed
character arrays have three additional properties.

Any one-dimensional packed character array can be assigned the
value of a string constant (but not the value of a string variable). The
number of array elements must be exactly the same as the length of the
string constant.

One-dimensional packed character arrays may be compared with
each other and with string constants, using the relational operators

= <> < > <= >=
Comparison expressions using these operators return boolean results. Two
arrays being compared must have the same number of elements. An array
being compared with a string constant must have the same number of
elements as the length of the string.

In comparing one-dimensional packed character arrays with each other and
with string constants, "greater" and "lesser" are derived from the positions
of their character elements in the order of ASCII codes (given in
Appendix 3F, Table 1). Pascal compares their corresponding elements,
starting from the beginning. When unequal elements are found, the element
with the lower ASCII code makes its array "less."

One-dimensional packed character arrays can be used with the
WRITE and WRITELN procedures. In this role they act like strings.
However, they have the advantage over strings of not being limited to 255
character elements. For further information about WRITE and WRITELN,
see Chapter 10.

Congruent Array Types

Two arrays must be of congruent types to participate together as whole
entities in any Pascal operation. An array passed to a procedure or function
must also be of a type congruent with the array type declared in the
procedure or function's parameter list. For more information about
procedures and functions, see Chapter 8.

Here are the rules for determining array type congruency:

o The elements of both arrays must be of the same type.
o Both arrays must have the same number of dimensions.

Chapter 4: Structured Data Types

o Each corresponding dimension must have the same index size.
o However, the corresponding index types need not be the same.

For example, these three array types are congruent even though they are
not identical:

TYPE A ARRAY [0 •. 25, 0 •• 18l OF INTEGER;

B =ARRAY [10 •• 35, 1!l •• 28l OF INTEGER;

C =ARRAY C'A' •. 'Z', 0 •• 181 OF INTEGER;

Each of these types is a two-dimensional 26-by-18 array of integers, and
hence congruent. On the other hand, the two array types

TYPE D = ARRAY [1 •• 5, 1 •• 10 J OF REAL;

E =ARRAY [1 .. 50l OF REAL;

are not congruent, even though they both contain 50 REAL elements. Type
Dis a two-dimensional 5-by-10 array and type Eis one-dimensional.

BYTESTREAM and WOR.DSTREAM

BYTESTREAM and WORDSTREAM are two special Apple Pascal data
types. They allow you to pass arrays of unspecified length to procedures
and functions. They act within a procedure or function as if the following
(normally illegal) type declarations had been made:

TYPE BYTESTREAM =PACKED ARRAY C0 •• ?l OF CHAR;

WORDSTREAM = ARRAY [0 •. ?l OF INTEGER;

The following rules apply to using BYTESTREAM and WORDSTREAM:

o They may be used only to type variable parameters in procedure or
function parameter lists. They may not be used as general variable types.
For a discussion of variable parameters, see Chapter 8.

o BYTESTREAM parameters will accept strings and one-dimensional
packed arrays whose elements are type CHAR, or integer subranges that
have at least one value greater than 127 and none greater than 255.

o WORDSTREAM parameters will accept one-dimensional unpacked
arrays whose elements are type CHAR, INTEGER, BOOLEAN, or any
CHAR or integer subrange.

o Within the procedure or function, variables of type BYTESTREAM must
be treated as if they were PACKED ARRAY OF CHAR; variables of type
WORDSTREAM must be treated as if they were ARRAY OF INTEGER.

The ARRAY Type III-49

III-50

o Within the procedure or function, BYTESTREAM and WORDSTREAM
variables may be indexed over any positive integer range from 0 to 32766
(MAXINT- 1). Pascal will not perform range checking on these
variables. If the procedure or function indexes the parameter outside the
limits of the data passed to it, it will access unknown areas of memory.

o The first element of any array passed to BYTESTREAM or
WORDSTREAM has index number 0. The first character of any string
passed to BYTESTREAM has index number 1; index number 0 accesses
the string's length byte (see "Memory Formats" in Appendix 3C).

o Whole BYTESTREAM and WORDSTREAM variables cannot be used
with the procedures WRITE, WRITELN, READ, or READLN described in
Chapter 10. However, their elements can be. BYTESTREAM elements
are type CHAR; WORDSTREAM elements are type INTEGER.

Declaring procedure parameters as BYTESTREAM or WORDSTREAM
allows you to overcome some of the normal restrictions of strong typing in
Pascal programming. You can write procedures and functions that operate
on strings or one-dimensional arrays of any size. At the same time, your
routines must contain instructions that limit their operations to the actual
size of the variables being passed to them. Because BYTESTREAM and
WORDSTREAM variables are passed by reference, they cannot be
measured with the SIZEOF function. Thus you must either pass size
information along with the data being processed, or detect some internal
feature in the data (such as the length byte at the beginning of every
string). The normal mechanisms that prevent you from accessing the wrong
areas of memory do not operate with BYTESTREAM and WORDSTREAM.

The RECORD Type

A Pascal record is a collection of elements, called fields, which may be of
different types. Each field has its own identifier within the record and may
be individually referenced; or the record may be referenced as a whole.
Thus records are more flexible than arrays (in which all elements must be
of the same type); they also differ from arrays in that their fields are
identified by names instead of by index numbers.

The syntax for writing a Pascal record type or variable declaration is

RECORD END

Chapter 4: Structured Data Types

The syntax for writing the field list is

new
identifier

type variant
part

The variant part is optional; its syntax is discussed below under "Variant
Records."

Here is an example of a record type declaration:

TYPE DATE = RECORD
DAY, YEAR : INTEGER;
MONTH : STRING

END;

It defines a record, called DATE, with three fields-two integers and one
string. These three fields can be referenced individually in a program by
writing their names after DATE and a period. Thus the two integer fields
are identified as DATE.DAY and DATE.YEAR; the string field is called
DATE.MONTH.

Records as a whole can be used with the following operations, provided
their types are congruent:

:= = <>
The rules for determining whether two record types can be used with these
operations are given below under "Congruent Record Types."

Any individual field of a record can be used with any operation applicable to
its type.

The following rules govern the declaration of record types and variables:

o A record may have any number of fields.
o Individual fields may be of any size.
o Fields may have any of the Pascal types except file types. In particular,

they may be other records.
o Every field must have a declared type; however, it is possible for the

same memory area to be occupied by fields of different types. See below,
"Variant Records."

Here is an example that illustrates some of the features of Pascal records. It
might be part of a program that keeps track of a checking account.

The RECORD Type III-51

III-52

TYPE DATE RECORD
DAY, YEAR : INTEGER;
MONTH : STRING

END;

PAYMENT = RECORD
CHECK_HUM : INTEGER;
DATE_WR!TTEH, DATE_PAID DATE;
AMOUNT : IHTEGERC7l;
PAYEE : STRING;
ACCT : I i'ITEGER

END;

VAR CHECK : PAYMENT;
CHECKBOOK : ARRAY £1 .. 100] OF PAYMENT;

The type PAYMENT defines a record with six fields, two of which are
records of the type DATE. The variable CHECK is a single record of the type
PAYMENT; the variable CHECKBOOK is an array of 100 such records. A
program using these declarations would access individual fields to store and
retrieve data:

o CHECKBOOK[N] would refer to the Nth record in the array, a variable of
the type PAYMENT.

o CHECKBOOK[N].DATE_p AID would refer to the date on which the Nth
check was paid, a record variable of the type DATE.

o CHECKBOOK[N].DATE_p AID.MONTH would refer to the month of the
date on which the Nth check was paid, a string variable.

I A Shortcut: A shorter way of writing these field references is described
below in the section "WITH ... DO''.

To number the check records in CHECKBOOK, the program could use the
FOR ... TO ... DO statement:

FOR N := 1 TO 100 DO CHECKBOOKCHl.CHECK-NUM :• H;

To compare the contents of CHECK with the Nth element of CHECKBOOK,
it could use the IF ... THEN statement:

IF CHECKBOOK[Nl = CHECK THEN --

The remainder of this statement would be executed if and only if the
contents of every field of CHECK were the same as the contents of every
corresponding field of the Nth element of CHECKBOOK.

Chapter 4: Structured Data Types

Information A bout the Example: This and other examples use
standard Pascal statement forms such as FOR ... TO ... DO and IF ... THEN.
For more information about Pascal statements, see Chapter 7.

Variant Records

Sometimes it is desirable to be able to vary the types of information stored
in a record. To do that, an optional variant part can be added at the end of
the record type or variable declaration.

The variant part of a record declaration, when it is used, must follow this
syntax:

tag
identifier

~--. constant 1---.....~

tag
type

identifier

field
list

The tag identifier and tag type identifier form a new field in the record,
called the tag field. The tag field lies between the nonvariant part and the
variant part, which is always located at the end of the record. It serves to
identify which of the variant record endings you want to use in any
particular operation.

For example, consider the previous example of a checking account program.
As originally written, the last field in the record type PAYMENT is ACCT,
an integer representing the account number to which the check is charged.
Suppose that some checks will be charged to a miscellaneous fund, making

The RECORD Type III-53

Ill-54

it desirable to identify their purpose by a written text string. We modify the
declaration of PAYMENT to include a variant part:

TYPE PAYMENT = RECORD
CHECK-NUM : INTEGER;
DATE_WRITTEN, DATE_PAID DATE;
AMOUNT : INTEGER [7l;
PAYEE : STRING;
CASE MISC : BOOLEAN OF

END;

FALSE CACCT1 : INTEGER>;
TRUE CACCT2 : INTEGER;

PURPOSE : STRING>

The material beginning at CASE is the variant part. It starts by introducing
a new field, identified as MISC, containing a boolean value. If MISC is false,
the record ends with a single integer field as before, now called ACCTl. If
MISC is true, however, it ends with two fields: an integer ACCT2 and a new
string variable, PURPOSE. By choosing a scalar type other than boolean we
could have written many variant endings for this record type.

When Pascal encounters this variant record declaration, it sets aside
enough memory to contain the longest variant part (namely, the case that
MISC is true). If we have an array (such as CHECKBOOK) of records of the
type PAYMENT, we can now tailor the Nth record in it by assigning one of
the boolean constants TRUE or FALSE to the tag field
CHECKBOOK[N].MISC. This tag field is part of the record; the program uses
it to determine whether to identify the record's account number as ACCTl
or ACCT2 and whether or not the field CHECKBOOK[N].PURPOSE exists.

Be Careful: Pascal provides no automatic mechanisms for switching
variant parts in a record. Declaring a variant part simply means that you
can store different groups of fields in the same memory space. It is up to
your program to use the tag field to regulate its usage of the variant part
in each record it writes.

The following rules apply to the declaration of variant record types or
variables:

o The variant part must be the last section of the record declaration.
However, a record with a variant part may be declared as afield
anywhere in a variant or nonvariant record.

o The tag field type may be any scalar type; however, the maximum
number and spread of its values is the same as with the CASE statement.
See "CASE ... OF ... OTHERWISE" in Chapter 7.

Chapter 4: Structured Data Types

o The limits on the number and types of fields within each variant part is
the same as for any Pascal record.

o Identifiers may not be repeated among variants (this is why the field
ACCT became ACCTl and ACCT2 in our example).

Free Union Variant Records

In an ordinary variant record, the tag field value tells your program how to
interpret the variant data. The tag field is particularly useful when the
variant fields are of different types; it helps safeguard against
misinterpreting their values.

However, you can create records in which you deliberately interpret field
values in more than one way. A variant record can be declared without a
tag field identifier (but not without a tag field type); or the program may
simply ignore the tag field. In either case, the result is called a free union
variant record. If the tag field identifier is omitted from the declaration,
the tag field itself will be omitted from the resulting records. Omitting the
tag field saves a little memory and makes the maneuver more
straightforward.

Free union variant records provide a handy tool for converting data from
one type to another. Here's an example. The types INTEGER and.CHAR are
both stored in memory as words of 16 bits; suppose we wish to convert
values of one into the other, or access their bits individually. We write the
following free union variant record declaration:

VAR MAGIC RECORD CASE INTEGER OF
1 : <NUMBER INTEGER>;
2 : CSYMBOL CHAR>;
3 : (BINARY PACKED ARRAY C0 .. 15l OF BOOLEAN)

END;

Notice that this declaration has no tag field identifier; however, it does
specify that the tag field is type integer. Declaring a tag field type is
necessary so the Compiler can keep track of the three variant parts, which
are identified by the integers 1 through 3.

When the record variable MAGIC is stored in memory, it occupies just 16
bits because this is the length of each of its variant parts. But now that
same 16-bit word can be accessed as

o An integer, identified as MAGIC.NUMBER;
o A CHAR variable, identified as MAGIC.SYMBOL; or
o A packed array of 16 boolean values, one for each bit, identified as

MAGIC.BINARY.

The RECORD Type IIl-55

III-56

Thus our program could, for example, store a character as MAGIC.SYMBOL
and retrieve its bit pattern as the integer MAGIC.NUMBER. It could store or
retrieve either as an array of bits (each represented by its boolean value). A
typical statement to write out the binary value of the data stored in MAGIC
might look like this:

FOR H := 15 DOWHTO 0 DO
IF MAGIC.BIHARYCHJ THEH

WRITE C'1'>
ELSE WRITE C'B'>;

The rules for forming and using free union variant records are the same as
for ordinary variant records, except that the tag field identifier is omitted. In
particular, free union variant fields do not need to be all the same size. In
the foregoing example, if we had declared MAGIC.BINARY as an
ARRA Y[0 .. 7] OF BOOLEAN it would have accessed only the first byte of the
two-byte memory space reserved for the whole record variable.

Using free union variant records is one of several ways to defeat the "strong
typing" characteristic of Pascal. Others are listed in Chapter 16. The ways
that various data types are stored in memory are described in Appendix 3C.

Packed Records

When records are declared normally, Pascal allocates a minimum of one
word (two bytes, or 16 bits) of memory for each field. When one or more
fields are of types that can be stored in less than a whole word, you can
conserve memory space by declaring the record as packed. To do this,
simply write the word PACKED just before the word RECORD.

Here is an example of a packed record declaration:

TYPE MICRO = PACKED RECORD
F1, F2, F3 : 0 .. 31;

LASTBIT : BOOLEAH
EHD;

The three integer subrange fields Fl, F2, and F3 each need five bits of
memory; LASTBIT needs one. Because MICRO is declared as packed,
variables of its type take up only one 16-bit word of memory. If the word
PACKED were omitted, variables of type MICRO would occupy four words,
one for each field.

Chapter 4: Structured Data Types

These are the rules by which Pascal packs records:

o Fields that contain arrays and records (both packed and unpacked)
always start and end at even 16-bit word boundaries.

o Fields containing all other data types start with the bit immediately
following the last bit of the previous field and occupy the minimum
number of bits necessary to hold their value range.

o Fields are never packed across word boundaries. For an illustration of
this restriction see the earlier section "Packed Arrays."

o When a packed record has a variant part, the variant part (beginning
with the tag field) starts at the next word boundary and contains the
number of bits necessary to store the tag field plus the longest variant.

o Fields in variant parts, including the tag field, are packed the same way
as in regular parts of records.

o The packed record as a whole extends to the word boundary following
the last bit of its last field (including variant fields, if any).

o Records and arrays that are fields of a packed record are not
automatically packed. You must declare them as packed.

Declaring packed records to minimize the memory space they require can
be tricky. The order in which fields are listed can be critical, as well as the
field types used. If in doubt as to the result of packing any record type, use
the SIZEOF function described in Chapter 6 to measure its actual memory
requirement.

I
A Tradeoff' Packing and unpacking fields in packed records takes a
significant amount of execution time. Thus execution efficiency is a
tradeoff against memory conservation when using them.

Congruent Record Types

Two record variables must be of congruent types to participate together as
whole entities in any Pascal operation. A record passed to a procedure or
function must also be of a type congruent with the record type declared in
the procedure or function's parameter list. For more information about
passing records to procedures and functions, see Chapter 8.

Any two unpacked record variables, excluding variant types, are congruent
if and only if for every field in one there is a corresponding field of the same
type at the same position in the other. Such corresponding fields do not
need to have the same identifiers, however.

The RECORD Type III-57

III-58

Two packed record variables, excluding variant types, must meet a
stronger test to be congruent. In addition to the foregoing requirement, all
the bits in both record variables must be defined. Thus wherever bits are
wasted between the end of a field and the next word boundary, you must
declare extra fields of the right size to define the spare bits. Integer
subrange fields are handy for this purpose. Note, however, that such extra
fields must be initialized to some standard value (such as 0) if the record
variables containing them are to be compared meaningfully with the = and
< > operators.

Two variant record variables, packed or unpacked, must meet all the
foregoing tests. In addition, they must have been declared by using the
same type identifier. If you use two different type identifiers, even though
they refer to the same actual type, Pascal will not recognize your variant
record variables as congruent. This is not true of nonvariant records.

In comparisons using the = and < > operators, the contents of variant
record tag fields are significant. If the contents of the tag fields are
different, the records are unequal.

Free union variant record types act the same as other variant record types
for congruency purposes; their lack of a tag field makes no difference.

Unpacked record types are never congruent with packed record types, nor
variant record types with nonvariant record types.

WITH ... DO

The WITH statement is a shorthand method for referencing elements of a
record. It provides a means by which the fields of specified records can be
referenced using only their field identifiers. It has the following syntax:

record
variable -~- statement

reference

For an example, consider the array CHECKBOOK of record variables
discussed earlier. There we identified the field DATE_pArn in the Nth

Chapter 4: Structured Data Types

record variable of CHECKBOOK as CHECKBOOK[N].DATE_p AID. Instead,
we could write

WITH CHECKBOOKCNJ DD
BEGIN

... references to DATE_PA!D

END

BEGIN and END form a compound statement controlled by WITH ... DO; in
effect, they delimit the scope of its effect. Within this program area, all the
fields of CHECKBOOK[N] are now identified simply by their field names. Of
course other variables may also be used; the WITH ... DO statement affects
only the way you reference the fields of CHECKBOOK[N].

The field DATE_p AID, however, is itself a record. Originally we referred to
one of its fields as CHECKBOOK[N].DATE_p AID.MONTH. Instead, we
could write

WITH CHECKBDOKCNJ, DATE_PAID DD
BEGIN

... references to MONTH

. . . references to other fields of CHECKBDDKCN] ...

END

Now all the fields of both CHECKBOOK[N] and DATE_p AID are identified
just by their field names.

These rules govern the use of WITH ... DO:

o Any number of record variable identifiers, including those of records that
are fields of other records, may be listed between WITH and DO.

o When listing a record that is a field of another record, you must either list
the containing record earlier or list that field in explicit form, for example
in the form CHECKBOOK[N].DATE_p AID.

o WITH ... DO statements may be nested. The record variables "opened" by
any WITH ... DO statement remain "open" in the nested statements.

o Where fields of different record variables have the same name,
WITH ... DO accesses the field of that name in the record last listed,
including redundant listings in nested statements. The identity of field
names does not cause a Compiler error.

o Within a WITH ... DO statement, fields may still be identified explicitly,
for example in the form CHECKBOOK[N].DATE_p AID.MONTH, even
though their record variables are listed. This feature can be used to
resolve the ambiguity of identical field names.

The RECORD Type Ill-59

III-60

o When used with variant record variables, WITH ... DO accesses the
identifiers for their tag fields and all variant fields.

o WITH ... DO statements do not affect any identifiers except the names of
fields in their listed record variables.

Chapter 4: Structured Data Types

Chapter 5 Dynamic Variables

lll-61

III-62

The examples of variables given in the previous chapters have all been
static variables. They are created during program compilation as a result
of declarations in the source text.

This chapter discusses variables of a different kind: dynamic variables.
Dynamic variables are created while the program is running, as a result of
its executing the NEW procedure. They are accessed not by identifier
names, but by pointers. Here is the sequence of events:

1. Among your program's variable declarations, you declare a static
variable of the type pointer. At the same time, you declare a base type
for the dynamic variable to which the static variable will later point.
These declarations are discussed below under "Pointer Variables."

2. When your program is loaded, Pascal reserves one word of memory for
the pointer variable (which will later contain a memory address) and
associates the declared base type with it.

3. In the body of your program you call the NEW procedure with the
pointer variable as its parameter. See below, "The NEW Procedure."

4. When the NEW procedure is executed, it allocates space in memory to
store a new dynamic variable and sets the pointer variable to its
address.

5. Pascal restricts usage of the dynamic variable's memory space to the
variable's declared base type.

6. Your program may then identify the new dynamic variable by using the
pointer variable's identifier followed by a caret (•).

Chapter 5: Dynamic Variables

TYPE DATE = RECORD
DAV, YEAR : INTEGER;
MONTH : STRING

END;

VAR PTR : "DATE;

BEGIN

•.. Program text ...

NEW CPTR>;

... Program text ...

END.

PTR" ...
PTR".VEAR ...

Here is an example of this process in action:

{Declare a base type}

{Declare a pointer variable PTR,
which will point to a dynamic
variable of type DATE}

{Start body of program}

{Create a dynamic variable of
type DATE>

{Reference to dynamic variable}
{Reference to field in variable}

{End body of program}

The space now allocated for the new dynamic variable is taken from
previously unused memory. It is the correct size for the dynamic variable's
base type. In the case of a variant record type, it can be either large enough
for the largest variant, or the correct size for one specified variant. For
details see below, "Dynamic Variant Record Variables."

Using Dynamic Variables

The process just described may seem like a roundabout way of creating a
variable. Indeed, for most data types it makes little sense. But with two
types, arrays and records, it is an important tool for run-time memory
management.

Sometimes you need to create a large array for temporary data storage
during program execution. If you declare such an array as a static variable,
Pascal will reserve memory space for it all the time your program is
running. That memory will never be available for other program use.

By storing the array as a dynamic variable, however, you can control when
its memory space is reserved. By using the MEMA VAIL function your
program can measure how much unused memory is available before

Using Dynamic Variables III-63

III-64

creating it. With the MARK and RELEASE procedures, you can release the
memory that the array occupies after your program no longer needs it.
These tools are described later in this chapter. Thus your program can use
the same memory space for different purposes at different times. This is not
the case with static variables.

An important application of dynamic variables is in the creation of
dynamic text arrays. They allow you to use available memory most
efficiently to store large quantities of text. For further information see
"Creating a Dynamic Text Array" in Chapter 16.

When you are handling an indeterminate number of records, storing them
in dynamic variables lets you allocate memory to them as needed. With
static variables you would have to allocate enough memory in advance to
handle the maximum number of different records that might exist at one
time. The technique for using dynamic variables in this way is described in
Chapter 16 under "Record Linking."

Pointer Variables

Pointer variables are static variables of the type pointer. Their only use in
Pascal is to point to dynamic variables. They are created by type or variable
declarations in which the specification of a base type is preceded by a caret
C):

Some pointer variable declarations were illustrated in earlier examples.

Pointer variables may be used with these operations:

:= = <> NEW ORD

Pointer variables follow these rules:

o The base type may be any type except a file type.
o If the base type is user-defined (not one of the built-in Pascal types), you

must declare it separately. You cannot declare it as part of the pointer
variable declaration.

Chapter 5: Dynamic Variables

o The base type may be an identifier for a variable type that has not yet
been declared. This is the only time in Pascal when you can use an
identifier that has not yet been declared.

o There is no way in Pascal to set a pointer variable to any specific value.
It may be initialized by NEW, or it may be set to another pointer's value
(or to NIL) by the assignment operator (: =).

o In particular, there is no way (short of writing an assembly-language
routine) to set a pointer variable to point to a static variable.

o Until they have been given a value by NEW or by assignment, pointer
variables point to unknown areas of memory and should not be used.

o Using NEW a second time with a pointer variable destroys the first
pointer value. Unless you have saved this value by assigning it to another
pointer, the dynamic variable it pointed to becomes permanently lost.

The NIL Constant

NIL is a Pascal reserved word, meaningful only as the value of a pointer
variable. It can be used with the following operations:

:= = <>
When a pointer variable is set to NIL it points nowhere; in particular, it does
not point to any dynamic variable.

The NEW Procedure

NEW is a built-in procedure that is used only with pointer variables. It
performs these actions:

o It allocates unused memory space for a dynamic variable.
o It sets the pointer variable to the address of the allocated space.
o It restricts use of the space to storing variables of the base type that was

declared with the pointer variable.

The syntax for calling NEW is this:

The NEW Procedure

pointer
variable
identifier

constant 1------,.~0>«

III-65

III-66

An optional constant identifier may be added after the pointer variable
identifer. If included, it refers to the value of a variant record tag field. This
special feature of the NEW procedure is described next.

Dynamic Variant Record Variables

When NEW creates a dynamic variable, it allocates enough memory to store
any possible value of its base type. When the base type is a variant record,
this means that it allocates enough memory for the longest variant.

To conserve memory, you can specify which variation of a variant record
type you want the new dynamic variable to contain. NEW will then allocate
only enough memory for that part. You do this by adding a comma and a
constant after the pointer variable identifier in the NEW parameter list. The
value of the constant must be the same as one of the specified tag field
values in the corresponding record.

Here is an example:

TYPE PICKVAR • RECORD CASE TAG : INTEGER OF
1 CF1 INTEGER>;
2 : CF2 REAL>;
3 : CF3 ARRAY [1 .. 991 OF CHAR>

END;

VAR REC_PTR : APICKVAR;

HEW CREC-PTR>; {Memory allocation 11lfll words}
HEW CREC-PTR, 1>; {Memory allocation 2 words}
HEW CREC-PTR, 2>; {Memory al location 3 words}
HEW CREC_PTR, 3>; {Memory allocation 1fllfll words}

The NEW procedure with no constant allocates enough memory for the
longest variant part; in this example, field F3 (99 words for the array plus
one word for the tag field). If Fl or F2 is to be stored, specifying the variant
results in an obvious saving of memory.

When you use a constant to specify the variant part of a dynamic record
variable, observe these cautions to avoid destroying neighboring memory:

o Pascal does not automatically set the record variable's tag field. If you
use the tag field, you must set it to show which variant is actually being
stored.

Chapter 5: Dynamic Variables

o Don't try to change the variant, or access any field not in the variant
originally stored.

o Don't try to make an assignment to the dynamic record variable as a
whole. You can assign the value of individual fields in the stored variant,
however.

Memory Management for Dynamic Variables

Because they are created during program execution, dynamic variables can
easily gobble up all the available memory and cause a program halt. To help
avoid this, Apple Pascal has three built-in operations for run-time memory
management. They are the MEMA VAIL function and the MARK and
RELEASE procedures, described below. Another useful memory
management tool, the SIZEOF function, is described under "Byte
Operations" in Chapter 6.

MEMAV AIL lets your program measure how much memory is available to
store program data at any stage of execution. MARK and RELEASE let it
choose whether to retain or release those parts of memory allocated to
specific dynamic variables. SIZEOF tells your program how much memory
it needs to store most types of variables, both static and dynamic. For
further hints on avoiding memory size problems, see "Executing Large
Programs" in Chapter 15.

Other Versions of Pascal: The Apple Pascal procedures MARK and
RELEASE replace DISPOSE, a procedure used in some other versions of
Pascal. Using DISPOSE in your program won't cause a Compiler error, but
it won't work either.

MEMAVAIL

The MEMA VAIL function returns a positive integer giving the number of
two-byte words of memory currently available. In the 128K Pascal system
this space is used for dynamic variables, data, and assembly-language code

Memory Management.for Dynamic Variables III-67

III-68

(if any). In the 64K system it contains all the executing P-code as well. Here
is an example of the use of MEMA VAIL:

TYPE BIGGIE= ARRAY [0 .. 99, 0 .. 121 OF INTEGER;

VAR PTR : ABIGGIE;

IF MEMAVAIL > CSIZEOF CBIGGIE> DIV 2) THEN
NEW CPTR)

ELSE
WRITELN C'Help');

This program fragment creates a pointer variable PTR with the base type
BIGGIE, a large array. Before executing NEW (PTR), which would allocate
memory for a dynamic variable of type BIGGIE, it compares the amount of
memory available with the size of BIGGIE. It executes NEW only if there is
enough room. Note that the SIZEOF function must be used on the base type
of PTR; it cannot measure a dynamic variable such as PTR ~ . Applied to
PTR itself it would return the size of the pointer type, which is 2 bytes.
SIZEOF is described under "Byte Operations" in Chapter 6.

Be Careful: Don't multiply MEMA VAIL to convert its value to bytes. Its
value may be in the upper half of the positive integer range; multiplying it
by 2 can cause an integer overflow, returning an apparent negative value.
In the example above, we divide the value returned by SIZEOF by 2; this
converts it from bytes to words so it can be compared with the word
count returned by MEMA VAIL.

MARK and RELEASE

When a program creates dynamic variables, using NEW, it starts from the
beginning of a memory area called the heap. It places dynamic variables
end to end in this area until the available memory is used up. The heap is
discussed in Part IV of this manual, Chapter 3.

At any point in this process you can flag a memory location, using the
MARK procedure. If you later execute a RELEASE procedure, all the
memory back to the MARK location is freed for storage of new dynamic
variables. In effect, RELEASE makes the point at which new dynamic
variables are added to memory drop back to the place flagged by MARK.

Chapter 5: Dynamic Variables

MARK and RELEASE are used in pairs. Each pair requires a previously
declared pointer variable. Here is the syntax:

pointer
variable
identifier

By using more than one pointer variable, you can place more than one pair
of MARK and RELEASE procedures in your program.

Consider this example:

VAR FLAG1, FLAG2 : AINTEGER;

REPEAT
MARK ff LAG 1 >; {Mark start of repeated part}

... program part A ...

MARK ffLAG2); {Mark start of part 8}

... program part B ...

RELEASE CFLAG2 >; {Release memory used by part B>

... program part C ...

RELEASE ff LAG 1);
UNTIL ... some condition ...

{Release all memory}
{Repeat}

In this example, we have written a repeating program section in which
dynamic variables are created by NEW procedures. In the areas indicated
as parts B and C, the new dynamic variables are so large that they would
take up more than the available memory if they all coexisted. So the
memory used by part B is released for use by part C. This means that the
variables created in part B can no longer be accessed. The variables created
in part A, however, continue to exist until the memory used by the entire
repeated section is released.

Keep the following points in mind when using MARK and RELEASE:

o RELEASE must not be executed unless a MARK has previously been
executed with the same pointer variable.

Memory Management for Dynamic Variables III-69

III-70

o The order in which MARK and RELEASE work is the order of actual
program execution, which may be different from the order in which they
appear in the source text.

o You can only release memory from the current point at which it is being
filled; you cannot release a piece out of the middle.

o The pointer variables used with MARK and RELEASE may have any
base type; INTEGER is usually most convenient. The base type is
immaterial because it is not used.

o Do not try to use MARK or RELEASE with the same pointer variables you
use with NEW, unless you are abandoning the dynamic variables they
point to.

o When Pascal reads a disk directory, it uses 2048 bytes from the memory
space available for dynamic variables. Executing either MARK,
RELEASE, or NEW will release this space for use.

A. Waming I Careless use of MARK and RELEASE can leave pointer variables pointing
to meaningless memory locations. This can lead to inadvertent
destruction of data.

Chapter 5: Dynamic Variables

Chapter 6 Operations on Data

III-71

III-72

Most data calculations and conversions in a Pascal program are done by
user-defined procedures and functions, routines you construct to
achieve the specific results you want. We discuss them in Chapter 8. But
first, you need to know about Apple Pascal's built-in facilities for
manipulating data. They are the building blocks you will use when writing
your own procedures and functions.

In this chapter, the built-in data operations of Apple Pascal are grouped by
the types of data which they manipulate and the types of results they yield.
The major kinds of data operations are

o The assignment statement, which sets the value of a variable;
o The operators and functions of arithmetic, which manipulate

numerical data and yield numerical results;
o Relational operators, which compare data values of all types and yield

boolean results;
o Logical operators, which manipulate boolean values with boolean

results;
o Scalar functions, which manipulate scalar values with scalar results;
o Byte procedures and functions, which manipulate or measure bytes of

data as they reside in memory;
o String procedures and functions, which manipulate or measure strings;
o Set operators, which combine sets;
o Bit operations, which act on the individual bits in data words.

Expressions

In its simplest form, an expression may be just a constant or a variable
reference. More generally, however, expressions are made up by combining

o variable references
o constants
o operators
o function calls
o set constructors
o other expressions
o spaces and parentheses.

Chapter 6: Operations on Data

By combining these elements, you can create expressions of virtually any
length or degree of complexity. Defining which combinations are valid (that
is, which ones the Compiler will compile) requires a series of diagrams. We
start with the overall syntax for an expression:

simple I--+----;»'! < n----,.+--..-i
expression

Each simple expression has this form:

Expressions

simple
expression

III-73

III-74

A term is constructed this way:

A factor is written like this:

unsigned
constant

variable
reference

function
call

set
constructor

factor

expression

Chapter 6: Operations on Data

Each kind of factor has its own syntax. First, the unsigned constant:

constant
identifier

unsigned 1-------------...i
number

character ,__~_......,

An unsigned constant may consist of an unsigned number, which is
written this way:

The syntax for a variable reference is given in the next section,
"Assignments." The function call is written this way:

function
identifier

Expressions III-75

III-76

Finally, the set constructor looks like this:

--...---.,.......-+1 expression ,__~ expression -~-~-~-....,

Putting it all together, here are some examples of expressions:

x
x + y
ex = Y> OR CA = B>
C(X DIV Y> MOD A> + 3
CSQR CX> = Y) AND CA <> B)
CA= 'a') OR NOT CB IN ['b' .. 'z'l>

The discussions of various data operations in the balance of this chapter
contain many more examples of correctly formed expressions. From the
outset, however, it is important to keep in mind the two essential
characteristics of every expression: its type and its value.

Pascal data types are discussed at length in Chapters 3 and 4. Whenever an
expression is formed-out of elemental symbols, or other expressions, or
both-it acquires a specific type. Sometimes the type of an expression is
different than the types of the expressions it contains. For instance, even if
Xis an integer expression (such as an integer variable), the expression
SQRT(X) that returns its square root is type REAL, not INTEGER. You
cannot use the expression SQRT(X) in an operation that works only on
integers. Thus when constructing expressions it is important to keep track
of the resulting data types. If you don't, the Compiler will quit with an error
message when trying to read your source text.

Even when the type of an expression is correct for a given operation, its
actual value when your program runs may be out of bounds. For instance,
the expression SQRT(X) does not accept negative values of X. If you try to
run a program containing that expression in which the expression X
acquires a negative value, the program will halt with a run-time error. Thus
when forming expressions it is also important to keep track of the possible
range of values each expression might acquire under all program input
conditions.

In the rest of this chapter, the permissible type and value ranges for each
data expression are carefully defined.

Chapter 6: Operations on Data

Assignments

The assignment statement sets the value of a variable. It is written like
this (the symbol:= can be read as "set to"):

variable
reference

expression

The variable .reference on the lefthand side identifies a variable of any of
the types discussed in the last three chapters (that is, any type except a file
type). With most variables it is simply an identifying name, but in four
cases it consists of a name followed by a qualification:

o If the variable is a string element it is identified by the string name
followed by the element's index number in square brackets.

o If the variable is an array element it is identified by the array name
followed by index value(s), one for each dimension of the array, enclosed
in square brackets and separated by commas.

o If the variable is a :record field, its name must be preceded by the name
of its containing record and a period.

o If the variable is a dynamic variable, it is identified by the name of its
pointer followed by a caret.

Thus the complete syntax of any variable reference is this:

variable
identifier

field
identifier

Here are some examples of valid assignment statements:

NUM_PLANETS := 9;
ENERGY := MASS * SQR CC>;
N:=N+1;
FRUIT := [APPLES, ORANGES, LEMONSJ;

Assignments Ill-77

III-78

HAME[Kl : = 'a';
JOB_COSH66,'B'l := 123.45;
REC.F1 := TRUHC CSQR CCOS CTHETA [Kl>>>;
MEMPTRA := HUM_PLAHETS;

In writing assignment statements, keep these rules in mind:

o An integer variable may be set to the value of an integer, integer
subrange, or expression yielding integer results. It may be set to the
value of a real or long integer, using the ROUND or TRUNC function,
provided the real or long integer value is within the possible range of
integer values.

o A real variable may be set to the value of another real, an integer, an
integer subrange, or an expression yielding integer or real results.

o A long integer variable may be set to the value of an integer, an integer
subrange, or an expression yielding integer results. It may be set to the
value of another long integer or to an expression yielding long integer
results provided the actual value does not exceed its declared size.

o A boolean variable may be set to the value of another boolean or to an
expression yielding boolean results.

o A char variable may be set to the value of another char, a char
subrange, or a string element.

o A scalar subrange variable may be set to the value of another scalar
(or an expression yielding scalar results) of the same type provided the
actual values lie within its declared range.

o A user-defined scalar variable may be set to any of the values named
in its declaration.

o A string variable may be set to the value of another string provided its
actual length does not exceed the variable's declared size.

o A set variable may take the value of another set variable or set
constructor, provided they have the same base type.

o A whole array variable or record variable may be set to the value of
another whole array or record variable of congruent type. For a
discussion of congruency see "Congruent Array Types" and "Congruent
Record Types" in Chapter 4.

o A one-dimensional packed character array variable may be set to
the value of a string constant (but not a string variable) provided its
index range is the same as the string's length.

o Array elements, including elements that are arrays, and record fields,
including fields that are records, act in assignments like ordinary
variables of their declared types.

C~apter 6: Operations on Data

Arithmetic Operations

Apple Pascal provides a wealth of operations for numerical data. The
following operators and functions are described in this section:

o Negation, addition, subtraction, multiplication, and division of
integers, reals, and long integers, including modulus reduction of
integers.

o Rounding and truncating of reals and long integers to convert them to
integer types.

o Taking the absolute value of integers and reals.
o Exponential functions yielding the square and square root of integers

and reals, as well as reals which are integer powers of 10.
o Trigonometric functions on integers and reals, yielding their sine,

cosine, and arctangent.
o Logarithmic functions on integers and reals, yielding their natural

logarithm, base 10 logarithm, and natural antilogarithm.
o Two randomizing functions that generate pseudorandom integers.

Negation, Addition, Subtraction, Multiplication

Integer, integer subrange, real, and long integer expressions may be
combined with these operators to negate, add, subtract, or multiply
numbers:

- + ,.

You may use parentheses freely to separate partial expressions, as in
standard algebraic notation. In fact, this is often necessary for Pascal to
interpret your text correctly; for more information, see the section
"Precedence of Operations" later in this chapter.

To negate an integer, integer subrange, real, or long integer expression
(convert its value from positive to negative), simply place the - operator in
front of it. For example:

-3 -3.14159 -X -TRUHCCX> -CX+3) -ABSCX>

If the negated expression follows another operator, it must be separated by
parentheses:

-(-2) -X"C-Y> X*C-Y> MOD C-CX+3))

Arithmetic Operations III-79

III-80

To add, subtract, or multiply two integer, integer subrange, real, or long
integer expressions, place the +, - , or * operator between them:

X-Y X-CY+Z) 3.14159*X

TRUNCCX>*Y CX+3>*ABSCY-CX"Z)

Some combinations of numerical types are illegal under these operations,
however. Here are the rules:

o Every negation is legal. The result of negating an integer subrange is an
integer expression; with other types, the result is the same type.

o Every combination of two integer, two real, or two long integer
expressions is legal, provided the actual result is within the value range
for that type. A real result below the lower limit of real values is legal; it
is treated as 0.0.

o Every combination of integer and integer subrange expressions is legal,
provided the actual result is within the integer value range. The result is
an integer expression.

o Every combination of integer (or integer subrange) and real expressions
is legal; the result is a real expression.

o Every combination of integer (or integer subrange) and long integer
expressions is legal; the result is a long integer.

o Every combination of real and long integer expressions is illegal.

Be Careful: When constructing arithmetic expressions, analyze each
part separately for the possibility that its value may overflow or
underflow during program execution. For example, if Xis an integer the
expression

ex * 314> DIV 1e0

will cause a program halt if the value of X exceeds 104 (because
105 * 314 = 32970, an integer overflow). The program will halt even
though the value of the whole expression is legal.

Division and Modulus Reduction

Pascal provides two operators for dividing numerical expressions, and one
for reducing an integer modulo another integer:

DIV / MOD

To divide any combination of integer, integer subrange, or long integer
expressions, write DIV between the dividend and the divisor. Unlike the

Chapter 6: Operations on Data

single-character operators, DIV must be set apart by spaces, parentheses, or
other delimiters:

X DIV Y CX*Y>DIV<Y+Z)

X DIV ABSCY> X DIVC-2>

The DIV operator cannot be used with real expressions.

To divide any combination containing a real expression, write the
operator / between the dividend and the divisor:

XIV CX+Y>/CY*Z> X/ABSCY>

X/C-2) X/3.14159

This operator can be used with any combination of integer, integer
subrange, or real expressions.

To reduce an integer modulo another integer (get the remainder when one
integer is divided by another), write MOD between the dividend and the
divisor:

X MOD Y CX*Y>MODCY+Z)

X MOD ABS< Y> X MODC-2>

This operator can be used only with integer or integer subrange expressions.
MOD simply divides the first operand by the second and returns the
remainder. Its result is absolute-that is, always positive. Here are some
examples:

10 MOD 3 = 1 10 MOD C-3)

10 MOD 11 = 10 10 MOD 5 = 0

The following rules govern the use of the DIV, /, and MOD operators:

o The result of DIV division is truncated toward O; any remainder is
discarded.

o If either operand of DIV is a long integer, the result is a long integer
expression.

o The result of DIV with any combination of integer and integer subrange
expressions is an integer expression.

o The result of using the / operator is always a real expression. If the
result is less than the range of real values, it is treated as 0.0.

Arithmetic Operations III-81

III-82

o DIV cannot be used with real expressions, and the / operator cannot be
used with long integer expressions; hence expressions of these two types
cannot divide each other directly. However, if the actual value of either
is within the integer range, it can be converted to an integer by using
ROUND or TRUNC (see below) and then combined with the other.

o The result of using MOD is always a positive integer expression,
regardless of the signs of the dividend and divisor.

Rounding and Truncating

Pascal provides two functions to convert numerical expressions of other
types into integer expressions:

ROUND(X) TRUNC(X)

ROUND accepts real expressions; TRUNC accepts either real or long
integer expressions. In both cases, the expression to be converted is written
inside the parentheses:

ROUND CX/Y> ROUND C-3.14159e3)

TRUNC CABS ex * CY/ZJJ)

Either flinction may be used with an integer or integer subrange expression;
the result is an expression of the same type and value.

These two functions handle the fractional parts of real values differently.
ROUND rounds real values to the nearest integer. If the value is exactly one
half (for example, 21.5000) it rounds to the nearest integer divisible by two
(22 in that case). TRUNC discards the fractional part entirely; for example,
21.9999 becomes 21. TRUNC converts long integer values to exactly the
same integer values.

I
Caution: The actual result of using either function must lie within the
value range for integers-that is, -32768 to +32767. Otherwise the
program will halt with an error message.

Absolute Value Function

The ABS function accepts integer, integer subrange, and real expressions,
creating an expression of the same type. It returns the absolute value-that
is, if the value of the expression is negative, ABS changes it to positive. The
expression is written in parentheses after ABS:

ABS <X> ABS CX/Y>

Chapter 6: Operations on Data

ABS CROUND CX/Y)) ABS C2-X>

The ABS function does not accept long integer expressions.

Exponential Functions

Apple Pascal provides three functions that return powers and roots of
numerical values:

SQR (X) PWROFTEN (X) SQRT (X)

A fourth function, which returns powers of e (the base of natural
logarithms), is discussed below under "Logarithmic Functions."

The SQR function accepts integer, integer subrange, and real expressions,
creating an expression of the same type. It returns the square of the
expression's value. When used with integer and integer subrange
expressions, if the result exceeds MAXINT (plus or minus 181 squared), the
value returned is integer 0. When used with real expressions, if the result
exceeds 3.402823466e38 (plus or minus l.84467e19 squared), the program
halts with a floating-point error.

The PWROFTEN function accepts any integer or integer subrange
expression with a value in the range 0 .. 37, creating a real expression with a
value that is 10 to the power of that integer.

The SQRT function accepts integer, integer subrange, and real expressions
with nonnegative values, creating an expression of the type real. The value
returned is the square root. If the expression used with SQRT has a negative
value, the program will halt with a floating-point error.

Program Unit Required! The Program Unit TRANSCEND must be
present in an accessible library at the time any program using the SQRT
function is executed. You must also write the declaration us Es
TRANSCEND; just after the program heading. TRANSCEND is originally
supplied in the file SYSTEM.LIBRARY. The USES declaration is further
described in Chapter 12; libraries are discussed in Chapter 13.

Trigonometric Functions

Apple Pascal provides three trigonometric functions-sine, cosine, and
arctangent-from which all other trigonometric functions can be derived by
using standard conversion formulas:

SIN (X) COS (X) ATAN (X)

Arithmetic Operations III-83

III-84

Program Unit Required! The Program Unit TRANSCEND must be
present in an accessible library at the time any program using the SIN,
COS, or ATAN function is executed. You must also write the declaration
USES TRANSCEND; just afterthe program heading. TRANSCEND is
originally supplied in the file SYSTEM.LIBRARY. The USES declaration is
further described in Chapter 12; libraries are discussed in Chapter 13.

The sine and cosine functions (SIN and COS) accept any integer, integer
subrange, or real expression with a value between plus and minus
102942.13. This value represents an angle measured in radians. SIN and
COS form real expressions whose values are the sine and cosine of that
angle.

The arctangent function (ATAN) accepts any integer, integer subrange, or
real expression whose value represents the tangent of an angle. It forms a
real expression whose value is that angle measured in radians, reduced to
the range plus and minus 90 degrees. Thus the resulting radian value varies
between plus and minus pij2 (1.57079).

Logarithmic Functions

Apple Pascal provides three logarithmic functions:

LOG (X) LN (X) EXP (X)

LOG calculates the base 10 logarithm; LN calculates the natural (base e)
logarithm; EXP calculates the natural antilogarithm.

Program Unit Required! The Program Unit TRANSCEND must be
present in an accessible library at the time any program using the LOG,
LN, or EXP function is executed. You must also write the declaration
USES TRANSCEND; just after the program heading. TRANSCEND is
originally supplied in the file SYSTEM.LIBRARY. The USES declaration is
further described in Chapter 12; libraries are discussed in Chapter 13.

All three logarithmic functions accept integer, integer subrange, or real
expressions and form real expressions. The two log functions (LOG and LN)
accept only nonnegative real values. The antilog function (EXP) accepts
any real value.

Chapter 6: Operations on Data

Random Number Fum::tions

Apple Pascal provides a function, RANDOM, and a procedure,
RANDOMIZE, for generating pseudorandom numbers. They are both
written without parameters:

RANDOM RANDOMIZE

Program Unit Required! The Program Unit APPLES TUFF must be
present in an accessible library at the time any program using the
RANDOM or RANDOMIZE function is compiled or executed. You must
also write the declaration us Es APPLESTUFF; just after the program
heading. APPLESTUFF is originally supplied in the file
SYSTEM.LIBRARY. The USES declaration is further described in
Chapter 12; libraries are discussed in Chapter 13.

Each time it is called, the RANDOM function returns a positive integer in
the range 0 to 32767. Hence the function identifier itself is an integer
expression with random positive value.

However, the sequence of values returned by repeated calls to RANDOM is
always the same within a given program. To get a different sequence each
time the program is run, you must execute the procedure RANDOMIZE
before the first time you use RANDOM.

Using the RANDOM Function

A typical application of the RANDOM function is to generate a
pseudorandom number within a given range. If LOW and HIGH are integer
expressions with values at the ends of such a range, the expression

LOW + RANDOM MOD CHIGH-LDW+D

can be used where results are not critical. But the values returned by this
expression are not actually distributed evenly over the range LOW through

Arithmetic Operations III-85

HIGH. To return pseudorandom integers evenly distributed over a range,
you can write the following function in your program:

FUN CT I ON RAND 1 <LOW, HIGH: INTEGER; VAR ERROR: BOOLEAN>: INTEGER;
VAR MAX, DIFF, TEMP: INTEGER;
BEGIN

ERROR := FALSE;
IF LOW > HIGH THEN

BEGIN
TEMP := LOW;
LOW := HIGH;
HIGH := TEMP

END;
{ LOW <= HIGH }
IF LOW < 0 THEN ERROR HIGH > MAXINT + LOW;
IF ERROR THEN RAND1 := 0 {error exit}
ELSE

BEGIN
DIFF HIGH - LOW; { 0 <= DIFF <= MAXINT }
IF DIFF MAXINT THEN RAND1 := LOW + RANDOM
ELSE

BEGIN { 0 <= DIFF < MAXINT }
MAX := MAXINT - CMAXINT - DIFF> MOD CDIFF + D;

REPEAT TEMP := RANDOM UNTIL TEMP <= MAX;
RAND1 :=LOW+ TEMP MOD CDIFF + 1>

END
END

END;

III-86

If HIGH is less than LOW, then the values of HIGH and LOW are exchanged.
If the difference between HIGH and LOW exceeds MAXINT, then RANDI
returns 0 and sets the ERROR parameter to TRUE. Otherwise, RANDI
returns evenly distributed pseudorandom integer values between LOW and
HIGH (inclusive).

Much of the complexity of the RANDI function comes from the need to
check that the arithmetic difference between the values of HIGH and LOW
is less than MAXINT. The RAND2 function, listed below, is a simpler, faster
version of the RANDI function. The RAND2 function contains no
error-checking; it must be called with parameter values whose difference is
less than MAXINT or it will not return a correct result.

Chapter 6: Operations on Data

FUN CT ION RAND2 <LOW, HIGH: INTEGER>: INTEGER;

VAR MAX, RANGE, TEMP: INTEGER;

BEGIN

RANGE : = HIGH - LOW + 1 ;

MAX : = MAX I NT - CMAX I NT - RANGE + 1 > MOD RANGE;

REPEAT TEMP := RANDOM UNTIL TEMP <= MAX;

RAND2

END;

LOW + TEMP MOD RANGE

Relational Operators

Six relational operators allow you to compare the values of data
expressions of every type except file types. Such comparisons form
expressions that are always boolean. The relational operators are these:

equal to

< less than

> greater than

<= less than or equal to

>= greater than or equal to

<> not equal to

Here are some examples of boolean expressions formed from relational
operators:

x = y X > SQRCY> CX*Y> <> CX+Z)

x <= l!J y 'Wye'

Whereas relational expressions can be assigned to boolean variables, or
substituted any place boolean variables or constants could be written, their
principal use is in program control statements. These statements are
discussed fully in Chapter 7; for present purposes, just note how the
relational operators are used:

IF X > SQR CY> THEN -'-

REPEAT -- UNTIL CX*Y> o CX+Z)

WHILE X <= 0 DO --

Relational Operators III-87

III-88

In each case, the control statement looks to the boolean value of the
relational expression to decide whether or not to execute another
statement. In the first example, for instance, the statement following THEN
is executed only if the expression x > s GR c v > has the value TRUE; that
is, only if the value of Xis greater than the value of the square of Y.

Relational operators follow these rules:

o Integer and integer subrange values may be compared with all
numerical values-other integers, integer subranges, reals, and long
integers.

o Real and long integer values can never be compared. However, either
can be converted to an integer value (if its value is within the integer
range) by the ROUND or TRUNC function, and then compared.

o Boolean values can be compared with each other; under the <, >,
<=,and>= operators, FALSE is "less than" TRUE. This makes
relationals handy for performing boolean logic. See below, "Logic Using
Relational Operators."

o CHAR values can be compared with each other and with string elements.
Under the<,>,<=, and>= operators, characters with lower ASCII
codes are "less than" characters with higher ASCII codes.

o Two strings can be compared regardless of their lengths. If they are
identical in length and value they are "equal"; otherwise they are
"unequal." Under the <, >, < =, and > = operators, Pascal compares
strings element-by-element, starting with element 1. When an unequal
value is found, the element with the lower ASCII code makes its string
"less," even if that string· is longer. If all corresponding elements have
equal values to the end of the shorter of two unequal length strings, then
the shorter string is "less" than the longer.

o Two sets of the same base type may be compared. They are "equal" only
if they contain exactly the same members; otherwise they are "unequal."
Under the < = and > = operators, one set is "less than or equal to"
another if all its members are also members of the other set, and
conversely for "more than or equal to." Equal sets satisfy both these
operators. The operators < and > cannot be used with sets.

o Two arrays of congruent type may be compared under the = and < >
operators. They are "equal" only if the value of every corresponding
element is identical; otherwise they are "unequal."

o Congruent one-dimensional packed character arrays (but no other
array types) can also be compared with each other and with string
constants of the same length, using the<,>,<=, and>=
operators. The comparison algorithm is the same as with strings,
described above.

Chapter 6: Operations on Data

implication
equivalence
exclusive-or

x <= y
x = y
x <> y

o Two records of congruent type may be compared, but only under the =

and < > operators. They are "equal" if the value of every corresponding
field (including the tag field in variant records) is identical; otherwise
they are "unequal."

o When comparing packed arrays and records, you must set all unused
bits to equal values, because they are compared along with the
meaningful bits.

o Array elements and record fields act in comparisons like ordinary
variables of their declared types.

Logic Using Relational Operators

Because the Pascal logic values are defined in such a way that FALSE is
"less than" TRUE, you can use the relational operators (=, <, >, < =,
> =, < >) to perform boolean logic. The result is often clearer and more
compact source text. For example, if X and Y are boolean expressions, then
you can combine them into new boolean expressions as follows:

{same as Y DR NOT X}
{same as CX AND Y> DR CNOT X AND NOT Y>}
{same as CX AND NOT Y> DR {NOT X AND V)}

Logical Operations

You can combine boolean expressions to form more complex boolean
expressions by using these logic operators:

NOT AND OR

Although they can be used with boolean variables and constants, these
operators are most commonly used with boolean expressions made from the
relational operators just discussed. Here are some examples:

ex > s> AND ex < 100>

ID DR ex = A) NOT CS <= [f/J])

The first example returns TRUE if the numeric variable X has a value
between 10 and 99. The second example returns TRUE if the value of X
equals either zero or the value of A. The last example shows how NOT can
be used to create more complex comparisons; it returns TRUE only if the set
S contains the member 0 and at least one other member.

Logical Operations III-89

III-90

The expression formed by writing NOT in front of a boolean expression
simply changes its value from TRUE to FALSE or from FALSE to TRUE.

When two boolean expressions are connected by AND, the result is TRUE
only if both expressions are TRUE; otherwise it is FALSE.

When two boolean expressions are connected by OR, the result is TRUE if
either or both expressions are TRUE. It is FALSE only if both are FALSE.

To create an exclusive-or expression with logical operators you can write
ccx AND NOT Y> OR mar x AND vn.Asimplerexclusive-or
expression is given in the previous section, "Logic Using Relational
Operators."

I
Other Uses of Logical Operators: The logical operators NOT, AND,
and OR are also used for operations on the individual bits in Pascal data
words. See "Bit Operations" later in this chapter.

Scalar Operations

Apple Pascal provides five useful functions for manipulating scalar data
types:

ODD(X) CHR(X) ORD(X) SUCC(X) PRED(X)

The first three-ODD, CHR, and ORD-allow you to change data from one
type to another. The other two, SUCC and PRED, help you increment and
decrement scalar data values.

The ODD function accepts an integer expression and returns a boolean
value. If the integer value is odd, the boolean value is TRUE; if the integer
value is even, the boolean value is FALSE.

The CHR function accepts an integer expression in the range 0 .. 255, and
returns a value of type CHAR. The CHAR value is the character whose
ASCII code is the same as the integer value. The CHR function is handy for
expressing character constants that are not easy to enter directly in your
source text-for example, control characters and characters with ASCII
codes above 127.

Chapter 6: Operations on Data

I
Be Careful: CHR does not check to see that the value of its parameter is
in the range 0 .. 255. If it is outside this range, CHR returns an undefined
CHAR value.

The ORD function accepts any scalar expression and returns an integer
value. The integer value is the ordinality of the scalar. It is determined
according to these rules:

o The ordinality of any integer or integer subrange value is the integer
value itself.

o The ordinality of any CHAR or CHAR subrange value is the numerical
value of its ASCII code.

o The ordinality of a boolean value is odd if the value is TRUE and even or
0 if it is FALSE. The actual value returned by ORD may be greater
than 1.

o The ordinality of any user-defined scalar is its position in the original
scalar declaration, the first value having ordinality 0.

The functions ODD, CHR, and ORD simply assign different scalar types to
the same 16-bit word of data, without changing its value. ODD types it as
boolean, CHR as CHAR, and ORD as integer. This convertibility of scalar
types permits certain special techniques, described below under "Bit
Interpretation of Scalar Types."

The SUCC and PRED functions accept any scalar expression and form
expressions of the same type. SUCC returns the "successor" value of the
scalar-that is, the value with ordinality 1 greater. PRED returns the
"predecessor" value, with ordinality I less. They determine ordinality in the
same way as the ORD function.

Caution: The use of SUCC with the highest possible value of a scalar
type, or PRED with the lowest possible value, will return an undefined
value. Doing this will not cause Compiler or execution errors, but can
produce program bugs and meaningless data.

Scalar Operations lll-91

III-92

Byte Operations

Apple Pascal provides two functions and three procedures that measure or
manipulate data as sequences of bytes, without regard to data type:

SIZEOF SCAN FILLCHAR MOVELEFT MOVERIGHT

SIZEOF measures the memory requirements of data types and variables.
SCAN searches memory to locate specific bytes. FILLCHAR fills sections of
memory with a specified byte value. MOVELEFT and MOVERIGHT copy
sections of memory into new locations. The latter operations are
particularly useful for manipulating variables in which data is stored as
8-bit bytes, particularly packed types such as packed character arrays.

SIZEOF and SCAN are functions which return data values. FILLCHAR,
MOVELEFT, and MOVERIGHT are procedures.

SCAN, FILLCHAR, MOVELEFT, and MOVERIGHT operate on contiguous
sections of memory. You can use them on multidimensional arrays, but only
if you understand clearly how these arrays are mapped. For guidance, see
Appendix 3D.

I
Caution: FILLCHAR, MOVELEFT, and MOVERIGHT alter the contents
of memory directly. They have no built-in safeguards to prevent you from
altering the wrong data. Use them with care.

The SIZEOF Function

SIZEOF accepts the identifier of any declared variable, user-defined data
type, or built-in Pascal data type:

SIZEOF (IDENTIFIER)

However, it cannot be used with BYTESTREAM, WORDSTREAM, any file
type, or any variable of these types. It can be used with the base type of a
dynamic variable, but not with the dynamic variable itself.

SIZEOF returns a positive integer value representing the number of bytes of
memory occupied by the identified variable, or by any variable of the
identified type.

Be Careful: SIZEOF cannot return a value beyond the integer range. For
example, it is possible to create an array that occupies more than 32767
bytes of memory. If you try to measure it with SIZEOF, you will get a
negative value.

Chapter 6: Operations on Data

The SCAN Function

This function scans a limited range of memory, backward or forward,
looking for a one-byte target. The target may either be a specified byte, or
any byte different from a specified byte. SCAN returns an integer value
representing the number of bytes from the starting point to the target. This
function can be written two ways:

SCAN CLIMIT, =TARGET, START>

or

SCAN <LIMIT, <>TARGET, START>

The parameters you give to SCAN must follow these rules:

o LIMIT stands for an expression with an integer value, representing the
maximum number of bytes to scan. If it is negative, SCAN will scan
backwards. If SCAN fails to find the target, it will return the value of the
LIMIT expression.

o TARGET stands for an expression of type CHAR. Target values of other
types can be converted into CHAR values by the CHR function described
above under "Scalar Operations." If it is preceded by the= symbol, SCAN
looks for a byte with the target value; if it is preceded by < >, SCAN
looks for the first byte that is not the target value.

o START stands for a variable reference, referring to a variable of any
type except a file type. The first byte of the variable is the starting point
of the scan.

o When scanning a string or an array, the START reference may be to an
indexed element. Thus SCAN can start searching at any place in a string
or array, backward or forward. You can add the number it returns to the
index value where it started, using the result as an index value to define
the starting point for procedures such as FILLCHAR.

If SCAN finds the target at the first byte, it returns a value of 0. If it does not
find the target it returns the value of LIMIT. If LIMIT is negative, it scans
backward and returns 0 or a negative value.

The FILlCHAR Procedure

This procedure fills a specified range of memory with the same byte value.
It is written like this:

FILLCHAR <START, COUNT, BYTE)

Byte Operations III-93

III-94

The parameters you give to FILLCHAR must follow these rules:

o START stands for a variable reference, referring to a variable of any
type except a file type. The first byte of the variable is the starting point
for filling.

o COUNT stands for a positive integer expression. Its value is the number
of bytes of memory to be filled, going toward higher memory. FILLCHAR
will ignore negative values of COUNT.

o BYTE stands for an expression of any scalar type with a value whose
ordinality is less than 256. FILLCHAR repeatedly copies its ordinal value
into memory over the specified range. If the value exceeds 255, it is
reduced modulo 256 using the MOD function.

o When filling a string or an array, the ST ART reference may be to an
indexed element. Thus FILLCHAR can start filling at any place in a
string or array.

o When FILLCHAR is used with a variable that already has a value, it
simply overwrites that value.

Here is an example of using FILLCHAR. Suppose we wish to initialize a
string variable NAME by filling it with space characters. We can ex:ecute
either of these procedure calls:

FILLCHAR CHAME, SIZEOFCHAME>, ' '>;

or

FILLCHAR CHAME, SIZEOFCHAME>, 32>;

In both cases, FILLCHAR sets each byte of NAME to 32 (the ASCII code for
a space character). In the first case the space character is written explicitly;
in the second case its ordinality is written as an integer constant. Note the
use of SIZEOF; it returns an integer value giving the declared dimension of
the variable NAME, which is the same as the number of bytes to be filled.

The MOVELEFT and MOVERIGHT Procedures

These procedures copy a range of memory into another location. They are
written like this:

MOVELEFT CSOURCE, DESTIHATIOH, COUHT>
MOVERIGHT CSOURCE, DESTIHATIOH, COUHT>

Chapter 6: Operations on Data

Your use of MOVELEFT or MOVERIGHT must follow these rules:

o SOURCE and DESTINATION stand for variable references, referring to
variables of any type except file types. The first byte of SOURCE (lowest
address) is the beginning of the range of bytes whose values are copied.
The first byte of DESTINATION (lowest address) is the beginning of the
range of memory locations to be copied into.

o COUNT stands for a positive integer expression whose value is the
number of bytes to be copied. Negative values are ignored.

o The reason for two procedures is in case the SOURCE and
DESTINATION ranges overlap (for example, if they are overlapping
sections of the same string or array). It is important that bytes in the
overlapping area be copied before they are overwritten. MOVELEFT
starts copying from the lower address end of both the SOURCE and
DESTINATION ranges; MOVERIGHT starts copying from the higher
address end.

o Thus in a string or array, if the DESTINATION range has higher index
values than the SOURCE range, use MOVERIGHT. If it has lower index
values, use MOVELEFT.

o When copying sections of a string or an array, the SOURCE and
DESTINATION references may be indexed elements. Thus these
procedures can move bytes from place to place in a string or array.

Here is an example of using MOVELEFT. We want to change the catalog
numbers in a database by overwriting their first five characters with a new
designation. If the currently accessed catalog number is in a string variable
CAT _NUM and the new designation is in another string variable
NEW _NUM, we execute

MDVELEFT CHEW_HUM, CAT_HUM, S>;

This procedure call writes the first five bytes of NEW _NUM over the first
five bytes of CAT _NUM, leaving the rest of CAT _NUM unchanged.

MOVELEFT and MOVERIGHT are able to defeat the "strong typing" of
Pascal, since they can copy the value of one variable into the memory space
occupied by a variable of completely different type. For a further discussion
of defeating strong typing, see Chapter 16.

Byte Operations III-95

III-96

String Operations

Apple Pascal provides four functions and three procedures exclusively for
manipulating strings:

LENGTH POS CONCAT COPY

INSERT DELETE STR

LENGTH measures the length of any actual string value. POS searches a
string and returns the index position of a substring in it. CON CAT
assembles strings end to end into a single string. COPY creates a new string
value by copying part of an existing string. INSERT inserts a string into
another string. DELETE removes part of a string. STR converts the value of
an integer or long integer into the equivalent string of decimal numerals.

The LENGTH Function

LENGTH accepts any string expression and returns a positive integer in the
range 0 to 255 that represents the actual length of the string value:

LENGTH CSTRIHG)

Note that the value returned is not the declared dimension of the string; it
is the actual number of characters in it. The value returned by LENGTH is
also the index number of the last character in the string.

The POS Function

POS accepts any two string expressions and returns a positive integer in the
range 0 to 255. The value returned represents the index position in the
second string where POS finds the first string:

POS CSUBSTRIHG, STRIHG> -

Thus POS scans STRING to find the first occurrence of SUBSTRING and
then returns the index number of STRING where the first character of
SUBSTRING is located. If SUBSTRING is a string containing a single
character, then POS becomes a character search function. If POS does not
find the target SUBSTRING, it returns a value of 0.

Chapter 6: Operations on Data

The CONCAT Function

CONCAT accepts any practical number of string expressions and returns a
string value that is their concatenation. It is written like this:

CON CAT

Thus CONCAT creates a new string out of a series of existing strings. Here
are three examples:

FNAME := CONCAT CFNAME, '.TEXT'>; {Adds .TEXT to end of filename}
ADDR3 := CONCAT CCITY, STATE, ZIP>; <Assembles last line of address}
PARTNAME := CONCAT CPARTNAME, 's'>; {Pluralizes part designation}

The COPY Function

COPY accepts a string expression and two positive integer expressions with
values in the range 1 to 255:

COPY CSTRING, START, COUNT>

It returns a new string value which is a copy of STRING beginning at the
START index number and extending for COUNT characters.

The INSERT Procedure

INSERT accepts a string variable identifier, a string expression, and a
positive integer expression:

INSERT CSUBSTRING, STRING, START>

It inserts the value of SUBSTRING into the variable STRING, beginning at
START. The first character of SUBSTRING becomes the START index
character of the result, and the index numbers of all subsequent characters
of STRING are increased by the value of ST ART.

You can insert SUBSTRING at the end of STRING by using for START the
expression LENGTH (STRING) + 1.

String Operations III-97

III-98

The DELETE Procedure

DELETE accepts a string variable identifier and two positive integer
expressions:

DELETE CSTRING, START, COUNT>

It modifies the variable STRING by removing COUNT characters, beginning
with the START index character. The length of STRING is reduced by the
value of COUNT.

The STR Procedure

STR accepts an integer or long integer expression and a string variable
identifier:

STR <NUMBER, STRING>

It assigns to STRING the value of a series of numeral characters
representing the decimal value of NUMBER, up to 36 digits (the maximum
size of a long integer). If NUMBER is negative, STRING starts with a minus
sign; otherwise it starts with the most significant numeral.

Program Unit Required! The Program UnitLONGINTIO must be
present in an accessible library at the time any program using the STR
procedure is executed. LONGINTIO does not require a USES declaration,
however. This Unit is originally supplied in the file SYSTEM.LIBRARY.
For further information about libraries, see Chapter 13.

Using String Operations

The string operations just described are powerful tools for manipulating text
data. However, they are sensitive to bad parameter values and can easily
cause program bugs or halts. You must observe these cautions when using
them:

o Do not try to use any of the string operations with string variables that do
not yet have a value. LENGTH and POS will return meaningless
numbers; other operations may cause program halts.

Chapter 6: Operations on Data

VAR S : STRIHGC1l;

S := 'x';
S [1l : = CHAR_EXPR;
NAME := COHCAT CHAME, S>:

o With COPY, INSERT, and DELETE, be careful that the value of START is
a valid index number for STRING. In the case of INSERT, however,
START may be 1 more than the length of STRING.

o With CONCAT and INSERT, take care that the result is not longer than
255 characters, and that you are not trying to give a value to a string
variable of inadequate dimension.

o With COPY and DELETE, do not try to operate beyond the end of an
actual string value. That is, do not let the sum of START and COUNT
exceed LENGTH (STRING) + 1.

o If you combine string operations into a single expression, analyze the
intermediate strings that Pascal creates at each stage to make sure none
of them violate the foregoing cautions.

When using POS, CONCAT, or INSERT, you may want to search for,
concatenate, or insert a single character. But you cannot use type CHAR
with string operations. There are two ways to proceed:

o If the character is a constant, simply declare it with your other
constants or write a character between single quotation marks in the
source text.

o If the character is the value of a CHAR expression (such as a CHAR
variable), you must create a one-character string and then assign the
character value to its first element. For example,

{Declare string variable}

{Give string length of 1}
{Assign character value to string}
{Use in string operation}

This converts the CHAR value of CHAR.___EXPR into the value of the
one-character string S.

Set Operations

Apple Pascal provides three operators for combining any two set variables
or set constructors into a new set expression:

+ - *

Set Operations IIJ-99

III-100

These are the same symbols as Pascal uses for arithmetic operations, but
they act differently on sets. The + symbol performs set union; the -
symbol performs set difference; the * symbol performs set intersection. Sets
can also be assigned and compared; see the sections "Assignments" and
"Relational Operators" earlier in this chapter.

The union of two sets is the set formed by combining their members and
eliminating duplicates.

The difference between two sets is the set of all members of the first that
are not members of the second. In other words, it is the result of taking the
common members away from the first set.

The intersection of two sets is the set containing only their common
members.

Here are some illustrations of these operations in use:

A := C1, 2, 3, 4, SJ;
B := C3, 4, S, 67J;
C := [6, 7, B, 9J;

A + B = [1, 2, 3, 4, S, 6, 7J

A + c • [1, 2, 3, 4 I s, 6, 7 I B, 9J
A - B = [1, 2J

A - C = A
A * B = [3, 4, SJ
A * C = [J {the null set}

Set values are stored in memory as bit patterns, each bit corresponding to
the inclusion or exclusion of a specific set member. As a result, they can be
conveniently manipulated by the techniques discussed earlier under "Bit
Operations." To interpret a set as a bit pattern, use the free union variant
technique explained there under "Bit Interpretation of Structured Types."
For further information about the structure of set values in memory, see
Appendix 3C.

Bit Operations

Programmers familiar with machine languages sometimes complain that
Pascal does not allow access to data bits. This is not true of Apple Pascal.
There are a variety of techniques by which you can dissect any data value
into its component bits. You can then manipulate the bits with a full
complement of logical tools and reinterpret them as a new data value.

Chapter 6: Operations on Data

Bit Interpretation of Scalar Types

Every Pascal quantity of scalar type resides in a single 16-bit word of
memory. This fact, together with the type conversion functions ODD, CHR,
and ORD described earlier, permits simple interpretation of scalar values as
16-bit patterns.

ORD converts any scalar quantity to type integer; ODD converts any integer
value to a boolean value. Singly or together, they convert any scalar to type
BOOLEAN without changing its value:

INTEGER to BOOLEAN: ODD CO

Non-numerical scalar to BOOLEAN: ODD CORD CO>

The result has the same bit pattern as the original; but now it can be
manipulated by the logical operators NOT, AND, and OR. The bit pattern
can be complemented, masked, or tested in various ways. Individual bits
can be set or cleared. When the logical operations are completed, the result
can be converted back to type INTEGER or CHAR:

BOOLEAN to INTEGER: ORD C X>

BOOLEAN to CHAR: CHR CORD CX »

Bit Interpretation of Structured Types

With nonscalar data values, particularly those that occupy several words in
memory, you can translate them into bits by declaring a free union variant
record. This technique was mentioned in "Free Union Variant Records" in
Chapter 4. A typical application looks like this:

VAR MAGIC RECORD CASE INTEGER OF
1 : CDATA : DTYPE>;
2 : CB!TS : PACKED ARRAY [0 .. bbl OF BOOLEAN>;
3 : CWORDS : ARRAY [0 .. ww] OF BOOLEAN)

END;

Here DTYPE represents the data type to be interpreted as a bit pattern. The
integer bb is one less than the number of bits in DTYPE; ww is one less than
the number of its 16-bit words. When you have an expression EXPR of type
DTYPE, you can assign its value to the appropriate variant field of MAGIC:

MAGIC.DATA := EXPR;

Bit Operations III-101

III-102

You can then access the value of EXPR as single bits, by extracting the
elements of MAGIC.BITS. For instance, MAGIC.BITS[13] will be TRUE if the
14th bit of the value of EXPR is a 1; FALSE if it is a 0. You can change the
value of MAGIC.BITS by operating logically on its bit elements, and then
use MAGIC.DAT A as an expression of type DTYPE with the new value.

Or, you can access the value of EXPR as a sequence of 16-bit patterns by
extracting the elements of MAGIC.WORDS. You can operate on these
patterns logically, as described below under "Bit Pattern Logic." You can
then assign the resulting new patterns back to MAGIC.WORDS and use
MAGIC.DATA as their DTYPE equivalent.

Bit Pattern logic

Although the logical operators NOT, AND, and OR nominally affect only the
least significant bit of a boolean value, they actually operate on all the bits.
Thus they can be used on the entire 16-bit patterns of data words when
those words are typed as boolean.

Applying NOT to a bit pattern complements all the bits; it changes l's to O's
and O's to l's.

The operator AND between two bit patterns lets you mask out certain bits.
You create a fixed mask pattern by setting certain bits to 1; when combined
with a data pattern using AND, only the data bits in those positions will
"drop through" to the result. AND also lets you clear bits; those that don't
"drop through" are in effect set to 0.

The operator OR between two bit patterns lets you set bits. You create a
fixed pattern in which certain bits are set to l; when combined with a data
pattern using OR, the data bits in those positions will be set to 1 in the
result.

The exclusive-or operation between two bit patterns lets you determine if
they are identical by checking whether the result is all O's. You can also use
exclusive-or to complement selected bits. To apply this operation to
booleans X and Y, write

CCX AND NOT Y) DR CNDT X AND Y>>

Chapter 6: Operations on Data

.' Bit Logic Examples

Here are some examples to illustrate the bit logic operations just described.

The difference between a lowercase and uppercase ASCII character lies in
the status of bit 5 in its ASCII code value. If bit 5 is set to 1, the character is
lowercase; if it is cleared to 0, it is uppercase. Let us see how we might
manipulate this bit directly in the value of a CHAR variable C.

First we set the value of a boolean variable MASK so that it has a 1 in bit 5
and O's in all other bits:

MASK := ODD C32>;

The integer constant 32 has a single 1, in the bit 5 position; the ODD
function simply converts its type to BOOLEAN.

Now we can use MASK and the OR operator to set bit 5 to 1 in the CHAR
variable C, thereby converting its value to lowercase, regardless of its
present value:

C := CHR CORD CMASK OR ODD CORD CC>>>>;

In this assignment, the value of C is first converted from CHAR to
BOOLEAN by the expression ODD c ORD cc>>; the result is combined with
MASK, using OR; and that result is converted back to CHAR by the
expression CHR CORD <-».
Similarly, we can convert the value of C to uppercase. To do this we negate
MASK, using NOT; this clears bit 5 to 0 and sets all the other bits to 1. We
then use AND to clear bit 5 in the CHAR variable C:

C := CHR CORD CNOT MASK AND ODD CORD CC>>>>;

The use of ODD and ORD is the same as in the previous example.

Finally, we can use an exclusive-or operation to change the value of bit 5 by
complementing it. This converts uppercase to lowercase and vice versa. We
use MASK in the exclusive-or expression given earlier:

C := CHR CORD CCMASK AND NOT ODD CORD CC)))
OR CNOT MASK AND ODD CORD CC>>>>>;

Whatever the value of bit 5 in the CHAR variable C, the exclusive-or
operation with the single bit of MASK converts it to the opposite.

Bit Operations III-103

III-104

Precedence of Operations

In writing Pascal source text, you will often want to nest and combine
operations into complex expressions. The Compiler tolerates a virtually
unlimited amount of this. However, when combining expressions you need
to know the order in which they are going to be evaluated. Here it is:

1. First, all functions are called and their values returned.
2. Second, all instances of the NOT operator are executed.
3. Third, the operators ", /, DIV, MOD, and AND are executed.
4. Fourth, the operators +, - , and OR are executed.
5. Finally, the relational operators=, <, >, <=, >=,<>,and IN are

executed.

Pascal follows this scheme regardless of the types of data involved. In
particular, it does not distinguish between using the operators +, - , and "
for numerical expressions and for sets.

The foregoing sequence of evaluations is performed separately on each
entire expression-that is, each expression set apart by parentheses or by
inclusion in a different assignment statement, procedure call, or other
Pascal statement. At each stage, the listed operations are performed in the
order they are written in the source text-left to right, top to bottom. But in
a given expression, all the operations at each stage are completed before
any operations of the next stage are attempted.

The order of precedence of operations can make a difference in how your
source text is interpreted. For example, the expression

A-B*C/D+E

will be interpreted as if you had written

A - HB * C> I D > + E

because the * and / operators are applied before the + and - operators.
Certain expressions will cause a Compiler error; for example:

A > B AND C < D

Chapter 6: Operations on Data

This is because Pascal tries to interpret it as

A > CB AND C> < D

which is an illegal construction.

Operations enclosed by parentheses in your source text are always
evaluated separately. Therefore the simplest way to avoid problems with
operation precedence is to use parentheses freely. They do not increase the
size of the codefile or affect program execution speed. If you still prefer
lean-looking source text, then study the order of precedence given above.

Range Checking

Several parts of this chapter contain warnings about exceeding the declared
sizes of scalar subranges, arrays, and strings, or trying to refer to
nonexistent array and string index numbers. Apple Pascal contains built-in
safeguards to prevent you from generating meaningless data by such
operations. Its remedy is the drastic one of terminating execution of your
program.

However, you can suspend certain of these safeguards by including either
or both of two Compiler options in your source text. {$R\ is called the range
check option. {$V) is called the varstring option. They are written like
this:

{$R-} Turn off range checking

{$R+} Turn range checking back on

{$V-} Turn off varstring checking

{$V+} Turn varstring checking back on

Chapter 14 outlines the general rules for writing and using Compiler
options.

($R-l eliminates from the codefile all instructions to check

o That values assigned to subrange variables are within their declared
ranges;

o That values assigned to string variables are not longer than their
declared maximum lengths;

o That values returned by expressions indexing strings and arrays are
within the declared index ranges.

Range Checking III-105

III-106

j $V - l operates only on string expressions that are variable parameters in
procedure or function parameter lists. When compiling your program,
Pascal normally checks to see that the declared maximum length of any
variable string parameter inside any procedure or function is not longer
than the declared maximum length of the corresponding string variable
outside. This automatic safeguard prevents the procedure or function from
altering memory beyond the end of the outside variable. j $V - } lets you
suspend this feature. Variable parameters are discussed in Chapter 8.

If varstring checking l$V) is suspended and range checking j$RJ is still in
force, then 1$RJ checks only operations on the string parameter inside the
procedure or function; it does not check their effect on the variable outside.

Ii. Warning I When you turn off range checking, you assume the responsibility of
seeing that your program does not violate range limits. If it does, it may
destroy adjacent data in memory.

Chapter 6: Operations on Data

Chapter 7 Program Controls

III-107

III-108

Every Pascal block consists of a series of statements. Four kinds of Pascal
statements are discussed elsewhere in this book:

o The compound statement BEGIN .. END is explained in Chapter 2
under "Statement Syntax."

o The with statement WITH .. DO is discussed in Chapter 4 under "The
RECORD Type."

o The assignment statement (using the symbol:=) is described in
Chapter 6, under "Assignments."

o The procedure call is covered in Chapter 8, "Procedures and
Functions."

This chapter discusses the other kinds of Pascal statements, the ones you
use to control the flow of program execution. There are six of them:

o The for statement FOR ... TO ... DO
o The while statement WHILE ... DO
o The repeat statement REPEAT ... UNTIL
o The ifstatement IF ... THEN ... ELSE
o The case statement CASE ... OF ... OTHERWISE
o The goto statement GOTO .. .

The HALT and EXIT procedures are also described at the end of this
chapter.

Chapter 7: Program Controls

Repetition Statements

Pascal provides three ways to execute the same program section
repeatedly-the process called "looping" in lower-level languages. But
Pascal sets up the loop and exit routines for you; all you need to do is tell it
the conditions for repetition. This is how the repetition statements work:

o The for statem.ent FOR ... TO ... DO executes the same program section a
given number of times. The number of executions may be constant or
may be determined by the result of any scalar calculation.

o The while statement WHILE ... DO executes the same program section
repeatedly as long as a given boolean expression is TRUE. It evaluates
the boolean control before each pass, including the first time; hence it
can bypass the program section altogether.

o The repeat statement REPEAT ... UNTIL also executes the same
program section repeatedly as long as a given boolean expression is
TRUE. But it evaluates the boolean control after each pass; hence it
executes the program section at least once.

FOR ... TO ... DO

The FOR statement requires a previously declared variable of scalar type. It
repeatedly increments or decrements the value of this variable, executing a
section of your program each time. You define the starting and ending
scalar values (which may be constant or calculated), and whether the FOR
statement is to count upward or downward:

FOR identifier expression

TO expression DO statement

DOWNTO

The identifier is the name of a scalar variable-integer, CHAR, boolean,
subrange, or user-defined. The FOR statement gives it a value before each
pass through the program section it controls. Note that the value of this
variable is accessible in the controlled section.

Repetition Statements III-109

The two expressions must have the same scalar type as the variable. They
may be simple constants or variables, or complex expressions containing
operators and functions.

You write TO or DOWNTO, depending on whether the ordinality of the
value of the second expression is higher or lower than the ordinality of the
value of the first expression.

The statement controlled by the FOR statement can be a single other
statement (such as an assignment or a procedure call), or a compound
statement containing a lot of text.

Compound Statements: Most of the time, you will use the control
statements described in this chapter to control compound statements. A
compound statement is simply a sequence of statements separated by
semicolons and enclosed between BEGIN and END. For further
information see Chapter 2, "Statement Syntax."

Here is an example of a FOR statement controlling a compound statement:

VAR H : IHTEGER; {Control variable}
QUADBAG : ARRAY C1 .. 99l OF INTEGER; {Array to hold squares}

FOR N := 1 TO 99 DO
BEGIN {Fill array with squares}

QUADBAG CHl : = SQR CN); {of numbers from 1 to 99}
WRITELN [QUADBAG CNl> {and display each result}

END;

III-110

By using variables or arithmetic expressions to limit the FOR statement,
instead of the constants 1 and 99, you could let your program determine
which portion of the array to fill up.

When executing a FOR statement, Pascal performs these steps:

l. It calculates the value of the intial expression, just once, and assigns
this value to the control variable.

2. It calculates the value of the limit expression, just once.
3. It tests to make sure that the ordinality ofthe two expressions goes in

the right direction; otherwise it exits the statement immediately.
4. It executes the controlled statement.
5. It increments or decrements the control variable, depending on whether

the FOR statement is written as TO or DOWNTO.
6. It tests the value of the control variable against the limit value and

either goes back to Step 4 or exits.

Chapter 7: Program Controls

Observe these rules and cautions when writing any FOR statement:

o The control variable must be a simple variable; it cannot be an array or
string element, a record field, or a dynamic variable.

o If the control variable is a subrange type or user-defined scalar, it must
be capable of accepting the initial and limit values as well as all values
with an ordinality in between.

o Do not try to change the value of the control variable from within the
FOR statement; doing so can have unpredictable results.

o Do not include the control variable in either of the limit expressions.
o After the FOR statement is finished, the value of the control variable

may be unspecified.
o The limit expressions are evaluated just once, before the first pass.

Changing them from within the FOR statement will not alter its behavior.
o If the limit expressions have equal value, the FOR statement will execute

its controlled statement once.
o If the limit values are backwards, that is, high end less than low end, the

FOR statement will be skipped.

WHILE ... DO

The WHILE statement evaluates a boolean expression and then executes a
statement if the boolean value is TRUE. It repeats the execution, evaluating
the boolean before each pass, until the boolean turns FALSE. You write it
like this:

expression statement

The controlling expression must have boolean type; usually it is formed out
of relational and logical operators.

The statement controlled by WHILE ... DO may be either a single statement
or a compound BEGIN ... END construction containing other statements.

Repetition Statements III-111

Here is an example of Pascal text that prompts a user to enter a value for
the integer variable N. If the value entered is outside a certain range, a
WHILE statement notifies the user and prompts another entry:

WRITE <'Enter a number between 1 and 8: ');
READLN OD;
WHILE CN < 1) OR CN > 8) DO

III-112

BEGIN
WRITELN ('Number must be between 1 and 8 ~');

WRITE ('Try again. Enter a number between 1 and 8: ');
READLN CN>

END;

WHILE evaluates the response N to the first prompt. If N is in the desired
range, WHILE never executes its compound statement and the program
goes on. If N is out of range, however, WHILE executes the statements
between BEGIN and END. It executes them repeatedly until the user
cooperates. When program execution finally leaves this sequence, the value
of N is guaranteed to be within range.

REPEAT ... UNTIL

The REPEAT statement behaves much like the WHILE statement, but it
evaluates its boolean expression after executing the statements it controls.
It looks like this:

REPEAT ,____,,,___ UNTIL expression

Note also that REPEAT and UNTIL create their own compound out of the
statements they control; you do not need to use BEGIN and END. It is not
unusual for a program to have a lot of text between REPEAT and UNTIL.

The controlling expression must have boolean type; usually it is formed out
of relational and logical operators.

Chapter 7: Program Controls

Here is an example of a REPEAT statement used to provide a user's exit
from a large recirculating section of program execution:

REPEAT

... program interacts with user ...

WRITE ('Enter Q to Q(uit, <space> to go on: ');
READ <ENTRY>

UNTIL ENTRY IN ['Q','q'l;

The boolean expression following UNTIL determines whether the CHAR
value ENTRY provided by the user is in the set [Q,q]. If it is, program
execution drops out of the repeated section; if not, it starts over again at
REPEAT. The sequence

REPEAT ... UNTIL FALSE

would provide an endless program loop.

Be Careful: With both WHILE and REPEAT, take care that the program
statements they control include some practical means either to change
the value of the boolean control to TRUE, or to escape via a GOTO
statement or EXIT call. Otherwise your program can never terminate.

loop Control: A Comparison

The three repetition statements just discussed each have specific
advantages and disadvantages in any given progra:rnming situation. Here
are some of them.

The FOR statement automatically keeps track of which repetition it is
executing, by changing the value of its control variable at the end of each
pass. Thus you can use the control value to modify what your program does
each time. For example, the control value can cause the repeated section to

o Select a different element in an array each time by changing the index
number;

o Call a different procedure each time by serving as the selector value for
the CASE statement (described below);

o Perform a different calculation each time by becoming a factor in an
expression.

On the other hand, the FOR statement is somewhat inflexible. You cannot
change the number of repetitions once it has started.

Repetition Statements III-113

III-114

The WHILE statement and REPEAT statement allow better control of the
conditions under which they stop executing. The main difference between
them is that the WHILE statement need not be executed at all, whereas the
REPEAT statement executes at least once. Thus the WHILE statement is
most useful when the condition controlling its execution may have already
been satisfied; the REPEAT statement is most useful when the condition
can be satisfied only by executing the statement.

The WHILE statement should also be used in cases where executing it
under the wrong conditions could be detrimental, because it evaluates its
control before each pass.

Conditional Statements

Pascal provides two ways for your program to choose what to do next-the
process called "branching" in lower-level languages:

o The if statement IF ... THEN ... ELSE evaluates a boolean expression and
executes a controlled statement only if it is TRUE. It can also be written
to execute a second statement if the boolean is FALSE.

o The case statement CASE ... OF ... OTHERWISEexecutes one statement
from a list, depending on the value of a scalar control expression.

IF ... THEN ... ELSE

The IF statement executes a single controlled statement (which may be a
compound BEGIN ... END construction) if a boolean expression is TRUE. You
can add an optional ELSE part on the end that executes another (possibly
compound) statement if it is FALSE:

expresssion statement ,..._~_, statement 11----,,._.,..

The controlling expression between IF and THEN must have boolean type;
usually it is formed out of relational and logical operators.

Either or both controlled statements may be single statements or compound
BEGIN ... END constructions containing other statements.

Chapter 7: Program Controls

Here are are two examples of IF statements; the second one contains an
ELSE part:

IF ANGLE > 180 THEN
ANGLE : = 360 - ANGLE;

IF BALANCE = 0 THEN
WRITELN ('Job completed')

ELSE
BEGIN

COUNT :=COUNT+ 1;
WRITELN ('Processing ... ')

END;

Be Careful: Note that in the second example there is no semicolon
before ELSE, because IF, THEN, and ELSE are all parts of one statement.
A semicolon there will cause a Compiler error. The only place you need to
put a semicolon in an IF statement is within a compound BEGIN ... END
construction.

When executing an IF statement, Pascal performs these steps:

1. It evaluates the boolean expression.
2. If its value is TRUE, Pascal executes the statement following THEN and

exits the IF statement.
3. If its value is FALSE and there is a statement after ELSE, Pascal

executes it; otherwise it exits the IF statement.

Nested IF Statements

In any IF statement, the statement following the word ELSE can also be an
IF statement and can contain its own ELSE clause. Thus an IF statement

Conditional Statements III-115

III-116

can be written to take different actions for each of several mutually
exclusive conditions:

WRITEC 8 Enter command S,D,P,Q,E -> 0);

READUHCOMM>;
IF COMM = 'S' THEN SHUFFLEDECK
ELSE

IF COMM 'D' THEN DEALCARDS
ELSE

IF COMM 'P' THEN DISPLAYPOINTS
ELSE

IF COMM IN ['Q', 'E' l THEN QUIT

Pascal will evaluate boolean expressions only until a true one is found. You
get maximum execution speed if you put the most probable conditions first.

The statement following the word THEN can also be a nested IF statement,
but this can create confusing source text. Be careful with the following kind
of construction:

IF A=B THEN
IF C=D THEN

WRITELN C'A=B and C=D')
ELSE

WRITELN C'A=B but Cc>D')

The ELSE matches the last preceding IF ... THEN, as indicated by the
indentation. If you add another ELSE it will match the first IF ... THEN:

IF A=B THEN
IF C=D THEN

WRITELN C'A=B and C=D')
ELSE

WRITELN C'A=B but Cc>D'J
ELSE

WRITELN C'A<>B'J

Chapter 7: Program Controls

The above statement can be clarified, without changing its meaning, by
making the nested statement a compound BEGIN ... END construction:

IF A=B THEN
BEGIN

IF C=D THEN
WRITELN C'A=B and C=D')

ELSE

END
ELSE

WRITELN C'A=B but C<>D'>

WR!TELN C'AoB')

Now it is obvious which ELSE matches which THEN.

Here is an example of a programming situation in which nested IF
statements are particularly useful. Suppose we wish to execute a procedure
PROCESS only if a string S begins with a dollar sign. But S may be a zero
length string. Therefore we must measure its length before trying to
reference its first character. An approach such as the following will not
work:

IF CLENGTH CS) > 6) AND CSC1J = '$') THEN PROCESS CS>;

The problem is that Pascal evaluates both parts of the boolean expression
created by AND before deciding whether or not to call PROCESS. If S has
zero length, referencing S[l] will cause a program halt. The solution is to use
a nested IF statement:

IF LENGTH CS> > 0 THEN
IF SC1l = '$' THEN

PROCESS CS);

Now the reference to S[l] is executed only if S has a first element.

CASE ... OF ... OTHERWISE

The CASE statement lets you write a list of alternative statements to be
executed, associating a scalar constant with each one. When executing the
CASE statement, Pascal evaluates a controlling scalar expression; if its
value matches one of the constants, Pascal executes the corresponding
statement. You can add an optional OTHERWISE part on the end that

Conditional Statements III-117

111-118

executes an additional statement if nothing was selected from the list. The
CASE statement follows this syntax:

CASE expression OF

caseclause 1--~--

END

OTHERWISE statement

The case clause shown in this diagram has the following form:

constant ,___~ statement

The controlling expression may have any scalar type-integer, CHAR,
boolean, subrange, or user-defined. It should be capable of returning the
value of any of the constants in the case clause.

The constants in the case clause must have the same scalar type as the
controlling expression.

Any of the controlled statements in the case clause or the default statement
following OTHERWISE may be single statements or compound
BEGIN ... END constructions containing other statements.

The easiest way to understand the CASE statement is to look at an
example.

Chapter 7: Program Controls

It accomplishes the same job as the nested IF ... THEN construction
described in the last section, but more cleanly:

WRITE C'Enter command S,D,P,Q,E -> '>;
READLN CCOMM>;
CASE COMM OF

'S': SHUFFLEDECK;
'D': DEALCARDS;
'P': DISPLAYPOINTS;

'Q', 'E': QUIT
END;

If you used a nested IF statement and tried to allow for lowercase letter
inputs, the result would be unwieldy. With a CASE statement this
enhancement is easy. You can also add an OTHERWISE clause to call a
procedure named HELP when the user enters an unlisted command:

WRITE ('Enter command S,D,P,Q,E -> ');
READLN CCOMM>;
CASE COMM OF

'S','s': SHUFFLEDECK;
'D','d': DEALCARDS;
'P','p': DISPLAYPOINTS;

'Q','E','q','e': QUIT
OTHERWISE HELP

END;

Caution: When using integer constants in a CASE statement, be careful
not to select too large a spread of values. For each CASE statement, the
Compiler constructs a table containing an entry for every possible value
between the lowest and the highest case selector. For example, if you
have only two case selectors, 1 and 100, the Compiler will build a table
with 100 entries. This is wasteful and may cause a Compiler error. In
such cases, use IF statements instead.

Other Program Controls

The three repetition statements and two conditional statements described
in this chapter, along with assignments and procedure calls, are flexible
enough to handle almost all programming jobs. Occasionally, however, you
may encounter a situation that demands immediate transfer or suspension

Other Program Controls III-119

111-120

of program execution. For these rare cases, Pascal provides three additional
tools:

o The GOTO statement, which transfers control directly from one program
statement to another.

o The EXIT procedure, which terminates any procedure, function, or
whole program.

o The HALT procedure, which stops program execution then and there.

I
Caution: GOTO, EXIT, and HALT are powerful, absolute directives.
They bypass many of the safeguards built into Pascal. Use them
carefully, and only as a last resort.

The GOTO Statement

GOTO transfers program execution to the beginning of any statement that is
within the same procedure, function, or main program. Before you can use
any GOTO statement you must do three things:

o Permit GOTO statement execution in your program by writing the
Compiler option { $G+} or c * $G+ * > once before your first use of GOTO.
For an explanation of Compiler options, see Part II, Chapter 5.

o Declare a label for every GOTO destination in your program. Each label is
a number of 1 to 4 digits. The label declaration consists of the reserved
word LABEL followed by one or more label numbers, separated by
commas. It must appear before any other declarations in a block.

o Write one of the declared destination labels, followed by a colon, in front
of the statement that is the destination for each GOTO statement.

The GOTO statement itself is written like this:

unsigned
integer

The unsigned integer is the destination label; it must not exceed four
decimal digits.

Chapter 7: Program Controls

Here is an example of a GOTO statement at work:

PROGRAM JUMP;
UG+}

LABEL 1234;

VAR N INTEGER;

BEGIN
1234: WRITE <'Give me a number: ');
READLN (N);

IF N = W THEN GOTO 1234;
... more program ...

END.

Here the GOTO statement repeats the prompt message until the user enters
a nonzero number. Note that this job could have been done better with a
WHILE statement. It is difficult to find Pascal programming situations
where GOTO is the only recourse. As a result, the use of GOTO in Pascal is
often regarded as a sign of sloppy programming.

These rules and cautions apply to GOTO statements:

o You can jump only within a block-that is, within the body of a
procedure or function, or from one part of a main program to another.
You cannot jump into or out of a procedure or function.

o The destination of any GOTO statement must be the beginning of a
statement.

o Jumping to a statement that is within the structure of another
statement (except within a compound statement that forms a program
block) can have undefined effects, although the Compiler will not
indicate an error.

Thus every GOTO destination should be the beginning of a statement that is
at the top level of nesting in a program block.

Other Program Controls III-121

IIl-122

The EXIT Procedure

Sometimes it is desirable to be able to leave a program block without further
ado. EXIT lets you do this. It is written as

EXIT identifier

PROGRAM

The identifier is the name of a procedure or function, or the name of the
whole program. When exiting the whole program, you can also use the word
PROGRAM instead of its name.

EXIT transfers program control to the end of the specified block, just as if it
had reached its end normally. It closes all open files, but otherwise does not
try to complete any of the program functions in the block. Open and closed
files are explained in Chapter 10. Here is an example of EXIT as an escape
route from a procedure:

PROCEDURE GET_NUMBER;
BEGIN

WRITE ('Enter a number [0 to quitl: ');
READLN 00;
IF N = 0 THEN EXIT CGET_NUMBER>;
N := 10!11 DIV N;

... more procedure
END;

Here the EXIT procedure provides a quick way to leave the procedure, and
also assures that your program will not try to divide by 0 (which would
cause a run-time error).

Chapter 7: Program Controls

The EXIT procedure is seldom essential in a program. If you use it, here are
some things to remember:

o If you exit a function before assigning a value to its identifier, the
function will return an undefined value.

o When writing an EXIT procedure in a nested procedure or function, you
can specify any enclosing procedure or function, or the whole program.
Pascal will follow the trail of procedure or function calls up to the one
specified, exiting each one regardless of whether or not it has completed
its execution.

o If an EXIT procedure specifies a recursive procedure or function, then
the most recent incarnation is exited; earlier incarnations will have
completed their execution normally. Recursion is discussed in Chapter 8.

The HALT Procedure

The HALT procedure takes no parameters and is called with just the word
HALT. It brings program execution to an immediate stop. The monitor
screen displays the message

Program interrupted by user
Press <space> to continue

When the user presses the SPACE bar, the Pascal system reinitializes itself
and displays the Command line. The principal use of HALT is for debugging
programs.

Other Program Controls III-123

Chapter8 Procedures and Functions

III-125

III-126

Procedures and functions are the subroutines of Pascal. Each procedure or
function is a distinct section of source text, contained within a program,
that is executed when the program cal.ls it.

A procedure or function can be thought of as a subprogram nested in the
main program (or within another procedure or function). Just as you define
a Pascal program by writing it in text form, you define a procedure by
writing a procedure definition into the text of the program. If you study
the syntax diagrams further on in this chapter you can see that a procedure
definition, like a program, contains one block. The block may contain other
procedure definitions. Thus procedures (and functions) can be freely nested
within each other. Indeed, for purposes of program execution the system
considers the program itself to be just the outermost procedure of a nested
structure of procedures and functions.

A procedure is called by means of a procedure call statement, which refers
to the procedure by name and supplies values for any parameters
belonging to the procedure. Parameters are a special kind of variable used to
pass information to the procedure when it is called; they are discussed in
detail below.

A function is similar to a procedure except that it is called by means of a
function reference instead of a call statement. The function reference
appears in an expression; it references the function by name and supplies
any parameters required by the function. The function returns a value; that
is, it computes a value, and this value replaces the function reference when
the expression is evaluated.

Procedures and functions are defined (written) after a block's variable
declarations, if any, and before its compound statement.

Chapter 8: Procedures and Functions

SEGMENT

Defining Procedures and Functions

To define a procedure you write the word PROCEDURE followed by its
name, an optional parameter list in parentheses, a semicolon, and a block
terminating with a semicolon:

_......,.'------------->-~ PROCEDURE new ,___~_, parameter ,___~..---;...,
identifier list

SEGMENT

block

To define a function you write the word FUNCTION followed by its name,
an optional parameter list in parentheses, a colon, a previously declared
identifier for the type of data the function returns, a semicolon, and a block
terminating with a semicolon:

-<...-------~--~ FUNCTION new 1--~--!>-D parameter 1--__,,..........i"""
identifier list

type
identifier block

The new identifier following the word PROCEDURE or FUNCTION is the
name by which the procedure or function is going to be called by other parts
of your program.

The block of a procedure or function may contain its own declarations of
labels, constants, types, and variables. They will be valid for that routine
and any routines nested inside it. Blocks are defined in Chapter 2.

Defining Procedures and Functions III-127

PROCEDURE ALPHA CHI, LO
BEGIN

... statements
END;

In both cases, the parameter list is optional. If used, it consists of one or
more parameter declarations separated by semicolons and enclosed in
parentheses. Each parameter declaration consists of one or more variable
identifiers separated by commas, a colon, and the identifier of a previously
declared data type. The optional word VAR identifies variable parameters
(explained below). The parameter list is written this way:

parameter 1--~--.
declaration

Each parameter declaration is written this way:

new
identifier

type
identifier

The new identifiers in the parameter list are the names by which
parameters are to be known inside the procedure or function. Note that
these names are usually different from the names of variables or constants
passed from the calling program when the procedure or function is called.

The word VAR precedes variable parameters. Parameters without VAR
are value parameters. This distinction is explained below.

Here are some sample outlines of procedure and function definitions:

REAL; FACTOR : INTEGER>;

FUNCTION BETA CHI, LO : REAL; VAR ERROR
BEGIN

BOOLEAN> INTEGER;

... statements
BETA := •.. some expression ...
. .. statements

END;

PROCEDURE GAMMA;
BEGIN

statements
END;

III-128 Chapter 8: Procedures and Functions

Procedure ALPHA accepts two real values from the calling program,
identifying them internally as HI and LO. It also accepts an integer,
FACTOR.

Function BET A also accepts two real values; in addition it accepts a
variable parameter of type boolean, which it calls ERROR, and returns an
integer value when it is called.

Procedure GAMMA has no parameters. It simply executes a series of
statements when called.

Here are some important points to note about these examples:

o Both ALPHA and BETA use the identifiers HI and LO. But because these
identifiers are contained in parameter declarations, their scopes are
limited. ALPHA's HI and LO are different from BETA's HI and LO. The
complete rules of scope for identifiers are given later in this chapter.

o The parameter ERROR in BETA is declared as a VAR parameter. This
means that BET A will be able to change its value in the calling program,
as explained below under "Variable and Value Parameters."

o BET A, because it is a function, contains an assignment statement setting
the value of BET A itself. Without this, BETA would return an undefined
value.

In writing procedure and function definitions you must follow these rules:

o All identifier names must be composed according to the rules given in
Chapter 2 under "Identifiers."

o Within a given definition, all identifier names must be unique. However,
they may be the same as identifiers used outside the routine. In case of
ambiguity, the procedure or function assumes that the ambiguous
identifier refers to its own variables.

o The order in which identifiers appear in the parameter list is the order in
which these parameters must be supplied by the calling program (see
below, "Calling Procedures and Functions").

o All parameter types must either be standard Pascal types or user-defined
types declared in the calling program; you cannot introduce a new type
in a procedure or function heading.

Defining Procedures and Functions III-129

III-130

Special Note About Long Integers: The normal typing of a long integer
variable won't work in a parameter list; the Compiler thinks it is a new
type. You must declare a new identifier for the long integer type in the
calling program. For example:

TYPE LONG= INTEGERC18l;

PROCEDURE CALCULATE <AMOUNT : LONG>;

Here are the rules for choosing data types in procedure and function
definitions:

o Variable parameters (preceded by VAR) may have any type, including
file types, BYTESTREAM, and WORDSTREAM.

o Value parameters (not preceded by VAR) may have any type except file
types, BYTESTREAM, and WORDSTREAM.

o The type of the value returned by a function as a whole is limited to
these choices: INTEGER, REAL, BOOLEAN, CHAR, subranges of
INTEGER and CHAR, user-defined scalar types, and pointer types.
However, a function that returns a value of type pointer can point to a
dynamic variable of any base type except a file type, BYTESTREAM, or
WORDSTREAM.

Remember: If you fail to set the value of a function within its body, it
will return an undefined value when called.

Variable and Value Parameters

Declaring a parameter in a procedure or function definition establishes it as
a variable within that routine. It has the same effect as making a variable
declaration in the routine's body.

When a procedure or function is called, the statement that calls it passes
values to it. This means that it supplies a variable reference or other
expression of its own for each parameter. Thus each parameter in the called
routine is set initially to an externally supplied value.

While the routine is executing, it may simply accept a parameter's initial
value, using it as a datum for other actions; or it may change it. When a
procedure or function changes the value of one of its parameters, this may
or may not change the value of the outside variable to which the parameter
was originally set. It depends on whether you declared the parameter as a
variable parameter or as a value parameter in the procedure or
function definition.

Chapter 8: Procedures and Functions

To declare a variable parameter, you write VAR in front of its declaration
in the procedure or function definition. Every VAR parameter receives an
initial value from the calling program. But if the procedure or function
changes that value, the VAR parameter "reaches out" into the calling
program, changing the value of the variable stored there that supplied its
initial setting.

To declare a value parameter, omit VAR. Value parameters also receive
data from the calling program; but when the routine changes their values
internally there is no outside effect.

A value parameter may receive data from any kind of expression. A
variable parameter may receive data only from a variable.

Other Terminology: Variable parameters are often said to be "passed
by reference"; value parameters "passed by value." This refers to the way
the calling program sends their values to the procedure or function. It
passes the memory address of variable parameters and the actual value
of value parameters. With EXTERNAL procedures and functions, value
parameters of type STRING, RECORD, and ARRAY are also passed by
reference, as if they were variable parameters. See Chapter 9 for a
discussion of EXTERNAL routines.

Calling Procedures and Functions

A procedure or function is called by simply writing its identifier in the
source text, followed by its parameter list (if it has one) in parentheses. The
parameters are separated by commas:

identifier t------.-,.....-;M expression 1t--...._,,._,...

The identifier (or at least the first eight characters thereof) must be the
same as the identifier used in the procedure or function definition.

The parameter list in a procedure or function call contains the same
number of parameters as were listed in the procedure or function definition.
Those in the definition are called formal parameters; those in the calling

Calling Procedures and Functions lll-131

statement, actual or source parameters. The values of the actual
parameters are said to be passed to the formal parameters as part of the
call.

The order and number of actual parameters in the call must match the
order and number of formal parameters in the definition. The actual
parameters specified in any procedure or function call must follow these
rules:

o Each actual parameter must have the same type as the corresponding
formal parameter. Subrange types are equivalent to their base types for
this purpose.

o There are two exceptions to the rule just stated. The formal variable
parameter types BYTESTREAM and WORDSTREAM accept a variety of
actual parameter types, as explained in Chapter 4. And you can write
EXTERNAL procedures and functions with untyped formal variable
parameters, as described in Chapter 9.

o Actual variable parameters must be variables. They cannot be constants
or complex expressions. They also cannot be elements of packed
variables.

o The value of any actual string variable may be passed to any formal
variable string parameter, regardless of length. However, if the declared
maximum length of the formal parameter is longer than the declared
maximum length of the actual parameter, you will get a Compiler error.
You can avoid this situation by suspending {$V} range checking.

o If the value of an actual parameter exceeds the range of a formal
parameter (for instance, because the formal parameter is a subrange
type), you will get an execution error unless you have suspended {$R}
range checking. Range checking is discussed at the end of Chapter 6.

Here are samples of calls corresponding to the procedure and function
examples given earlier in this chapter. The definition headings are
repeated, followed by the calls:

PROCEDURE ALPHA CHI, LO REAL; FACTOR : INTEGER>;

FUNCTION BETA CHI, LO : REAL; VAR ERROR : BOOLEAN>

.PROCEDURE GAMMA;

ALPHA CUPLIMIT, DNLIMIT, CMULT * 184> + 3>;

MULT :• 2 * BETA CUPLIMIT/2, DNLIMIT/2, FLAG>;

GAMMA;

III-132 Chapter 8: Procedures and Functions

INTEGER;

The calls to ALPHA and GAMMA are statements; they could either be
executed alone, as shown here, or included in other statements. In the call
to ALPHA, the two real variables UPLIMIT and DNLIMIT are the actual
parameters whose values are passed to the formal parameters HI and LO.
The expression (MULT * 104) + 3 passes an integer value to the formal
parameter FACTOR.

The call to BETA is an expression that forms part of an assignment
statement. Here HI and LO receive the values produced by dividing
UPLIMIT and DNLIMIT by 2. BETA sets the boolean value of FLAG in the
calling program by setting the value of its own formal parameter ERROR; it
can do this because ERROR is declared as a variable parameter. The integer
value returned by BET A is multiplied by 2 to create the value assigned to
MULT. Note that the whole righthand side of this assignment statement
could have been substituted for MULT in the call to ALPHA.

The procedure call statement that calls GAMMA consists of nothing but
GAMMA's identifier. ,

Rules of Scope

Identifiers are the names of programs and Program Units, constants, types,
variables, and procedures and functions, both built-in and user-defined.
Built-in identifiers are also called predefined; there is a list of them in
Appendix 3F, Table 2. You create user-defined identifiers when writing
program and Unit headings; constant, type, and variable declarations; and
procedure and function definitions, including their parameter declarations.

The act that establishes an identifier also gives it a discrete scope-an area
of source text in which the Compiler understands it as you intended. If an
identifier is used outside its scope, the Compiler may handle it incorrectly or
refuse to accept it entirely. An identifier whose scope is confined to a single
block is called local; if it extends over more than one block it is called
global. Blocks are defined in Chapter 2.

Under certain conditions, identifiers may be :redefined; that is, an existing
identifier may be given a new meaning. You can even redefine the
predefined identifiers of built-in operations. Thus in a single program a
given identifier name may be used in different places with entirely different
meanings, each meaning having its own scope.

Rules of Scope III-133

III-134

Here are the rules governing the redefinition and scope of identifiers:

o At the outset, all predefined identifiers are global for all program blocks.
o Any predefined identifier may be redefined anywhere, becoming a

user-defined identifier.
o User-defined identifiers have local meaning in the block in which they

are defined, and global meaning in blocks at lower nesting levels.
o User-defined identifiers are meaningless in blocks at higher nesting

levels.
o User-defined identifiers may be redefined where they have global

meaning, but not where they have local meaning. In other words, they
may be redefined in nested blocks but may not be defined twice in the
same block.

o If a predefined identifier has been redefined, its original meaning is
automatically restored outside the scope of the new definition.

Chapter 8: Procedures and Functions

For an example of how all this works, consider the program structure
shown below, where Procedures ENGINE and TRUNK are nested within
Program AUTO, and Procedure JACK is nested within Procedure TRUNK:

The identifiers MET AL and PLASTIC are declared and redeclared at
various points in the program. What is the scope of each variable shown in
the diagram?

o The real variable MET AL declared in the main program is known
throughout the main program, except that it is not known anywhere
within procedures ENGINE or TRUNK because the identifier METAL is
redeclared in those procedures.

o The integer variable PLASTIC declared in the main program is known
throughout the main program, except that it is not known anywhere
within TRUNK because the identifier PLASTIC is redeclared in that
procedure. It is also unknown in JACK because JACK is nested in
TRUNK.

Rules of Scope III-135

III-136

o The real variable METAL declared in procedure ENGINE is known
throughout procedure ENGINE.

o The boolean variable MET AL declared in procedure TRUNK is known
throughout procedure TRUNK, except that it is not known anywhere
within procedure JACK because the identifier MET AL is redeclared in
that procedure.

o The char variable PLASTIC declared in procedure TRUNK is known
throughout procedures TRUNK and JACK.

o The integer variable METAL declared in procedure JACK is known
throughout procedure JACK.

Size and Complexity Limits

The Compiler imposes certain limits on the size of any single block, and the
number of levels in which you can nest blocks. Here "size" refers to the
number of bytes in the codefile generated by the Compiler.

Block nesting is restricted to a maximum of 8 levels, counting the whole
program as one level.

The size of a given block is difficult to judge just by looking at its source
text. Here are the actual rules:

o The total number of procedures and functions may not exceed 254 in any
segment. A program is one segment; other kinds of segments are
described in Chapter 15.

o The total compiled code for any single block (program, Program Unit,
procedure, or function) may not exceed 1999 bytes.

Chapter 8: Procedures and Functions

When a block of your source text is too long, the Compiler will stop with a
"procedure too long" message. If that happens, try this solution. Remove
some statements from the offending routine and set them up as a new
procedure. Then call the new procedure from the point where the
statements were removed. This usually solves the problem; if it doesn't, see
the suggestions in Chapter 15, "Large Program Management."

SEGMENT Procedures and Functions

You can convert any user-defined procedure or function into a segment
procedure or function by writing the word SEGMENT in front of
PROCEDURE or FUNCTION; for example:

SEGMENT PROCEDURE ALPHA CHI, LO : REAL; FACTOR : INTEGER);

You then define and call it as before. When your program is executed,
SEGMENT routines are not loaded into memory at the outset. Instead, each
one is loaded every time it is called and its memory space is released as
soon as its execution is completed. This process conserves memory but
slows down program execution. It is one of the large program management
techniques discussed in Chapter 15.

FORWARD Procedures and Functions

A forward procedure or function is one in which the heading is separated
from the program block. You write the heading normally, but add the word
FORWARD instead of the block. Later in the program you write the block,
preceded by the word PROCEDURE or FUNCTION and the identifier. You
omit the parameter list the second time. For example:

FUNCTION BETA CHI, LO : REAL; VAR ERROR : BOOLEAN) : INTEGER;
FORWARD;

... other program text

FUNCTION BETA;
... block of function ...

FORWARD Procedures and Functions III-137

After you have written its heading you can call the procedure or function,
even though it is not fully defined. This technique permits indirect
recursion (see below); it allows two or more routines to call each other.

Recmsion

Recursion occurs when a procedure or function is called before it finishes
executing its program block. The case where a routine calls itself is direct
recursion; two or more routines calling each other in a cycle is indirect
recursion. A full discussion of recursion is beyond the scope of this
manual; here are just a few sample outlines:

FUNCTION ZETA CFACTOR : INTEGER>
BEGIN

INTEGER;

... program text
IF N <> 0 THEN N := ZETA CN); {direct recursion; ZETA calls itself}

program text
END;

FUNCTION !OTA CFACTDR

PROCEDURE THETA;
BEGIN

... program text
N : = IOTA OD;
... program text

END;

FUNCT! ON IOTA;
BEGIN

... program text ...
IF N > 0 THEN THETA;

program text ...
END;

III-138

INTEGER) INTEGER; FORWARD;

<IOTA defined as FORWARD, so THETA>
{can call it }

{indirect recursion: IOTA and THETA}
{call each other }

You can also write chains of indirect recursion in which (for example) A
calls B, B calls C, and C calls A. At least one routine in such a chain must be
written as FORWARD.

Each time a routine is called recursively, Pascal creates a new incarnation
of it. An activation record is placed on the program stack and memory space
is reserved for any variables or parameters declared within the routine.
Activation records are described in Part IV of this manual, Chapter 3.

Chapter 8: Procedures and Functions

These incarnations can pile up indefinitely, until the recursion terminates
or the machine runs out of stack or memory space. Thus the following
cautions apply to writing recursive program text:

o There must always be a route by which the recursion terminates, either
by ceasing recursive calls or by using the EXIT procedure described in
Chapter 7.

o The maximum possible number of incarnations before recursion
terminates must not exceed the capacity of the program stack to hold
activation records.

o The available data memory must be large enough to hold the values of all
variables created by the maximum possible number of incarnations.

A more complex example of recursion is given under "Binary Tree
Construction" in Chapter 16.

Recursion III-139

Chapter 9 Assembly-Language Routines

III-141

III-142

With Apple Pascal, you are not limited to writing programs in the Pascal
language. You can write programs in 6502 assembly language, and then
execute them in a Pascal environment. In particular, you can write 6502
assembly-language procedures and functions that your Pascal program will
accept and execute exactly as if they had been written in Pascal.

Note to the Reader: This chapter assumes that you are already familiar
with the 6502 assembly language. Nothing in here is necessary for your
understanding of Pascal. So if you're not interested in 6502 programming,
you can skip to the next chapter.

Using the 6502 Assembly language

The 6502 assembly language is the language used by the Apple II series
microprocessor. It is an 8-bit machine language with both decimal and
binary arithmetic modes. It is described in more detail in Part II of this
manual, Chapter 6. Its instruction set is summarized in Appendix 3E.

To incorporate assembly-language routines into your Pascal program you
first write the 6502 source text in a four-column format, using the Pascal
Editor. The four columns are occupied by labels, instruction mnemonics
and Assembler directives, operands, and comments. The routines to be
executed must be delimited by the directives .PROC or .FUNC at the
begining of each procedure or function, and .END at the end of the whole
file.

When your 6502 source text is complete, you execute the Apple Pascal
Assembler program. It uses a file called 6502.0PCODES to interpret your
source text, producing a codefile in 6502 machine language. You then
execute the Apple Pascal Linker program to link the 6502 codefile into your
Pascal codefile. The combined result is a new Pascal codefile, incorporating
both 6502 code and P-code, which is ready to be executed.

The processes of assembling and linking are fully described in Part II,
Chapters 6 and 7. The structure of the resulting file of combined P-code and
6502 code is described in Part IV, Chapter 2.

Chapter 9: Assembly-Language Routines

EXTERNAL Procedures and Functions

To call a 6502 routine from a Pascal program, simply define a procedure or
function as usual but replace its block with the word EXTERNAL. The
result looks like this:

PROCEDURE ALPHA CHI, LO REAL; FACTOR : INTEGER>;
EXTERNAL;

FUNCTION BETA CHI, LO : REAL; VAR ERROR : BOOLEAN>
EXTERNAL;

INTEGER;

It doesn't matter what you call the parameters in an EXTERNAL procedure
or function definition, as long as the names are different from one another;
these identifiers are not referenced anywhere else.

EXTERNAL procedures and functions have a unique and powerful feature.
You can declare formal variable parameters without any type at all. You can
then pass variables of any type (including file types) to them as actual
parameters. For example,

FUNCTION OMEGA CVAR X> : INTEGER;
EXTERNAL;

OMEGA now accepts any Pascal variable as its actual parameter. What
happens is that Pascal simply passes the address of the actual variable to
the assembly-language routine, to do with it as it pleases. An example of
using this feature is given in Chapter 16 under "Direct Memory Access."

Other than the foregoing, your Pascal definitions of EXTERNAL routines
must obey all the rules given in Chapter 8 under "Defining Procedures and
Functions," including the allowable types for parameters and function
results. Once they are defined in this way, you can call EXTERNAL routines
in your Pascal source text just like any other procedures and functions.
They also follow the rules of scope given in Chapter 8.

Using 6502 routines in a Pascal program gives you a whole new dimension
of programming possibilities. At the same time, it imposes certain
responsibilities. Remember these rules and cautions:

o For every EXTERNAL procedure in the Pascal text, a .PROC routine with
the same name must have been assembled in a 6502 codefile; and for
every EXTERNAL function, a .FUNG routine.

EXTERNAL Procedures and Functions IIl-143

III-144

o The 6502 codefiles must be linked into the Pascal codefile before Pascal
can execute your program.

o The Linker will not link a 6502 routine to a Pascal EXTERNAL definition
unless the number of expected parameter words declared in the 6502
routine heading is the same as the actual number of words to be passed
by the Pascal parameter list (see below).

o Other than the foregoing, Pascal provides no safeguards to guarantee that
your 6502 routine is rational.

o In particular when Pascal passes parameters to a 6502 routine, that
routine must perform accurate stack management procedures. If it
doesn't, a system crash is likely.

The rest of this chapter describes the creation and use of 6502 routines from
the assembly-language end.

Calling and Returning From 6502 !Routines

When your Pascal program calls a 6502 routine, certain information is
pushed onto the evaluation. stack, moving the stack pointer toward lower
memory addresses. Your 6502 routine then starts executing. During
execution, the routine normally pulls this information off the stack with
PLA instructions, and pushes other information back onto the stack with
PHA instructions.

Here are some general things you need to know about the evaluation stack:

o It grows downward in memory, so the "top" is always at the lowest
address.

o The smallest units of stack information are 2-byte words; there are no
single bytes on the stack.

o All words on the stack have the least significant byte toward the top of
the stack.

o The stack has a capacity of only 256 bytes (128 words); hence the stack
pointer consists of one byte.

o Although it is possible to read and change the value of the stack pointer
directly (using TSX and TXS instructions), this is rarely necessary or
desirable. PLA and PHA instructions increment and decrement the stack
pointer automatically.

Chapter 9: Assembly-Language Routines

The evaluation stack may have already contained data before your 6502
routine was called. Thus it is essential that your routine manage the stack
in such a way that this data remains undisturbed during 6502 execution.
The rest of this section gives you the information you need to accomplish
this.

When Pascal calls an EXTERNAL procedure or function, it pushes
information onto the stack in this order:

1. It pushes values for all the parameters declared in the EXTERNAL
procedure or function definition onto the stack, starting with the
beginning (left end) of the parameter list. The formats it uses for
various data types are described below.

2. If the EXTERNAL routine is a function, Pascal pushes 4 bytes of zeros
after the last parameter value. This space is reserved for storing the
value to be returned by the function.

3. Last of all it pushes the 2-byte Pascal return address onto the stack,
high byte first.

Pascal passes values to EXTERNAL routine parameters in 2-byte words, as
follows:

Type

All VAR parameters

Value parameters:
All scalar types
Pointers
Real numbers
Long integers

Sets

Strings, Arrays, Records, Files

Calling and Returning From 6502 Routines

Representation

1-word pointer to the value

1-word actual value
1-word actual pointer value
2 words actual value
1 to 9 words actual value, followed
by 0 byte and length byte
1 to 32 words actual value, followed
by 0 byte and length byte
1-word pointer to the value

III-145

Ill-146

Here are some notes about handling the parameter values listed above:

o All values are pushed onto the stack high byte first. Hence your 6502
routine will pull each one off starting with its least significant byte.

o When pointers are passed (strings, arrays, records, and all variable
parameters), your routine must use indirect addressing to access the
variables they point to.

o When long integers or sets are passed (as value parameters), the first
byte your 6502 routine pulls off the stack gives the number of words of
stack occupied by the parameter. The next byte is 0. The succeeding
bytes will contain the actual parameter value, least significant byte first.

Chapter 9: Assembly-Language Routines

To summarize, the structure of the evaluation stack at the start of 6502
execution looks like this:

PROCEDURE

return addr lo byte

return addr hi byte

(opt length byte
and 0 byte)

last param lo byte

last param hi byte

(opt length byte
and 0 byte)

first param lo byte

first param hi byte

previous stack contents

-top of stack-

low memory

high memory

Calling and Returning From 6502 Routines

FUNCTION

return addr lo byte

return addr hi byte

0 byte

Obyte

Obyte

0 byte

(opt length byte
and 0 byte)

last param lo byte

last param hi byte

(opt length byte
and 0 byte)

first param lo byte

first param hi byte

previous stack contents

III-147

III-148

Generally speaking, your 6502 routine must perform the following stack
operations as a minimum:

l. Unless it is a procedure with no parameters, it must first save the Pascal
return address in a temporary location (such as one of the zero page
locations mentioned below under "Using System Memory"). The POP
macro listed in Appendix 3D is useful for this purpose.

2. If it is a function, it must next execute four PLA instructions to remove
the four bytes reserved for returning the function's value.

3. It can now pull parameter data off the stack as needed. Note that the
first byte it pulls is the least significant byte of the last parameter; the
last byte it pulls is the most significant byte of the first parameter.

4. With long integers and sets passed as value parameters, your routine
should use the length information in the first byte to determine how
many subsequent words to pull.

5. Regardless of how and when it uses the stack, however, your 6502
routine must ultimately pull all parameters, using PLA instructions.

6. If your routine is a function, it must now push onto the stack the value
to be returned by the function, using PHA instructions. The first byte to
be pushed is the most significant and the last byte the least significant.
If the Pascal type declared for the function is REAL, it must push 4
bytes; for other types, 2 bytes.

7. Finally, your routine must push back onto the stack the Pascal return
address it stored in step 1. The PUSH macro listed in Appendix 3D is
useful for this purpose.

8. The last instruction in your routine must be an RTS, to return control to
the Pascal program.

Chapter 9: Assembly-Language Routines

I I

If your routine has accomplished ail the foregoing successfully, the stack
will look like this when the RTS instruction is executed:

PROCEDURE

return addr lo byte

return addr hi byte

previous stack contents

-top of stack-

FUNCTION

return addr lo byte

return addr hi byte

result lo byte

result hi byte

previous stack contents

The byte of previous stack contents indicated above is the same as the one
shown in the stack map given earlier. It represents the top of the stack
before your 6502 routine was called. Your routine must not have disturbed
it.

Making Life Easy: If your 6502 routine is a procedure with no
parameters, it requires no stack instructions. It only needs to end with
RTS. The Pascal return address will be waiting in the right place when it
exits.

Pascal and 6502 Intercommunication

Besides passing parameters, Apple Pascal provides other ways that your
6502 routines can communicate with your Pascal program and with each
other. You can use the following Assembler directives:

.CONST .PUBLIC .DEF .REF

These directives are described in detail in Chapter 6 of Part II; here is a brief
summary:

o .CONST allows your 6502 routines to use constants declared globally in
your Pascal program.

o .PUBLIC allows your 6502 routines to use variables declared globally in
your Pascal program.

o .DEF and .REF allows 6502 routines to share labels, and hence execute
each other's subroutines.

Pascal and 6502 Intercommunication III-149

III-150

Using System Memory

The addressing modes available in the 6502 instruction set give your 6502
routines access to the entire machine memory. But blindly accessing
memory in a Pascal environment can lead to disaster, if your Pascal
program and your 6502 routines overwrite each other's code or data. A
better approach is to use these Assembler directives:

.BYTE .WORD .BLOCK .PRIVATE

These directives are described in detail in Chapter 6 of Part II. Here is a
brief summary:

o .BYTE, .WORD, and .BLOCK reserve areas for data within the 6502
program space. They can be used either to store constants or to provide
labeled memory areas for storing variables.

o .PRIVATE allows your 6502 routines to store variables in the Pascal data
space. Such variables are inaccessible to Pascal. They retain their values
throughout execution of your Pascal program. Hence they can be used to
transport data between 6502 routines that are called at different points in
the Pascal program.

In addition, hexadecimal locations $0 through $35 are available to your 6502
routines, for temporary storage. They provide 54 bytes for scratchpad use.
Pascal may also use these locations, however; you cannot count on data
remaining there after your 6502 routine completes execution.

All the internal 6502 registers (A, X, Y) are available for your use.

The rest of system memory normally belongs to Pascal. You should attempt
to access it from your 6502 routines only as a last resort and with great care.

Chapter 9: Assembly-Language Routines

An Example

The following sample, deliberately trivial, illustrates some of the techniques
just discussed. It consists of a Pascal program that calls two EXTERNAL
routines-a procedure and a function. This is how it works:

o The Pascal program CALLASM creates a packed array of ten byte-sized
elements, initializing it with the values 0 through 9. It displays the result.

o CALLASM then calls the EXTERNAL procedure INCARRAY, a 6502
routine, which increases the value of each element by 1. CALLASM
displays the new result.

o CALLASM finally calls the EXTERNAL function TIMES2 ten times. At
each iteration, TIMES2 doubles the value of one array element and
CALLASM displays it.

Here is the Pascal source text:

PROGRAM CALLASM;

TYPE LIST• PACKED ARRAY CB .. 91 OF e .. 255;

VAR N : INTEGER;
AA : LIST;

PROCEDURE INCARRAY CSIZE : INTEGER; VAR DATA LIST>;
EXTERNAL;

FUNCTION TIMES2 CDATA INTEGER>
EXTERNAL;

BEGIN
WRITELN C'lnitial array:'>;
FOR N :• 0 TO 9 DO

BEGIN
AACNl :• N;
WRITE C' ', AACNl>

END;
WRITELN C'Array, incremented:'>;
INCARRAY c1e, AA>;

INTEGER;

FOR N :• 0 to 9 DO WRITE C' ', AACNl>;
WRITELN ('Incremented array time5 two:'>;
FOR N :• H TO 9 DO WRITE C' ', TIMES2 CAACNl>>

END.

An Example III-151

And here is the corresponding 6502 assembly-language source text:

sample macro POPs word from evaluation stack

.MACRO POP
PLA
STA %1
PLA
STA %1+1
.ENDM

sample macro PUSHes word to evaluation stack

.MACRO PUSH
LDA "1+1
PHA
LDA "1
PHA
.ENDM

sample function for Pascal, declared:
function TIMES2Cdata:integer):integer;

.FUNC TIMES2, 1 ;one word of parameters
RETURN .mu l1J ;temp store return addr

POP RETURN ;save Pascal re.turn addr
PLA ;pull 4 bytes
PLA ;from stack
PLA ;{only need to do
PLA ;for .func)

PLA ;lsb of data
ASL A ;times 2
TAX ;save in x
PLA ;msb of data
ROL A ;times 2. with carry
PHA ;move msb to evaluation stack
TXA ;restore lsb to accum
PHA ;move lsb to evaluation stack

PUSH RETURN ; restore Pascal return address
RTS ;RETURN to Pascal

III-152 Chapter 9: Assembly-Language Routines

sample procedure for Pascal, declared:
procedure INCARRAYCsize:integer; var data: list);

.PROC INCARRAY,2 ; 2 words of parameters
RETURN .EQU 0 ;temp store return addr
SIZE .EQU 2 ;temp store SIZE
ADD RS .EQU 4 ;temp store array addr

POP RETURN ;save Pascal return addr
PLA ; l sb of array address
STA ADDRS
PLA ;msb of array address
STA ADDRS+1
PLA ;lsb of SIZE parameter
STA SIZE
PLA ;msb of SIZE discard

LDY #IJ ;initialize array index
A LOOP CLC ;clear for add

LDA @ADDRS,Y ;load array byte
ADC #1 ;increment
STA @ADDRS,Y ;store incd array byte
INV ;increment array index
CPY SIZE ;test vs array SIZE
BCC ALOOP ;repeat if lt or eq

PUSH RETURN ;restore Pascal return address
RTS ;RETURN to Pascal

.END ;end of assembry

An Example III-153

Chapter 10 Input/Output

III-155

III-156

Apple Pascal provides a variety of built-in input and output (I/O) facilities
for your programs. This chapter explains how Pascal communicates with
external devices and covers most of the details of alphanumeric input and
output operations. Other chapters describe other input/output operations:
screen graphics in Chapter 11, and game paddle and audio I/O in
Chapter 16.

The I/O operations described in this chapter fall into two main classes: file
I/O operations and device I/O operations. The discussion of file I/O
operations occupies most of the chapter; device I/O is covered at the end.

Introduction to File i/0

In Pascal, the word "file" is used to refer to two quite different things: file
variables, which are declared and handled much like other variables, and
external. files, which include peripheral devices and named disk files. The
possible values of any file variable reside in its corresponding external file
and can be accessed only by file I/0 operations. This section contains a
brief overview of the subject of file IjO; details are discussed in the sections
that follow.

You can declare file variables of three general kinds:

o Untyped file variables, declared simply as type FILE.
o Typed file variables, deqlared as FILE OF <type>, where <type>

can be any type except another file. The components of a typed file are
called file records.

o Character file variables, a variety of typed file whose type is CHAR.
They can be declared either as TEXT (which is the same as FILE OF
CHAR), or INTERACTIVE.

A Note on Terminology: Don't confuse file records, which may be any
type, with the Pascal type RECORD.

Each kind of file variable is primarily associated with a particular kind of
external file. Thus external files are also of three general kinds:

o Block-structured devices such as disk drives, which are primarily
associated with untyped file variables.

o Disk files, which are primarily associated with typed file variables
(including the character types).

o Character devices such as the console, printers, modems, and so on,
which are primarily associated with character file variables.

Chapter 10: Input/Output

Finally, there are four general kinds of file I/O operations to bring file
variables and external files together:

o General file 1/0 operations, used with all file variables.
o Typed file 1/0 operations, used with typed file variables, including

the character types. They handle data of the type declared-integers,
arrays, records, and so on.

o Character file 1/0 operations, used only with character file
variables. They handle characters; that is, bytes interpreted as ASCII
codes.

o Untyped file 1/0 operations, used with untyped file variables. They
handle data in 512-byte blocks.

Certain external files cannot be accessed with certain file I/O operations.
Others are not recommended. The relationships between file IjO
operations, file variables, and external files are summarized in Table 10-1.
NR means that using the external file with that kind of I/O operation is not
recommended, andNG means that it won't work.

Table 10-1. File I/O Relationships

Operations File Variables

Typed Typed files
(except character
files)

Character Character files

Untyped Untyped files

External Files

OK: disk files
NR: block-structured devices
NG: character devices

OK: disk files, character devices
NR: block-structured devices

OK: disk files, block-structured devices
NR: character devices

The first half of this chapter describes the mechanics of Pascal file I/O in
the following order:

o First, file variables and how they are declared and manipulated.
o Second, external files and how they are designated.
o Finally, the input/ output operations that make it possible for you to

use file variables and access their values.

Introduction to File I/O III-157

Ill-158

File Variables

Unlike most other variables, file variables may be either typed or untyped.
A typed file contains a series of file records, each of the same type. An
untyped file consists of 512-byte blocks of data.

Within a program, file variables are created by type or variable declarations
according to this syntax:

FILE

TEXT

OF component t--'-...-~
type

INTERACTIVE t--------------~

Here are the rules for declaring file variables:

o A file· variable declared with only the word FILE is untyped. It can be
accessed only by untyped file operations.

o A file variable declared as FILE OF followed by a component type is
typed. It is treated as an indefinitely long series of file records of that
type. It can be accessed only by typed file operations.

o The file records of a typed file variable may have any type except a file
type.

o However, when a typed file variable is associated with a character
device, the file records must be characters.

o A file declared as TEXT is the same as a FILE OF CHAR. Under either
designation, it has some special features, described below, which make it
handy for storing and retrieving alphanumeric text.

o A file declared as INTERACTIVE is a variety of TEXT file with special
features suited to real-time input from a keyboard or modem.

Here are some examples of file type and variable declarations:

TYPE HUMFILE =FILE OF ARRAY [1 .. 1881 OF INTEGER;

VAR IHFILE, OUTFILE : HUMFILE;
CODEFORM TEXT;
FLOWDATA : FILE;

Chapter 10: Input/Output

In these examples, NUMFILE is a new file type, each record of which is an
array of 100 integers. INFILE and OUTFILE are file variables of type
NUMFILE. CO DEFORM is a file whose records are type CHAR. Finally,
FLOWDAT A is an untyped file variable. Its contents will be handled in
512-byte blocks.

Connecting file variables to external files is accomplished by the REWRITE,
RESET, and CLOSE procedures described below under "General File I/O
Operations." Note that it is possible to associate an external file with more
than one file variable, at the same or different times. For example, an
external file originally created as the value of a typed file variable may
subsequently be accessed as the value of an untyped file variable, or a file
variable of another type. This feature provides maximum flexibility in
handling data. It is also one of the techniques for defeating strong typing,
discussed further in Chapter 16.

Predeclared Fiies

Apple Pascal has three predeclared file variables. They are all of type
INTERACTIVE, and they are automatically opened by RESET when Pascal
begins execution. Their identifiers are

OUTPUT INPUT KEYBOARD

OUTPUT is the name for output to the monitor screen. It is also the default
destination for the WRITE and WRITELN procedures (see below).

INPUT is the name for input from the keyboard which is also echoed to the
monitor screen. It is the default destination for the READ and READLN
procedures.

KEYBOARD is like INPUT, but it is not echoed to the monitor screen.

Whenever a program terminates, Apple Pascal automatically performs a
CLOSE procedure on these three files.

File Variables III-159

III-160

External Files

There are three categories of external files:

o Character devices, which act as sources or destinations for streams of
ASCII bytes. They include the monitor screen and keyboard, printers,
modems, plotters, and so on.

o Block-structured devices, which act as sources or destinations for
blocks of 512 bytes of data. They include disk drives containing both
rigid and flexible disks, RAM disks, and the like.

o Disk files in block-structured devices. A disk file is a collection of data
that is listed by name in a disk directory.

Specifying External Files

When writing file I/O operations in a program, you specify external
character and block-structured devices by volume numbers or volume
names. You specify disk files by filenames.

All peripheral devices have both volume numbers and volume names.
These designations are assigned by the Apple Pascal operating system, as
shown in Table 10-2.

Chapter 10: Input/Output

Table 10-2. Voh+me Names and Numbers for Devices

Volume
Number Volume Name 1/0 Device Description

#0 (not used)

#l CONSOLE: Screen and keyboard with echo on
input

#2 SYS TERM: Reads keyboard without echoing it

#3 (not used)

#4 <disk name>: 1st drive, Startup drive, slot 4, 5 or 6

#5 <disk name>: 2nd drive, same slot as startup drive

#6 PRINTER: Printer, slot 1

#7 REMIN: Remote input, slot 2 (modem)

#8 REMO UT: Remote output, slot 2 (modem)

#9 <disk name>: 5th drive, slot 4, 5, or 6

#10 <disk name>: 6th drive, same slot as 5th drive

#ll <disk name>: 3rd drive, slot 4, 5, or 6

#12 <disk name>: 4th drive, same slot as 3rd drive

A disk name is actually the identifier of a disk directory; for instance,
APPLEO. Thus you have a choice of ways to identify any disk:

o A volume number identifies the disk that is present in a designated
drive, regardless of its name.

o A volume name identifies a specific disk, regardless of where it is
located in the system.

Disks receive volume names when they are formatted. Disk files receive
filenames when they are created. You can change disk or disk file names at
any time by using the Change command described in Chapter 3 of Part II.

As you can see from Table 10-2, volume numbers are written as a pound
sign, one or two numerals, and a colon. Volume names are written as an
identifier followed by a colon.

A complete disk file specification consists of a volume name or number and
a filename. It designates a specific file listed in a specific directory. Further
rules for specifying files are given in Part II, Chapter 3.

External Files III-161

III-162

Pascal types volume numbers, volume names, and disk file specifications as
strings. When you use them as constant parameters in 1/0 operations,
enclose them in single quotation marks:

I #6: I 'PRINTER:' 'APPLE2:'

'MYDISK:MYFILE.TEXT'

Wildcards

There are three ways you can specify the volume name or number of an
external file, by using wildcards:

o If you specify no volume name, by supplying either a null string or a
string containing only a colon, Pascal will insert the prefix volume name
or volume number. Setting the prefix is discussed in Part II, Chapter 3.

o If you use an asterisk (*) for the volume name, Pascal will replace it with
the name of the system disk-the disk containing SYSTEM.PASCAL.

o If you use a percent symbol(%) for the volume name, Pascal will replace
it with the name of the disk from which the currently running program
was loaded.

Thus, for example, you can specify that the disk file MYFILE. TEXT is
located either in the disk or device specified by the prefix, on the system
disk, or on the current program disk, by writing these file designations in
your source text:

'MYFILE.TEXT' '*MYFILE.TEXT' '%MYFILE.TEXT'

General File 1/0 Operations

There are certain operations that are used with all files, whether typed or
untyped. They are:

o Creating and opening a new file.
o Opening an already existing file.
o Closing a file. If the file is a disk file, you can choose whether or not it

remains listed in the disk directory.
o Determining when an access operation has reached the end of file.

Chapter 10: Input/Output

o Determining whether an input or output operation was successful.
o Suspending certain automatic input/output safeguards for special

purposes.

These operations are described below.

Opening and Closing Files

Before your program can use a file, it must do two things:

o Declare a file variable, as described above.
o Open the file.

When Pascal opens a file, it associates the file variable with an external
file. It also does these things:

o In the case of a disk file, it either creates the external file and writes a
directory entry for it, or locates it if it already exists.

o In the case of a character or block-structured device, it checks to make
sure the device is on-line.

o It creates a 40-word (80-byte) area on the heap to store file information.
The heap is discussed in Part IV of this manual, Chapter 1.

o If the file variable was declared as typed, it sets aside another 260 words
(520 bytes) on the heap to use as an input/output buffer. It also creates a
dynamic variable accessible to your program which can contain one file
record.

After your program is finished using a file, it must close it. When Pascal
closes a file, it does these things:

o In the case of a disk file, it either retains its entry in the disk directory or
deletes it, depending on how the closing command is written.

o In the case of a character or block-structured device, it may or may not
place it off line, depending on how the closing command is written.

o It releases all heap space allocated to the file.

I
Be Careful: Attempting to open or close a file that does not exist or is
not accessible to the system can cause an I/O error. The conditions under
which such I/O errors occur are defined below for each operation.

The REWRITE Procedure

REWRITE creates and opens any disk file or opens any character or
block-structured device. It is normally used before output operations,

General File 1/0 Operations III-163

REWRITE

III-164

although it permits inputs as well. With typed files, REWRITE creates a
record-sized buffer variable for GET and PUT procedures. REWRITE is a
procedure with two parameters:

file
identifier

string
expression

The file identifier is the name of a declared file variable. The string
expression is either the complete designation of a disk file or the volume
name or number of an external device.

Here are examples of two ways to use REWRITE to open the file variable
FILEID-first as a disk file MYFILE on the disk MYDISK and then as a
character device:

REWRITE <FILEID, 'MYDISK:MYFILE.TEXT'>;
REWRITE <FILEID, 'PRIHTER:'>;

The following rules govern the use of REWRITE:

o If a disk file with the same complete designation already exists,
REWRITE creates another. The CLOSE procedure will later delete one or
the other.

o If the file variable corresponds to an already open disk file, an I/O error
occurs. The file remains open.

o Calling REWRITE with a character or block-structured device that is not
accessible to the system causes an I/O error.

o REWRITE can be used to associate a different file variable with an
already open external file.

The RESET Procedure

RESET opens any character or block-structured device or any already
existing disk file. It is normally used before input operations, although it
permits outputs as well. With typed files, RESET creates a record-sized

Chapter 10: Input/Output

buffer variable for GET and PUT procedures. RESET takes one or two
parameters:

file
identifier

string
expression

The file identifier is the name of a declared file variable. The optional
string expression is either the complete designation of a disk file or the
volume name or number of an external device. If the string expression is
omitted, RESET reopens an already open file.

Here are examples of four ways to use RESET with the file variable
FILEID-first to open an existing disk file MYFILE on MYDISK, second to
open an external modem as an input source, third to open a printer as an
output device, and finally to reopen an already open file:

RESET CFILEID, 'MYDISK:MYFILE.TEXT'>;
RESET CFILEID, 'REMIN:');
RESET ff!LEID, 'PRINTER:');
RESET (FILE!D>;

The following rules govern the use of RESET:

o With any file variable type except INTERACTIVE, RESET automatically
calls GET. GET loads the first file record into the buffer variable. Thus
the first explicit GET executed by your program accesses the second file
record.

o If RESET is used to open a disk file, and if either the file variable
identifier or the file name corresponds to an already open file, an I/O
error occurs. The file remains open.

o You can use RESET to reopen an already open character or
block-structured device with a different file variable.

o When you output to a disk file that was opened with RESET, you
overwrite the existing file. However, only the file records actually
written to are affected.

o If you use RESET with only a file variable identifier, it reopens the
external file associated with that file variable. In the case of a disk file or
block-structured device, it returns to the beginning and GETs the first
file record. In the case of a character device (such as the console), it
clears the end-of-file flag.

General File I/O Operations III-165

III-166

Be Careful: Using RESET with a file variable of any type except
INTERACTIVE, and with an output-only character device (such as a
printer), may cause a run-time error because the automatic GET call
cannot be completed. Use REWRITE instead.

The CLOSE Procedure

CLOSE closes a file previously opened with REWRITE or RESET. It is
written like this:

file
identifier

option
identifier

The file identifier is the name of a declared file variable. The optional
identifier, which may be omitted, is one of these words:

NORMAL LOCK PURGE CRUNCH

If the option identifier is omitted, the result is the same as if you had written
NORMAL.

With character or block-structured devices, these options have these
effects:

o NORMAL just releases the memory held for operations with the device.
o PURGE additionally places the device off-line (if it can).
o LOCK and CRUNCH have the same effect as NORMAL.

With disk files these options do different thfrtgs, depending on whether
REWRITE or RESET was used to open the file. Besides releasing the
memory held for I/O operations, CLOSE with these options has the effect
shown in Table 10-3.

Table 10-3. Effects of CLOSE on Disk Files

NORMAL LOCK PURGE CRUNCH
Opened with RESET kept kept deleted trunc

Opened with REWRITE:
No old file deleted kept deleted trunc
Old file existed:
Fate of old file kept deleted kept deleted
Fate of new file deleted kept deleted trunc

Chapter 10: Input/Output

Where this table indicates a disk file is kept, all its contents remain on the
disk and its file name remains in the disk directory. Where it indicates a file
is trunc, it is kept but truncated; all of the file after the most recently
accessed file record is thrown away. Where it indicates a file is deleted, it
disappears as if it had never been created. Its filename is removed from the
disk directory.

Here are two examples of CLOSE commands:

CLOSE CFILEID>; {NORMAL clo5e}
CLOSE CFILEID, LOCK>; {file clo5ed and LOCKed}

These rules apply to using the CLOSE procedure:

o If you terminate your program with any files still open, Pascal will
automatically perform a NORMAL close on them.

o If an external file is associated with more than one file variable, closing it
with one closes it for all.

o Using CLOSE on an already-closed file has no effect.

The EOF Function

EOF retums a boolean value that indicates whether the end of a specified
file has been reached. It is written this way:

~ I(\ J file l___t)\ • •
~~ l .,V! identifier ~ J

The optional file identifier is the name of a declared file variable. If it is
omitted, the predeclared file INPUT is assumed.

Here is a typical use of EOF to control an IF ... THEN statement:

IF EDF CFILEID> THEN --

The following rules govern the use of the EOF function:

o You may combine EOF with other functions and operators to form
boolean expressions.

o EOF is TRUE for every closed file.
o Whenever EOF is TRUE, the file's buffer variable is undefined.
o If an external file is associated with more than one file variable, EOF

always has the same value for all of them.

General File 1/0 Operations III-167

III-168

o If a file has any records in it, EOF is FALSE immediately after it has been
opened. If it has no records, EOF is TRUE.

o EOF goes from FALSE to TRUE immediately after an input operation
that tries to access a file record beyond the end of a file.

o EOF goes from FALSE to TRUE immediately after an output operation
that fails because there is no more room in the file. However, the program
halts with an 1/0 error first unless 1/0 checking has been suspended
(see below).

o EOF is FALSE for every character device until the device sends an ASCII
ETX character (CONTROL-C), and TRUE thereafter. EOF returns to
FALSE when the device is reopened with RESET. This is the case when
characters are being read from the keyboard via the predeclared files
INPUT or KEYBOARD.

o EOF (OUTPUT) is always FALSE.
o With a file of type TEXT, EOF is TRUE after the last character other

than RETURN (ASCII 13) has been read.
o With an INTERACTIVE file, EOF is not TRUE until the program attempts

to read past the last character in the file, or until a CONTROL-C
character is read from a character device.

o EOF is always FALSE after SEEK is called. See below, "The SEEK
Procedure."

The IORESUL T Function

IORESULT takes no parameters. It returns an integer that indicates the
status of the most recently completed input/output operation. Here is a
typical application of IORESUL T in an IF ... THEN statement:

IF IORESULT <> B THEH --

In Apple Pascal, IORESULT can return integer values in the range 0 .. 20
and 64. 0 means no error-normal!/O completion. Nonzero values of
IORESULT indicate an 1/0 failure of some sort. All possible IORESUL T
values, with their meanings, are listed in Appendix 3F, Table 3.

To use IORESUL T with file 1/0 operations, you must first turn off run-time
1/0 checking with the {$I - l Compiler option. Otherwise your program will
halt when an 1/0 error occurs. See "Controlling 1/0 Checking," below.

Watch Out: Don't try to output the value of IO RESULT directly with a
sequence such as WRITELN (IORESULT). Because WRITELN is an 1/0
operation, it changes IORESUL T before it outputs it. The solution is to
store the value of IORESUL T in an integer variable first.

Chapter 10: Input/Output

Controlling 1/0 Checking

When it executes your program, Apple Pascal performs run-time checks on
every input/ output operation. The result appears each time in IO RESULT.
If IORESULT becomes nonzero during a file I/O operation, your program
halts.

You can prevent such program halts by suspending I/O checking, using
the {$I - } Compiler option. Chapter 14 gives the rules for writing and using
Compiler options. At any time you can turn IjO checking back on by
writing {$I+} in your source text. With I/O checking suspended, your
program can use the value of IORESULT to decide what to do about a faulty
input/output operation.

It is not necessary to control I/O checking when using the device I/O
operations described later in this chapter. They set the value of IORESULT
but do not cause program halts.

Typed File 1/0 Operations

Certain input/ output operations can be performed only on typed files-files
whose declared variable type is other than just FILE.

You can use these operations on all typed files:

GET PUT SEEK

You can use the following operations only on character files:

WRITE WRITELN READ READLN EOLN PAGE

They are called character file operations; you can use them on these
files:

type INTERACTIVE type TEXT (= FILE OF CHAR)

INPUT OUTPUT KEYBOARD

External Device Actions

External input/output devices often have their own buffer memory
facilities and control their own physical actions. Hence the typed file I/O
operations discussed in this section do not necessarily cause immediate
actions in external devices.

Typed File 1/0 Operations III-169

III-170

In particular, disk drives usually do not respond physically until an
input/output command requires access to data outside the currently
accessed 512-byte block. You can expect visible drive action on these
occasions:

o A disk file is opened with REWRITE or RESET.
o A GET, PUT, SEEK, WRITE, WRITELN, READ, READLN, or PAGE

operation forces file access over a block boundary.
o A disk file is closed with any option.

Disk drive action always occurs immediately with untyped file or device
I/O operations.

Other external devices may or may not respond immediately to
illput/ output commands, depending on their internal software.

The GET and PUT Procedures

These procedures read or write a single file record between a typed file's
buffer variable and the external file. You write them like this:

GET CFILEID>
PUT CFILEID>

where FILEID is the identifier of any typed file variable, corresponding to
an open file.

The file's buffer variable is identified by writing the file variable identifier
followed by a caret:

FI LEIDA

It has the same type as records of the file variable. Thus after you execute
GET (FILEID), the file record retrieved is in FILEID A. Before executing
PUT (FILEID), you must set FILEID A to the value to be written to the file.

Here are the rules for using GET and PUT:

o The file must be open.
o GET and PUT executions sequence through the file records, starting

from the beginning, until EOF becomes TRUE. Each execution of either
procedure sequences to the "next" file record.

o If the file was opened with REWRITE, PUT writes the "next" record; if it
was opened with RESET the "next" record may already exist, in which
case PUT overwrites it.

Chapter 10: Input/Output

o If the file was opened with RESET and is not type INTERACTIVE, one
GET has already been executed; the first file record is in the buffer
variable and the first GET retrieves the second record.

o When an INTERACTIVE file is opened with RESET, no GET is
performed; the buffer variable is undefined and the first GET retrieves
the first record. This feature prevents an INTERACTIVE input, such as
the keyboard, from halting the program at a RESET procedure until a
character is entered.

o To PUT to the first file record in a non-INTERACTIVE file opened with
RESET, you must use the SEEK procedure, described below. This is
because opening with RESET automatically performs a GET, which
sequences the file to its second record.

o You can return to the beginning of a file by reopening it with RESET.
o When EOF is TRUE, the value of the buffer variable is undefined.

Executing PUT causes an I/O error if there is no more room in the file;
otherwise GET and PUT do not create If O errors.

GET and PUT, when used with certain file types, translate certain control
characters into other characters. The rules are too complex to set forth here.
You can find them under "Special Handling of Control Characters" in
Chapter 16.

The SEEK Procedure

When Pascal accesses a typed file on a block-structured device (such as a
disk), it numbers the file records in sequence, starting at 0. The SEEK
procedure sequences the file to a specific record number, forcing the next
GET or PUT procedure to access that specific.record. It looks like this:

SEEK CFILEID, RECHUM>;

where FILEID is the identifier of an open file, on a block-structured device,
that is not a textfile. RECNUM is an integer from 0 to one less than the
number of file records.

Program Unit Required! The Program Unit PASCALIO must be
present in an accessible library at the time any program using the SEEK
procedure is executed. P ASCALIO does not require a USES declaration,
however. This Unit is originally supplied in the file SYSTEM.LIBRARY.
For further information about libraries, see Chapter 13.

Typed File 1/0 Operations III-171

III-172

Here is a sample use of SEEK:

SEEK CSTDRFILE, 13>;

GET CSTDRFILE>;

STOR_REC := STORFILEA;

After this sequence, the variable STOR_REC will be set to the value of the
14th file record in STORFILE.

Here are the rules for using SEEK:

o The file accessed by SEEK must be open.
o If you try to use SEEK with a file variable of type TEXT, FILE OF CHAR,

or INTERACTNE, or if the external file is a character device, SEEK does
nothing.

o Two SEEK calls in a row may have unpredictable results. Use GET or
PUT in between.

o SEEK sets EOF to FALSE; the following GET or PUT sets it to its correct
value .

. If you call SEEK with a record number greater than the last record number
in the existing file, it goes through this process:

1. SEEK first tries to expand the file by accessing the external file beyond
its current end. If this is not possible (for example, because another disk
file is in the way), it causes an I/O error and sets IORESULT to 8 ("no
room on volume").

2. If it is able to expand the file, SEEK numbers its record areas and tries
to point to the record number specified in its call. Note that the record
areas beyond the current end-of-file have undefined contents. If there is
still not enough room for SEEK to sequence to the specified record, it
causes an I/O error and sets IORESULTto 8.

3. Finally, SEEK compares the record size to the available room to make
sure that an entire record could be written. If so, it exits; if not, it causes
an I/O error and sets IORESULT to 8.

By suspending I/O checking as described earlier, and then executing
repeated SEEK calls with incremented numbers and IORESULT checks,
your program can determine how many records could be written to a
specific file.

Chapter 10: Input/Output

Character File 1/0 Operations

Character file I/O operations can be used only with file variables that are
declared as character files. A character file is any file whose components
are declared to be of type CHAR. Thus the type of a character file can be
any one of the following:

FILE OF CHAR TEXT INTERACTIVE

As previously noted, the built-in type TEXT is exactly equivalent to FILE
OF CHAR. In the remainder of this chapter, we will refer only to the types
TEXT and INTERACTIVE; remember that FILE OF CHAR is the same thing
as TEXT.

Apple Pascal provides these operations for use with character files:

WRITE WRITELN READ READLN

EOLN PAGE

INTERACTIVE Files
I

The difference between TEXT and INTERACTIVE files is in the way they
are handled by the RESET, READ, and READLN procedures.

When a Pascal program READs characters from an existing TEXT file, the
program must first open the file with RESET. RESET automatically
performs a GET operation: that is, it loads the first character of the file into
the file's buffer variable and then advances the file pointer to the next
character. A subsequent READ or READLN begins its operation by first
taking the character that is already in the buffer variable and then
performing a GET.

If the file is of type INTERACTIVE instead of TEXT, the opening RESET
does not perform a GET. The buffer variable is undefined and the file
pointer points to the first character of the file instead of the second.
Therefore, a subsequent READ or READLN begins its operation by first
performing a GET and then taking the character that was placed in the
buffer variable by the GET. This is the reverse of the READ sequence used
with a TEXT file.

There is one primary reason for using the INTERACTIVE type. If a file is
not a disk file but a character device, it is not possible to perform a GET on
it until the device has a character ready for input. If RESET tried to do a
GET from the keyboard, for example, the program would then have to wait

Character File I/O Operations III-173

WRITELN t--~--.

III-174

until a character was typed. With the INTERACTIVE type, the program
doesn't perform a GET until it is executing a READ or READLN. Therefore,
the type INTERACTIVE is normally used for text 1/0 with any character
device.

The WRITE and WRITELN Procedures

You can use WRITE and WRITELN only with character files. They allow
characters, strings, and numeric values to be written to a file as text strings,
without the need for explicit PUT calls or explicit references to the file's
buffer variable. The difference between the two procedures is that WRITE
writes only the specified text, whereas WRITELN adds a RETURN
character (plus a LINE FEED to a character device) at the end.

The WRITE procedure is written this way:

file
identifier

value
specifier

The WRITELN procedure has more optional parts, and is written thus:

file
identifier

value
specifier

In both cases the value specifier is written like this:

value
expression

Chapter 10: Input/Output

width
expression

decimal
places

expression

WRITE CDMP, 'Hello');
WRITE CSTORFILE, N+2);
WRITE CA, ' ', N>;
WRITELN CZ/3.14:9:5);
WR ITELN;

The file identifier is the name of a file variable of type TEXT or
INTERACTIVE, corresponding to an open character device or disk file. If it
is omitted, OUTPUT (the monitor screen) is assumed.

Each value expression contains material to be written as text; it may be
any Pascal expression of type INTEGER, REAL, long integer, CHAR,
STRING, or PACKED ARRAY OF CHAR.

Each width expression is an expression of type INTEGER. It specifies the
minimum number of characters in the text equivalent of the associated
value expression. If the actual text takes fewer characters, it is
right-justified with spaces (that is, spaces are added to the front end until it
fills the minimum width). If no width expression is specified, only the
characters necessary for the value expression are written.

Decimal places expressions are used only with value expressions of type
REAL. Each one specifies the number of decimal places to be written in the
text equivalent.

WRITE must always be followed by at least one value expression; other
than that, all parts of the syntax following WRITE or WRITELN are
optional.

Here are some examples of using WRITE and WRITELN:

{string constant to printer}
{integer value to disk file}
{string variable, space, integer to screen}
{real value to screen; 9 chars, 5 decimals}
{new line on screen}

Here are the principal rules that govern the use of WRITE and WRITELN.
Some special rules about their handling of control characters are given in
Chapter 16 under "Special Handling of Control Characters."

o WRITELN adds a RETURN character (ASCII 13) at the end of its output.
If it is writing to a character device it follows this with a LINE FEED
(ASCII 10).

o When an integer, real, or long integer value is written, it is preceded by a
minus sign (-) if negative, a space character if positive. This character
is included in its width count.

o If a width expression is used with a value of type STRING or PACKED
ARRAY OF CHAR, the value is truncated if it is too long and
right-justified with leading spaces if it is too short. The resulting format is
not limited to the usual string maximum of 255 characters.

Character File 1/0 Operations III-175

III-176

Certain specific rules apply to the way WRITE and WRITELN convert
values of type REAL into written text:

o A real value without a width or decimal places expression is written in
exponent form. It is rounded to 6 significant digits, a decimal point is
placed between the first and second digits, and the exponent is added: for
example, -3. 14159e + 0 2. This format occupies 12 characters.

o A real value with a width expression but no decimal places expression is
also written in exponent form. The minimum form takes 8 characters: for
example, - 3 • 3 e + 0 2. Width expression values less than 8 are ignored.
Values more than 8 cause the number of decimal places to be expanded
to fit the specified width, up to a total format of 80 characters.

o A real value with both width and decimal places expressions is written
as a straight decimal: for example, -314. 1 ss. The number of decimal
places specified is always written. If necessary, the value is rounded
(not truncated) to fit. The number of digits to the left of the decimal
necessary to express the order of magnitude of the number is also always
written; however, after 6 or 7 digits the digits are meaningless. If the
resulting format, including sign and decimal point, is less than the
specified width, it is right-justified with spaces.

o Despite all the foregoing, a real value of 0 is always written as Ill • Ill. It
occupies the same number of characters as other values and the decimal
point is in the correct position, but the format before and after the two
zeros is filled with spaces.

Appendix 3B contains further details of how Apple Pascal writes REAL
values.

Program Unit Required! The Program Unit PASCALIO must be
present in an accessible library at the time any program uses a value
expression of type REAL with either WRITE or WRITELN. PASCALIO
does not require a USES declaration, however. This Unit is originally
supplied in the file SYSTEM.LIBRARY. For further information about
libraries, see Chapter 13.

The READ and READLN Procedures

You can use READ and READLN only on character files. They allow
characters, strings, and numeric values to be read from a file of text strings,
without the need for explicit GET calls or explicit references to the file's
buffer variable. The difference between the two procedures is that READLN
skips the remainder of the text line (including RETURN) after reading its
last variable; READ does not.

Chapter 10: Input/Output

READLN ,._...~__....,

READ CSTORFILE, X, Y, Z>;
READ CCOMDEV, CHARBUFF>;
READLN C NAME>;
READLN CSTORFILE>;
READLN;

The READ procedure is written this way:

file
identifier

variable
reference

The READLN procedure allows you to omit more parts:

file
identifier

variable
reference

The file identifier is the name of a file variable of type TEXT or
INTERACTIVE, corresponding to an open character device or disk file. If it
is omitted, INPUT (the keyboard, with screen echoing) is assumed.

Each variable reference is the name of a previously declared variable of
type INTEGER, REAL, long integer, CHAR, or STRING. With string
variables, READLN is used more commonly than READ.

Here are some examples of using READ and READLN:

{read 3 numeric values from disk file}
{read character from modem to buffer}
{string entered from keyboard to NAME}
{skip to next line in file}
{halt program until RETURN pressed}

Here are the principal rules governing READ and READLN. Special rules
about the ways these procedures handle control characters, and their
interactions with GET and PUT, are given in Chapter 16 under "Special
Handling of Control Characters" and "Miscellaneous READ and READLN
Effects."

o After READ, the next READ or READLN begins with the succeeding
character.

o After READLN, the next READ or READLN begins at the first character
of the next line, if there is a next line. If there is no next line, EOF
becomes TRUE. If EOF is already TRUE, the program halts with an I/O
error.

Character File 1/0 Operations III-177

III-178

o READ with a CHAR variable reads one character. If it is a control
character, it may be translated and affect EOF and/or EOLN-see
"Special Handling of Control Characters" in Chapter 16. READLN with a
CHAR variable reads only the first character in each line.

o READ with a string variable reads all characters up to, but not including,
RETURN or CONTROL-C (with a character device). Because it does not
skip over these end characters, a subsequent READ to a string variable
causes a program halt. Use READLN with strings; it works the same way
but skips to the start of the next line after reading the string.

o READLN without a variable reference simply skips to the next line in the
input file. READLN with no parameters halts your program until
RETURN is typed on the keyboard.

A Suggestion: If you are using READ with a CHAR variable and you
need to detect the end of an input line, you may be able to simplify the
situation by using READLN with a STRING variable instead; this gives
you line-oriented reading without the need to check EOLN.

When using READ or READLN with numeric variables, you must insure
that these procedures can interpret your text format numerically. If they
can't, your program will halt with a value range or floating-point error. This
kind of error checking cannot be suspended by a Compiler option. Here are
the rules:

o With all numeric variables (types INTEGER, REAL, or long integer), both
procedures skip leading spaces and zeros; READ also skips leading
RETURN characters. They then read as many characters as they can
interpret numerically. Reading stops with the first character that does
not fit a numeric format, or with the first space, RETURN, or
CONTROL-C after a valid character.

o Inputs to all numeric variables are interpreted as positive unless a minus
sign is read immediately before the first numeral.

o After the optional plus or minus sign, inputs to integer and long integer
variables may contain only numerals.

o After the optional sign, inputs to real variables may contain numerals,
one optional decimal point, and one optional uppercase or lowercase E. If
a decimal point is present, it must be preceded and followed by a
numeral. If Eis present, it must be immediately followed by a plus sign,
minus sign, or numeral. Leading zeros in the numerals after E are
ignored.

o Although inputs to real variables may contain almost any number of
digits after the decimal point, only about 9 significant digits in all go into
the real value. The decimal-to-binary conversion method may produce
slightly different results than that used for real constants.

Chapter 10: Input/Output

o In all cases, the numeric value generated by READ or READLN must be
within the value range of the variable.

o If READ finds no interpretable input before the end-of-file, or READLN
before the end-of-line, it will place 0 in an integer or long integer variable,
with no error. If the variable is type REAL, it will halt the program with a
floating-point error.

Further details on floating-point formats for real numbers are given in
Appendix 3B.

Program Unit Required! The Program Unit PASCALIO must be
present in an accessible library at the time any program uses a value
expression of type REAL with either READ or READLN. PASCALIO does
not require a USES declaration, however. This Unit is originally supplied
in the file SYSTEM.LIBRARY. For further information about libraries, see
Chapter 13.

The EOLN F1Jnction

EOLN has a defined value only for input operations from character files
corresponding to open disk files or character devices.

EOLN returns a boolean value. It takes one optional parameter, a file
variable; if this is omitted, INPUT (the keyboard) is assumed. EOLN is
written like this:

file
identifier

Here are two examples of its use:

WHILE NOT EOLN DO -- <EDLN from keyboard}
REPEAT -- UNTIL EOLN CSTORFILE); {EOLN from disk file}

Here are the general rules for the value of EOLN:

o EOLN is TRUE for closed files.
o EOLN becomes FALSE when a file is opened, unless the file is type

TEXT and begins with a RETURN character.
o EOLN returns to false after the next I/O operation that doesn't set it

TRUE.

Character File 1/0 Operations III-179

III-180

o Except when READLN is used with an INTERACTIVE file, EOLN
becomes TRUE whenever EOF becomes TRUE.

o With READ, if a character in a TEXT file is followed by RETURN, EOLN
becomes true after reading it.

o EOLN is always FALSE when READLN is accessing an INTERACTIVE
file, even if EOF is TRUE.

o When an INTERACTIVE file is accessed using READ, EOLN is not TRUE
until a RETURN character has been read or EOF is true.

o For a TEXT file, EOLN is true when the last text character on a line has
been read, and also whenever EOF is true. (A "text character" here
means a character that is not the RETURN character.)

o For an INTERACTIVE file, EOLN is not true until the RETURN character
at the end of the line has been read or until EOF is true.

There are additional rules for the value of EOLN after READ and READLN,
and when these procedures are mixed with GET and PUT. They are set
forth in Chapter 16, "Miscellaneous READ and READLN Effects."

The PA.GE Procedure

This procedure simply sends a FORM FEED character (ASCII 12) to any
open disk file or character device. It is written

PAGE ffILEID>

where FILEID identifies any file variable of type TEXT (FILE OF CHAR) or
INTERACTIVE. This file identifier may not be omitted.

PAGE COUTPUT> places the cursor at the top left corner of the screen after
clearing the screen.

Untyped File 1/0 Operations

In Pascal, you can create an untyped file variable by declaring it just as type
FILE. The result is sometimes called a "block file," because its input/output
operations are performed in 512-byte blocks. You can use the following
operations with untyped file variables:

RESET REWRITE CLOSE EOF IORESULT

BLOCKREAD BLOCKWRITE

The operations in the top line are described above under "General File I/O
Operations." Those in the bottom line are described here.

Chapter 10: Input/Output

Note that any disk file or any block-structured device may be associate<:l
with an untyped file variable. Hence you can use these fast block operations
to move large chunks of data around. At the same time, you assume the
burden of interpreting block contents and making sure that you do not
transfer data into unintended places.

The BLOCKREAD and BLOCKWRITE Functions

BLOCKREAD and BLOCKWRITE are functions, not procedures. Either one
transfers data in blocks between an external file and a variable. The
function then returns an integer value representing the number of blocks
transferred. They are written with the same parameters:

BLOCKREAD

BLOCKWRITE

count
expression

file
identifier

variable
reference

blocknurnber
expression ,..._._..._,.

Thefile identifier is the name of a file variable declared as type FILE.

The variable reference is the identifier of a Pascal variable of any type
except a file type. But because it must be large enough to hold at least 512
bytes of data, in practice it is limited to array and record types.

The count expression is any expression with an integer value. It
represents the maximum number of blocks to be transferred. The actual
number of blocks transferred may be less, if the transfer process becomes
limited by disk file size or device capacity.

The optional blocknumber expression is any expression with an integer
value. It represents the number of the block with which the transfer process
begins. If it is omitted, the current block number (see below) is assumed.
Block numbers start with 0.

Untyped File 1/0 Operations III-181

BLOCKREAD transfers data from an external file into Pascal memory;
BLOCKWRITE transfers data from Pascal memory to an external file. For
quick data movement from one external file or device to another, the two
can be nested in this form:

H := BLOCKWRITE COUTFILE, BUFF, BLOCKREAD CIHFILE, BUFF, MAX>>;

III-182

This statement transfers up to MAX blocks of data from INFILE to
OUTFILE by way of the buffer variable BUFF. INFILE and OUTFILE are
both type FILE. If MAX is greater than the number of blocks in INFILE,
BLOCKREAD stops at the end of the file and limits BLOCKWRITE to the
number of blocks available. If MAX is less than the number of blocks in
INFILE, the statement must be executed repeatedly, using the REPEAT
statement, until EOF (INFILE). At the end of this operation, N shows the
actual number of blocks transferred. Note that BUFF must be large enough
to hold MAX blocks.

BLOCKREAD and BLOCKWRITE follow these rules:

o The file must be open.
o Block operations do not check the size of the buffer variable; if it is too

small, they read or overwrite adjacent memory.
o If BLOCKREAD reaches the end of an external file before reading the

number of blocks specified by the count expression, it sets EOF to TRUE
after reading the last block and then exits.

o If BLOCKWRITE reaches the limit of an external file's capacity before
writing the number of blocks specified by the count expression, it sets
EOF to TRUE after writing the last possible complete block and then
exits.

o Both operations return a value representing the number of blocks
actually transferred.

o When an external file is opened with an untyped file variable, its current
block number is 0.

o Data transfers always start with the current block number.
o Each call to either BLOCKREAD or BLOCKWRITE without a

blocknumber expression increments the current block number of the
specified variable. The block number is advanced by 1 for each block
transferred.

o When a valid block number is specified in either operation, it updates the
current block number. This feature provides random access to blocks.

o Both operations exit without effect if asked to transfer data to or from a
nonexistent block number.

Chapter 10: Input/Output

Device 1/0 Operations

At the lowest level of input/ output control, Apple Pascal provides four
procedures for controlling external devices directly:

UNITREAD UNITWRITE UNITCLEAR UNITSTATUS

An additional two operations provide compatibility with UCSD Pascal
source code, but do not function in Apple Pascal:

UNITBUSY UNITW AIT

Here are some facts about device I/O operations in general:

o These operations all refer to external devices by their volume numbers.
For a discussion of volume numbers, see the section "External Files" at
the beginning of this chapter.

o Device I/O operations may not be used with disk files; they may only be
used with block-structured devices and character devices.

o Errors in device I/O operations do not cause program halts. However,
they do set the value of IORESULT.

The UNITREAD and UNITWRITE Procedures

UNITREAD and UNITWRITE are device-oriented input/output procedures;
they take no notice of what information they are transferring or how it is
structured. Hence they can be dangerous procedures. They do not offer any
protection against mistakes. In particular, UNITWRITE allows you to
overwrite any block on a disk, including the disk directory. Use it
cautiously.

Device l/O Operations III-183

III-184

UNI TREAD

UNITWRITE

length
expression

Both procedures are written with the same parameters:

unitnum
expression

1---....--1~ blocknumber 1---....... ..--.
expression

variable
reference

mode
expression

The unitnum expression is any expression with an integer value,
representing the volume number of an external device. Volume numbers
are listed earlier in this chapter in Table 10-2.

The variable reference is the identifier of a variable of any type except a
file type. Its value will be transferred to, or acquired from, the external
device.

The length expression is any expression with an integer value,
representing the number of 8-bit bytes to be transferred.

The optional blocknumber expression is any expression with an integer
value, representing an absolute block number. The transfer begins with the
first byte of that block. This value is meaningful only if the unitnum
expression refers to a block-structured device (such as a disk drive). In such
a case, block 0 (the first block on the disk) is assumed if the blocknumber
expression is omitted.

The optional mode expression is any expression with an integer value in
the range 0 .. 63. It is meaningful only when used with a character device. If
the mode expression is omitted, mode = 0 is assumed. Mode values are
explained below.

Chapter 10: Input/Output

A Syntax Note: If you use UNITREAD or UNITWRITE with a mode
expression but omit the blocknumber expression, you must still insert the
comma that would have followed the blocknumber. Here is an example:

UNITWRITE (6, BUF, 512, , 12);

This is the only instance in Pascal syntax where two commas may occur
in sequence.

You must observe the following rules and cautions when using the device
1/0 procedures UNITREAD or UNITWRITE:

o It is not necessary to open or close devices accessed by device 1/0
procedures. If you want to clear a device to its power-up state you can
use UNITCLEAR, described below.

o The size of the Pascal variable being used is not checked. If it is not at
least as large as the data being transferred, the device 1/0 procedure will
read or overwrite adjacent memory.

o There are no checks to detect when device 1/0 procedures cross block
boundaries.

o If a device 1/0 operation fails the program will not halt; however,
IORESULT will be set to a nonzero value to indicate the kind of error.

o When UNITREAD is used with volume #l: (CONSOLE:), it calls
UNITWRITE to echo characters to the screen. It gives UNITWRITE the
same mode expression you supplied to UNITREAD. Usually the mode has
no noticeable effect, but it may cause odd screen actions with certain
modes and certain input characters.

UNITREAD Modes

The optional mode expression in a UNITREAD procedure call determines
whether or not Pascal will respond to certain control characters as they are
read. You may choose any or all of these actions:

EOF recognition: When UNITREAD reads a CONTROL-C (ASCII 3), it
terminates the input. Any unused bytes in the destination variable are set
to 0. EOF recognition is disabled when the UNITREAD mode expression has
a 1 in bit 2.

Type "A" character checking: CONTROL-A, CONTROL-Z, CONTROL-E,
and CONTROL-W produce certain specific effects in the Pascal system
when typed on the keyboard. CONTROL-A and CONTROL-Z are discussed
in Part II of this manual, Chapter 2. CONTROL-E and CONTROL-Ware
discussed in Part I of this manual. Pascal will not respond to any of these
characters when they are read by UNITREAD, if the UNITREAD mode
expression has a 1 in bit 4.

Device 1/0 Operations III-185

III-186

Type "B" character checking: CONTROL-S, CONTROL-F, and
CONTROL-@ produce certain specific effects in the Pascal system when
typed on the keyboard. They are discussed in Part II of this manual,
Chapter 2. Pascal will not respond to any of these characters when they are
read by UNITREAD, if the UNITREAD mode expression has a 1inbit5.

There are eight meaningful values for the UNITREAD mode expression:

o Mode = 0 (the default value) enables all three options.
o Mode = 4 enables type "A" and type "B" character checking but not EOF

recognition.
o Mode = 16 enables type "B" character checking and EOF recognition but

not type "A" character checking.
o Mode = 20 enables type "B" character checking only.
o Mode = 32 enables type "A" character checking and EOF recognition but

not type "B" character checking.
o Mode = 36 enables type "A" character checking only.
o Mode = 48 enables EOF recognition only.
o Mode = 52 disables all three options.

Setting Certain Modes Permanently: You can also enable or disable
type "A" and/or type "B" character checking by changing a byte in
memory. The mode will remain in force until the system is restarted. For
details on how to do this see "Miscellaneous I/O Information" in
Chapter 16.

UNITWRITE Modes

The optional mode expression in a UNITWRITE procedure call determines
how it will handle DLE and LF characters. You may choose either or both of
these actions:

DLE option: In any Apple Pascal textfile, leading spaces at the beginning
of a line are represented by a DLE character (ASCII 16) followed by a byte
whose value is 32 plus the number of spaces. When UNITWRITE sends text
to a character device, the DLE option converts this code sequence to the
corresponding number of space characters (ASCII 32). (Remember that
textfiles are not the same as files of type TEXT. For a description of
textfiles, see Appendix 2B). The DLE option is disabled when the
UNITWRITE mode expression has a 1 in bit 2.

Chapter 10: Input/Output

LF option: In any Apple Pascal textfile, the end of each line is marked by a
RETURN character alone. When UNITWRITE sends text to a character
device, the LF option adds a LINE FEED (ASCII 10) after each RETURN.
The LF option is disabled when the UNITWRITE mode expression has a 1 in
bit 3.

There are four meaningful values for the UNITWRITE mode expression:

o Mode = 0 (the default value) enables both DLE and LF options.
o Mode = 4 disables the DLE option and enables the LF option.
o Mode = 8 disables the LF option and enables the DLE option.
o Mode = 12 disables both DLE and LF options. This is usually the best

mode for control character communication with external devices.

The UNITCLEAR Procedure

UNITCLEAR cancels all input/output operations to a specified device and
resets it to its power-up state. It is written like this:

UNITCLEAR (UNITNUM)

where UNITNUM is an integer expression, the value of which is the volume
number of an external device. With all devices except block-structured
devices such as disk drives, UNITCLEAR sets IORESULT to a nonzero value
if the device is not found; thus you can use it to test whether a device is
present in the system. For disk drives you can use UNITST ATUS, described
below.

The call UNITCLEAR (1) flushes the Pascal system's type-ahead buffer; in
40-column mode it also resets the screen's horizontal scrolling to full left.

The UNITSTATUS Procedure

UNITSTATUS determines whether an external device is present in the
system and whether it is operational. It also returns information about
keyboard inputs and the block capacity of block-structured devices. It is
written:

UNITSTATUS (UNITNUM, RESULT, 1)

where UNITNUM is an integer expression, the value of which is the volume
number of an external device. When UNITSTATUS is used with the
keyboard (#2:), RESULT identifies a record; with all other devices, it
identifies a single integer variable. The third parameter is always 1.

Device 1/0 Operations III-187

III-188

When UNITSTATUS is called, it may also set the value of IORESULT, as
described below.

UNITSTATUS performs different tasks, depending on what kind of device
it interrogates. The different uses of UNITSTATUS are described in the
following sections.

UNITSTATUS With Disk Devices

UNITNUM = 4, 5, 9, 10, 11, or 12

UNITSTATUS determines if the disk device exists and, if so, how many
blocks it is designed to store. It returns an IORESUL T of 9 or 64 if it cannot
find the device or if the device is inoperable. If IORESUL T = 0, then the
value of RESULT is the number of blocks the device is designed to store;
otherwise RESULT is undefined.

When using UNITSTATUS with a 5;4-inch disk drive, there must be a
formatted disk in the drive in order to obtain reliable results. This
restriction does not apply to other types of disk devices.

UNITSTATUS With Printers

UNITNUM=6

UNITSTATUS determines if there is a usable printer device in slot 1 and, if
so, whether the printer is ready to accept output. Thus your program can
avoid waiting if the printer is busy.

If slot 1 contains an Apple II Parallel Printer Card, an Apple II
Communications Card, an Apple II Serial Card, or a firmware protocol card
(such as an Apple II Super Serial Card), then UNITSTATUS sets IORESULT
to O; otherwise it sets IO RESULT to 9. If IO RESULT = 0, then RESULT will
be set to 0 if the printer is ready to accept output and 1 if it is busy.
However, if slot 1 contains an Apple Serial Card, then RESULT is always 0.
If IORESULT = 9, then the value of RESULT is undefined.

UNITSTATUS With Remote Devices

UNITNUM = 7 for REMIN, 8 for REMOUT

UNITSTATUS determines if there is a usable remote device in slot 2. With
REMIN it determines if there is a character waiting to be read; with
REMO UT it determines if the device is ready to accept output.

Chapter 10: Input/Output

If slot 2 contains an Apple II Communications Card, an Apple II Serial Card,
or a firmware protocol card (such as an Apple II Super Serial Card), then
UNITSTATUS sets IORESULT to O; otherwise it sets it to 9. With REMIN, if
IO RESULT = 0 then RESULT is set to 1 if there is a character waiting to be
read and 0 if not. With REM OUT, if IO RESULT = 0 then RESULT is set to 0
if the device is ready to accept output and 1 if not. If slot 2 contains an
Apple II Serial Card, then UNITSTATUS always sets RESULT to 1 for
REMIN and 0 for REMOUT. If IO RESULT is not 0 then the value of RESULT
is undefined.

UNITSTATUS With the Keyboard

UNITNUM=2

The Pascal system includes a typeahead buffer, which collects
characters typed on the keyboard whenever the executing program is not
ready to accept them. Characters typed first leave the buffer first; hence the
character to be read next is the oldest character. Using UNITSTATUS,
your program can determine

o How many characters are waiting in Pascal's typeahead buffer;
o Whether the 6 key or ti key (or both) on an Apple lie or Apple Uc was

pressed when the oldest character was typed;
o Whether button 0 or button 1 (or both) on the hand controls of an

Apple II was pressed when the oldest character was typed (equivalent to
6 or ti, respectively, on an Apple He or Apple Ile);

o Whether SHIFT was pressed when the oldest character was typed on an
Apple II or an Apple Ile with the shift-key modification installed.

When used with the keyboard, UNITSTATUS requires RESULT to be a
record type, not an integer. The actual parameter declaration and
UNITSTATUS call look like this:

VAR KEYSTAT : RECORD
NCHARSBUFD : INTEGER;
.SHIFT, SOLIDAPPLE, OPENAPPLE BOOLEAN

END;

UNITSTATUS C2, KEYSTAT, 1);

After this UNITSTATUS call is executed, the fields of KEYSTAT contain
this information:

o The value of NCHARSBUFD is the number of characters waiting in
Pascal's typeahead buffer.

Device l/O Operations III-189

o SHIFT is TRUE if the oldest character was typed while SHIFT was
pressed (on an Apple computer with the shift-key modification).

o OPEN APPLE is TRUE if the oldest character was typed while 6 was
pressed, or while button 0 of the hand controls was pressed.

o SOLID APPLE is TRUE if the oldest character was typed while ti was
pressed, or while button 1 of the hand controls was pressed.

Here is a sample program that uses UNITSTATUS with the keyboard. It
reports how many characters are in Pascal's typeahead buffer and displays
the oldest one, along with its ASCII code. It also reports whether 6 (or hand
control button 0), ti (or hand control button 1), or SHIFT was pressed when
the oldest character was typed.

PROGRAM ECHO;

VAR KEY : CHAR;
KEYSTAT : RECORD

NCHARSBUFD : INTEGER;
SHIFT, SOLIDAPPLE, OPENAPPLE BOOLEAN

END;

BEGIN
WITH KEYSTAT DO

REPEAT
UNITSTATUS C2, KEYSTAT, 1>;
IF NCHARSBUFD > B THEN

BEGIN
READ CKEYBOARD, KEY>;
WRITE CNCHARSBUFD,': ',KEY,'=',ORD tKEY>>;
IF OPENAPPLE THEN

WRITE C' Open Apple CHC B>'>;
IF SOLIDAPPLE THEN

WRITE C' Solid Apple CHC 1>'>;
IF SHIFT THEN

WRITE C' Shift'>;
WRITELN

END
UNTIL KEY = 'G'

END.

III-190

Certain hardware configurations may cause you to get unexpected results
when using UNITSTATUS with the keyboard:

o If an Apple II or Ile does not have the shift-key modification, the SHIFT
flag may have a random value.

o If an Apple II does not have hand controls, the 6 and ti flags may have
random values.

Chapter 10: Input/Output

PROGRAM Te5tStuff;

USES AppleStuff;

COHST buflimit
keyboard
printer
remin
er
lf

1ill!;
2;
6;
7;

13;
11!;

UNITST ATUS Demonstration Program

The following program demonstrates how UNITSTATUS may be used with
a printer and with a remote input device. It repeatedly tests a remote input
and a printer, using UNITSTATUS. If the remote input has a character
waiting to be read, TestStuff reads it and places it in a buffer. If the printer
is able to accept output, TestStuff sends it a character from the buffer. It
also outputs a LINE FEED character after each RETURN. To exit TestStuff,
you set KEYPRESS by typing any character. Here is the listing.

{ needed for keypre55 }

{ volume number5 }

{ ASCII control character5 }

TYPE buflndex B .. bufLimit;

VAR re5ult integer;

buflndex;
rPtr,
wPtr
buf
ch

PACKED ARRAY Cbuflndexl OF char;
char;

BEGIH
writeln;
writeln;
writeln C'Fire away!');
rPtr := B;
wPtr := B;

{ initialize read pointer }
{ initialize write pointer }

(Listing is continued on next page.)

Device 1/0 Operations III-191

WHILE NOT keypress DD
BEGIN

{ reiterate until key pressed }

unitstatus Cremin,result,1>; { get remote input status }
IF result = 1 THEN

BEGIN
uni tread Cremin, buf[rPtrl, 1, , 12); { read char from remote }
IF rPtr = bufLimit THEN

rP tr flJ
ELSE

rPtr rPtr + 1;
IF rPtr = wPtr THEN

writeln ('Buffer overflow *** data lost'>;
END;

IF wPtr <> rPtr THEN
BEGIN

unitstatus <printer, result, 1);
IF result = 0 THEN

BEGIN

{ get printer status }

unitwrite (printer, buf[wPtrl, 1, , 12); {write char to printer }
IF Cbuf[wPtrl = chr(cr)) DR Cbuf[wPtrl = chr (cr+128)) THEN

buf[wPtrl := chr Clf) { add line feed after return }
ELSE

END;
END;

IF wPtr = bufLimit THEN
wPtr l!

ELSE
wPtr wP tr + 1 ;

END <WHILE};

unitread (keyboard, bufUll, D

END.

III-192 . Chapter 10: Input/Output

UNITBUSY and UNITWAIT

UNITBUSY and UNITW AIT are UCSD Pascal operations that are compiled,
but not used, by Apple Pascal. UNITBUSY is a function that indicates
whether an external device is busy; UNITW AIT is a procedure that halts
the program while an input/ output operation is in progress. In Apple
Pascal, UNITBUSY always returns FALSE and UNITWAIT does nothing.

In Apple Pascal, the job of UNITW AIT is built into each input or output
operation. The job of UNITBUSY is mainly performed by UNITSTATUS.
One additional job, determining whether a character is available from the
keyboard, is performed by the KEYPRESS function described in Chapter 16.

Other 1/0 Operations

Apple Pascal provides a number of miscellaneous input and output
operations. These include:

o Turning the screen cursor and inverse display on and off
o Special keyboard inputs
o The KEYPRESS function
o The PADDLE and BUTTON functions
o The TTLOUT procedure
o The NOTE procedure

These are all described in the section "Miscellaneous 1/0 Operations" in
ChapterJ6.

Other I/O Operations III-193

Chapter 11 Screen Graphics

III-195

III-196

Apple Pascal includes a complete package of procedures and functions for
producing high-resolution (but not double high-resolution) images on the
monitor screen. It is called Turtlegraphics, because it is based on the
turtle algorithm devised by S. Papert, et al. at the Massachusetts Institute
of Technology. The turtle is a discrete dot on the screen, which can leave a
permanent line behind it as it moves.

These screen graphics operations are supported by the Apple Pascal
Intrinsic Program Unit TURTLEGRAPHICS. It must be available both when
your program is compiled and when it is executed. If you include text in a
turtlegraphic image, the file SYSTEM.CHARSET must also be on volume #4
or #5 when your program is executed. The TURTLEGRAPHICS unit is
included in the SYSTEM.LIBRARY file that comes with the Apple Pascal
software; SYSTEM.CHARSET is on the disk APPLEI:.

Any program that uses the operations described in this chapter must
therefore contain the USES declaration

USES TURTLEGRAPHICS;

just after its program heading.

Here is a brief summary of the operations covered in the sections that
follow:

o INITTURTLE clears the screen and sets several options to their initial
values.

o GRAFMODE and TEXTMODE allow you to switch the screen display
between graphics and text. The image retrieved by each mode is saved
while the other mode is active.

o VIEWPORT allows you to restrict image creation to a rectangular portion
of the screen.

o PENCOLOR selects different colors for lines you draw.
o FILLSCREEN fills the viewport with a specified color.
o TURNTO and TURN orient the direction the turtle is facing.
o MOVETO and MOVE make the turtle move about on the screen, leaving a

trail of PEN COLOR as it goes. MO VETO directs it to a specific place;
MOVE makes it go a specific distance in the direction it is facing.

o TURTLEX, TURTLEY, and TURTLEANG are functions that report the
current position and orientation of the turtle.

o SCREENBIT tells you whether a given point on the screen is part of any
image.

Chapter 11: Screen Graphics

o DRA WBLOCK is a complex and powerful procedure. It lets you convert a
two-dimensional PACKED ARRAY OF BOOLEAN into a two-dimensional
image on the screen. In addition, it permits you to specify how the image
will interact with whatever image already exists there.

o WCHAR, WSTRING, and CHARTYPE permit you to draw alphanumeric
text on the screen, with all the interaction features of DRA WBLOCK.

o Finally, instructions are included for creating your own alphabets of
characters to be used with WCHAR and WSTRING.

Screen Coordinates

The Apple Pascal screen graphics system treats the monitor screen as a
rectangle measured by Cartesian coordinates. The origin (X=O, Y =0) is at
the lower left corner of the screen. The upper right corner has coordinates
X=279, Y = 191. For any point, the horizontal coordinate X may take values
from 0 through 279; the vertical coordinate Y may take values from 0
through 191.

All images on the screen are made up of points defined by integral values of
these coordinates. Hence these rules:

o All coordinate parameters given to graphics procedures must have
positive integer values.

o Lines drawn at angles are displayed as collections of points with a
step-like appearance.

o Small angular changes in short lines leave the image unchanged if they
do not result in the selection of new points.

Directions are specified in integral degrees, by using signed integer values
from -359 through 359. All angles are measured counterclockwise. An
angle of 0 corresponds to a horizontal vector pointing right (3 o'clock if the
screen were a clock). Thus, measuring an angle A from the center of the
screen,

o the right edge is at A =0
o the top is at A=90
o the left edge is at A= 180
o the bottom is at A=270.

When you use Turtlegraphics, there are two images stored in memory-a
text image and a graphics image. The text image is the normal one
created by Pascal output operations to the screen; the graphics image is the
one created by Turtlegraphics. You can determine which is displayed by
using the TEXTMODE and GRAFMODE procedures described below.

Screen Coordinates III-197

JII-198

A Technical Note: When a program that uses Turtlegraphics is loaded,
Pascal moves the heap pointer to allow memory room for the graphics
image. This change is discussed in Part IV of this manual, Chapter 1.

INITTURTLE

You should call this procedure once at the beginning of any program that
uses screen graphics. It has no parameters. You just write

IHITTURTLE

INITTURTLE does the following:

o It clears the screen.
o It clears the memory used to hold graphic images.
o It sets GRAFMODE on.
o It sets the turtle position to the center of the screen (X = 140, Y =96),

facing right (A=O).
o It sets PENCOLOR to NONE.
o It sets the VIEWPORT to the full screen (0, 279, 0, 191).

GRAFMODE and TEXTMODE

These two procedures have no parameters. They are written alone:

GRAFMODE TEXTMODE

GRAFMODE retrieves the graphic image from memory and places it on the
screen. TEXTMODE retrieves the text image from memory and places it on
the screen. In between, each image is stored intact.

When switching modes, keep these rules in mind:

o Your program can alter either image at any time, regardless of which
mode is in force.

o The only way you can alter the graphic image is by using the operations
described in this chapter.

o The only way you can alter the text image is by using the Pascal
input/output operations described in Chapters 10and16.

Chapter 11: Screen Graphics

o If the graphic image has never been cleared (by INITTURTLE,
FILLSCREEN, or DRA WBLOCK), the screen will display garbage or the
graphic image remaining from the last use of screen graphics.

o If the text image has never been cleared (by commands to CONSOLE: or
OUTPUT), the screen will display the last text message displayed by any
program.

o Upon program termination, either normal or because of a run-time error,
TEXTMODE will automatically be set and the contents of text memory
will be displayed.

VIEWPORT

The VIEWPORT procedure allows you to specify a particular part of the
screen for graphics operations. It is written

VIEWPORT CLEFT, RIGHT, BOTTOM, TOP>

where the four parameters are expressions with integer values. LEFT and
RIGHT give the horizontal (X) coordinate values of the left and right sides of
the viewport. BOTTOM and TOP give the vertical (Y) coordinate values of
the bottom and top of the viewport. For example,
VIEWPORT (130, 150, 86, 106) allows graphics operations in a small square
at the center of the screen.

Here are a few rules about using VIEWPORT:

o LEFT must be less than RIGHT and BOTTOM less than TOP.
o The full screen is VIEWPORT (0, 279, 0, 191). This value is automatically

set if no VIEWPORT procedure has been mtecuted.
o If commanded to leave the viewport area, the turtle does so. However, it

ceases drawing at the edge of the viewport. In effect, its COLOR changes
to NONE.

o VIEWPORT affects only future operations; it will not clip an image
already drawn.

VIEWPORT III-199

III-200

The SCREENCOLOR Type

The TURTLEGRAPHICS Program Unit declares a scalar variable type called
SCREENCOLOR. You can use this type freely when declaring variables in
your own program. It has these values:

WHITE
WHITEl
WHITE2
BLACK
BLACK!
BLACK2
GREEN
VIOLET
ORANGE
BLUE
NONE
REVERSE

RADAR

{2 dots wide for use with green and violet}
{2 dots wide for use with orange and blue}

{2 dots wide for use with green and violet}
{2 dots wide for use with orange and blue}

{does not change the existing image}
{complements black/white, green/violet,
orange/blue}
{not presently implemented}

Here are some notes about the type SCREEN COLOR:

o The reason there are three kinds of black and white values (BLACK,
BLACKl, BLACK2, WHITE, WHITEl, WHITE2) has to do with how
Apple Pascal interacts with the way that television sets produce colors.
WHITE and BLACK give the finest lines possible; colors give a wider line
so they will show on a television screen. If you wish to make a black or
white line that corresponds exactly in position and width with a green or
violet line, use BLACK! or WHITE!. If you wish to make a black or white
line that corresponds exactly in position and width with an orange or
blue line, use BLACK2 or WHITE2.

o With a black-and-white monitor or television set, just use BLACK and
WHITE.

o Drawing with the SCREENCOLOR value NONE produces no change in
the image. You can use it to move the turtle without leaving a track.

o The SCREEN COLOR value REVERSE complements whatever color is
underneath the turtle at the moment. BLACK, BLACK!, and BLACK2
become WHITE, WHITE!, or WHITE2; GREEN becomes VIOLET;
ORANGE becomes BLUE; and vice versa. It allows you to draw a line
across a complex background and be sure it is always a contrasting color.

Chapter 11: Screen Graphics

:-:o

PENCOLOR and FILLSCREEN

To set the color of the line left by the turtle, call the procedure PEN COLOR
with one of the values of SCREEN COLOR as its parameter. For example,

PENCOLOR CWHITE> PENCOLOR C NONE>

PENCOLOR <REVERSE>

PEN COLOR (NONE) lets you move the turtle about without creating a line.

To fill the entire viewport with a specified color, call the procedure
FILLSCREEN with one of the values of SCREEN COLOR as its parameter.
For example,

FILLSCREEN CBLACK> FILLSCREEN <REVERSE>

FILLSCREEN (BLACK) clears the viewport. FILLSCREEN (REVERSE)
makes a "negative" of the image in the viewport.

Because the viewport can be a rectangle of any size and location,
FILLSCREEN is a simple way to create or erase solid areas of the image.

TURNTO, TURN, MOVETO, and MOVE

These four procedures let you move the turtle about on the screen. As it
goes, it leaves a permanent trail of the current PEN COLOR value. The four
procedures are written

TURNTO <DEGREES> TURN <DEGREES>

MOVETO ex, Y> MOVE <DISTANCE>

TURNTO and TURN do not make any change in the graphic image; they
only change the orientation of the turtle-the direction it is facing. Turtle
orientation is significant only for subsequent MOVE procedures.

TURNTO sets the orientation of the turtle to a specified direction, with 0
interpreted as facing right. TURN rotates the turtle a specified number of
degrees from its current direction.

TURNTO and TURN accept expressions with any integer value. If the value
is not within the range -359 to 359, it is reduced modulo 360. Positive
values are interpreted counterclockwise, negative values clockwise.

TURNTO, TURN, MOVETO, and MOVE III-201

_-.}

III-202

MOVETO takes an X (horizontal) parameter in the range 0 .. 279 and a Y
(vertical) parameter in the range 0 .. 191. It sends the turtle to those screen
coordinates without changing its orientation. As it moves it draws a line of
the current PENCOLOR value.

MOVE accepts an integer value, representing a vector distance on the
screen. The turtle moves that distance in the direction it is facing, leaving a
trail of the current PEN COLOR value.

With movements at an angle from horizontal or vertical, the integer used
with MOVE seldom places the turtle exactly at a position with integer
coordinates. When the turtle arrives at a place not definable by integer
coordinates, Pascal adjusts its position to the nearest integral point. For this
reason, a series of MOVE and TURN or TURNTO procedures may fail to
create a closed polygon. A final adjustment with MO VETO may be
necessary.

Here is a sample program that uses some of the procedures discussed so far.
It draws an equilateral triangle, pointing downward, near the center of the
screen and displays it until you press RETURN:

PROGRAM TRIAHGLE;

USES TURTLEGRAPHICS;

BEGIH
IHI TTURTLE;
MOVETO C14B, 75>;
TURHTD CGB>;
PEHCOLOR CWHITE>;
MOVE CSB>;
TURH C12B>;
MOVE CSB>;
TURH C12B>:
MOVE CSB>;
READLH

EHD.

The READLN procedure is included only because otherwise this short
program would terminate and restore TEXTMODE before you have a
chance to see the image it generates.

Chapter 11: Screen Graphics

TURTLEX, TURTLEY, TURTLEANG, and SCREENBIT

Where is the turtle and what is it doing? These four functions let your
program find out. They are written

TU RTL EX TURTLEV TURTLE ANG

SCREEHBIT ex' V>

TURTLEX and TURTLEY take no parameters and return integer values.
TURTLEX returns the horizontal screen coordinate value and TURTLEY
the vertical screen coordinate value of the turtle's current position.

TURTLEANG also takes no parameters. It returns a positive integer value in
the range 0 .. 359, representing the current orientation of the turtle measured
counterclockwise from facing right. Note that this value may be different
from one used with TURNTO; for example, a TURNTO of -90 will be
reported by TURTLEANG as 270.

SCREENBIT takes an X (horizontal) parameter in the range 0 .. 279 and a Y
(vertical) parameter in the range 0 .. 191. It returns a boolean value of TRUE
if the screen point at those coordinates is not black and FALSE if it is black.
Thus it tells your program whether or not that point is part of an image of
any sort. However, it does not tell you what color is there.

DRAWBLOCK

This powerful procedure lets you translate a bit image in memory to a
graphics image on the screen. The bit image should be stored in a
two-dimensional packed array of boolean, each element of which
corresponds to a point on the screen. DRA WBLOCK "writes" the value of
any part of such an array on any part of the screen. Thus you can create a
graphic image directly, by manipulating its points with boolean operations.
Moreover, the result goes into graphic memory and can be manipulated by
the procedures in this chapter just like any other image.

DRA WBLOCK takes nine parameters, all of which are required:

DRAWBLOCK CSOURCE, ROWSIZE, XSKIP, VSKIP, WIDTH, HEIGHT, XSCREEN, VSCREEN, MODE>

SOURCE is the identifier (without subscripts) of a variable that should be a
two-dimensional packed array of boolean (see note below). All the other
parameters are integers.

DRAWBLOCK III-203

III-204

DRA WBLOCK treats each boolean element of SOURCE as a dot-TRUE for
white and FALSE for black. It copies the array of dots (or a portion of it)
from memory onto the screen to form a screen image. The first dimension of
the array is the number of rows in the array; the second dimension is the
number of elements in each row.

You may choose to copy the entire SOURCE array, or you may choose to
copy any specified "window" from the array, using only those dots in the
array from XSKIP to XS KIP+ WIDTH and from YSKIP to YSKIP+ HEIGHT.
Furthermore, you can specify the starting screen position for the copy, at
(XSCREEN,YSCREEN).

The other DRA WBLOCK parameters have these meanings:

o ROWSIZE is the number of bytes (not dots) per row in the array. You can
calculate this from the formula

bytes = 2 * ((X + 15) DIV 16)

where Xis the number of dots in each row.
o XSKIP tells how many horizontal dots in the array to skip over before the

copying process is started.
o YSKIP tells how many vertical dots in the array to skip over before

beginning the copying process. Note that copies are made starting from
the bottom up-i.e. the first row copied from the array is the bottom row
of the screen copy.

o WIDTH tells how many dots' width of the array, starting at XSKIP, will
be used.

o HEIGHT tells how many dots' height of the array, starting at YSKIP, will
be used.

o XSCREEN and YSCREEN are the coordinates of the lower left corner of
the area to be copied into. WIDTH and HEIGHT determine the size of the
rectangular area.

o MODE ranges from 0 through 15. It determines what appears on the
portion of the screen specified by the other parameters. It can simply
send white or black to the screen, regardless of what is in the array, copy
the array literally, or combine the contents of the array and the screen
and send the result to the screen. The following table specifies what
operation is performed on the data in the array and on the screen, and
thus what appears on the screen (A refers to the array, S to the screen).

Although these modes are expressed in terms of black and white, they
can be used to create images of any value of SCREENCOLOR. Just use
FILLSCREEN to create an area of solid color and then manipulate it
logically to represent the pattern in the array.

Chapter 11: Screen Graphics

Mode Action

0 Fills area of screen with black
1 NOR array with screen [NOT (A OR S)J
2 AND array with screen complement [A AND NOT SJ
3 Complements area of screen [NOT SJ
4 AND screen with array complement [S AND NOT AJ
5 Copies complement of array to screen [NOT AJ
6 XOR array with screen [A XOR SJ
7 NAND array with screen [NOT (A AND S)J
8 AND array with screen [A AND SJ
9 EQUIVALENCE of array with screen [A = SJ

10 Copies array to screen [AJ
11 OR array with screen complement [A OR NOT SJ
12 Screen replaces screen [SJ
13 OR screen with array complement [S OR NOT AJ
14 OR array with screen [A OR SJ
15 Fills area of screen with white

The demonstration program GRAFDEMO.TEXT, on APPLE3:, contains
many examples of how to use the Turtlegraphics routines. In particular,
procedures such as BUTTERl give strings to procedure STUFF, which
converts them to a packed array of boolean named BUTTER. Procedure
FLUTTER uses DRA WBLOCK to display the array BUTTER on the screen.

A Note About SOURCE: Actually, the SOURCE parameter can be any
type except a file type; DRA WBLOCK really deals with an array of bits in
memory that begins at the address of SOURCE and whose size and
organization depend on the other parameters. For example, the following
statement uses a single boolean variable, DOT, instead of an array. It
complements the screen image at point X, Y:

DRAWBLOCK CDOT, 1, l/J, '1J, 1 1, X, Y, 3)

However, for most programs the most convenient way to use
DRA WBLOCK is with a two-dimensional packed array of boolean, as
described above.

DRAWBLOCK III-205

III-206

Adding Text to Graphics

Apple Pascal provides three procedures that let you add text to graphic
images:

WCHAR CCH> WSTRIHG CS> CHARTYPE CMDDE>

These procedures access an array stored in the Apple Pascal file
SYSTEM.CHARSET, containing standard patterns for drawing characters.
They draw these patterns on the screen as alphanumeric text. At the end of
this section are instructions for making your own CHARSET.

I
Viewing SYSTEM.CHARSET: The program GRAFCHARS displays the
characters in SYSTEM.CHARSET. Its source code is on your APPLE3:
disk. To use GRAFCHARS, you must compile it first.

WCHAR and WSTRING draw single characters and strings, respectively.
CHARTYPE produces the same modes for text as DRA WBLOCK does for
images-black on white, white on black, reversed, and so forth. Here are
the details:

The WCHAR procedure takes one parameter CH of type CHAR. It draw:s the
value of CH on the screen as a character 7 dots wide and 8 dots high. The
lower left corner of the character is placed at the current position of the
turtle. The turtle is shifted to the right 7 dots (its X coordinate value is
increased by 7).

The WSTRING procedure takes one parameter S of type string. It simply
calls WCHAR once for each character in the string. Thus the string is
written horizontally with the lower left corner of the first character at the
current position of the turtle. The turtle is shifted to the right 7 dots for each
character (its X coordinate value is increased by 7 * LENGTH (S)).

WCHAR and WSTRING have these limitations:

o They accept only characters in which bit 7 is 0-that is, those whose
ASCII code is less than 128.

o The longest string that will fit on the screen is 40 characters.

The CHARTYPE procedure takes the same MODE integer as DRA WBLOCK,
with the same effect on text characters as it has on images. Actually,
WCHAR and WSTRING use DRA WBLOCK to write text into graphic
memory. So CHARTYPE simply accepts a MODE integer and passes it on to
DRAWBLOCK.

Chapter 11: Screen Graphics

If CHARTYPE is not called, the default MODE is 10. By calling CHARTYPE
with various MODE values, you can achieve these effects:

MODE 5 Draws black text in its own white rectangle.
MODE 6 Draws text that contrasts with the background; used a

MODE 10
MODE 13
MODE 14

second time, erases same text and restores
background.
Draws white text in its own black rectangle.
Draws black text over existing background.
Draws white text over existing background.

Here is a sample program that draws text on the screen. It draws "Apple
Pascal" in the center of the screen, in black on a white background, and
displays it until you press RETURN.

PROGRAM LETTERING;

USES TURTLEGRAPHICS;

BEGIN
INITTURTLE;
MOVETO C93, 92>;
CHARTYPE CS>;
WSTRING C'Apple Pascal'>;
READLN

END.

Making Your Own Character Set

You can create your own character set for use with WCHAR and WSTRING.
Here are the rules:

o Your file must be named SYSTEM.CHARSET and must be on volume #4
or #5. You can put Apple's SYSTEM.CHARSET on another disk or give it
another name.

o Your file must consist of 1024 bytes.
o Starting with the first byte in the file, each character in the set is

represented by 8 contiguous bytes. The 128 groups of 8 bytes correspond
to the 128 ASCII codes (See Appendix 3F, Table 1).

o Each byte represents one row of 8 dots in the character image, starting
from the bottom.

o The least significant bit of each byte corresponds to the leftmost dot in
the row of 7 dots; the most significant bit of each byte is ignored.

Adding Text to Graphics III-207

IIl-208

Such a file can be created in assembly language or in Pascal. If you create it
with a Pascal program, you may find these type declarations handy:

TYPE CHARIMAGE =PACKED ARRAY ce .. 7] OF e .. 255;
CHARSET =PACKED ARRAY ce .. 1271 OF CHARIMAGE;
CHARFILE = FILE OF CHARSET;

Chapter 11: Screen Graphics

Chapter 12 Program Units

111-209

III-210

Previous chapters have described the process of creating programs that can
be compiled and executed. We now consider the process of creating
Program Units. Program Units look like programs and are compiled in the
~ame way; but instead of being executed themselves, they constitute
collections of "public" constants, types, variables, procedures, and functions
that executable programs can use ..

A number of built-in Apple Pascal operations require the presence of
standard Program Units that come with the Apple Pascal software. These
operations are listed at the beginning of Chapter 13. This chapter tells you
how to create your own additional user-defined Program Units.

Program Units, like programs, have names. A program accesses a Program
Unit by means of the USES declaration, described below. Your program may
then use the contents of the Program Unit just as if all of it had been written
in its source text. This process has several advantages:

o Program Units may contain often-used operations that are needed by
more than one program.

o Program Units allow programs to be partitioned into logical pieces.
o Program Units can be modified without recompiling the programs that

use them.
o Program Units allow programs to be written in small, separately

compilable sections which are faster to compile than a single large
program and require less memory at compile time.

o Program Units are a more flexible form of program segmentation than
SEGMENT procedures because you can have more than one procedure in
a Program Unit.

o Program Units give the Pascal programmer controlled access to "private"
data structures.

The USES Declaration

Before your program can use Program Units, you must specify what units it
needs with a USES declaration. A typical USES declaration looks like
this:

USES TRANSCEND, HELPME;

TRANSCEND is a standard Program Unit that comes with Apple Pascal.
HELPME might be the name of a Program Unit you created, containing
routines that are frequently needed in different programs that you write.

Chapter 12: Program Units

You can list any number of units after USES as long as you separate the
names with commas. Program Units themselves may USE other Program
Units.

The USES declaration goes immediately after the program heading; for
example:

PROGRAM CALCULATE;
USES TRANSCEND, HELPME;

If your program does not use any Program Units, it does not need a USES
declaration.

When your program is compiled, the Compiler looks for any needed
Program Units in the file SYSTEM.LIBRARY on the system disk. You can
direct the Compiler to look in a different file with the "Using" Compiler
option. See Chapter 13 for information on libraries and the "Using" Compiler
option.

About LONGJNTIO and PASCALIO: Two of the standard Apple Pascal
Program Units, LONGINTIO and PASCALIO, do not require USES
declarations. Moreover, they do not need to be accessible during program
compilation. They need to be accessible only during execution of
programs containing certain operations. The operations requiring them
are explained under "SYSTEM.LIBRARY" in Chapter 13.

Regular Units and Intrinsic Units

You can create Program Units of two kinds: Regular and Intrinsic. Here is a
summary of their similarities and differences:

o The code of a Regular Unit becomes part of your program's final,
executable codefile. The codefile of an Intrinsic Unit is always separate
from your program's codefile.

o When you compile a program that uses units of either kind, they must be
in either the file SYSTEM.LIBRARY or a file specified by the "using"
Compiler option. SYSTEM.LIBRARY and the "using" Compiler option are
explained in Chapter 13.

Regular Units and Intrinsic Units Ill-211

III-212

o After you compile a program that uses a Regular Unit, you must insert
the unit's code into your program's codefile. You use the Apple Pascal
Linker program to do this. You need to link the unit's code into your
program's codefile every time you modify and recompile the unit or
program. With an Intrinsic Unit the Linker is not needed; Intrinsic Units
are "prelinked." The Apple Pascal Linker is described in Part II of this
manual, Chapter 7.

o During execution of your program, every Intrinsic Unit it needs must be
accessible in a library file. Library files are discussed in Chapter 13.
Regular Units are not needed during program execution, because their
code is already part of the program's codefile.

o Using Intrinsic Units helps reduce the size of a program's codefile. Using
Regular Units increases the size of a program's codefile.

The process of compiling a Regular Unit and a program, then linking the
two into a combined executable codefile, goes like this:

a unit host program

EXECUTING PROGRAM

Chapter 12: Program Units

The process of compiling an Intrinsic Unit, placing its code in a library file,
then compiling a host program that uses it, goes like this:

a unit host program

library.file

I
~/
~?/ host.code

&I
f<."f/
~

~1
I

I
!'------« EXECUTING PROGRAM

Writing a Program Unit

You write a Program Unit much like a program. One difference, however, is
that you can string several units together and compile them into one
codefile. To do this, separate them by semicolons and end the whole with a
period:

Writing a Program Unit III-213

III-214

Each unit follows this overall structure:

unit
heading interface

compound
statement

---- implementation

All of these parts are described in more detail below. Here is a summary:

o The unit heading is like a program heading. It is different for Regular
and Intrinsic Units.

o The interface section declares "public" constants, types, variables,
procedures, and functions-those that may be used by the host program.
With procedures and functions, only their headings are written here.
Label declarations are not allowed in the interface.

o The implementation section provides the actual program body for each
procedure or function declared in the interface section. It also declares
"private" labels, constants, variables, procedures, and functions-those
that may be used only by the unit. Type declarations are not allowed in
the implementation section. If the interface section declares no
procedures or functions, the implementation section is omitted.

o The optional initialization section is like a "main program." It is a
BEGIN ... END statement that is automatically executed at the beginning
of the host program. If you omit it, write END instead.

These general rules apply to Program Units:

o When you are compiling a program that uses a Program Unit, you will get
a Compiler error if any identifier declared in the Program Unit's
interj ace section is also declared in the program.

o However, conflicting identifiers may be used in the implementation
section. This part of the Program Unit is "invisible" to the program that
uses it.

o A Program Unit cannot access labels, constants, types, variables,
procedures, or functions declared in the program that uses it.

o A Program Unit may not contain SEGMENT procedures or functions.
o Nested Program Units may not be compiled at the same time; each inner

unit must be compiled first and then accessed by its calling unit.

Chapter 12: Program Units

UNIT

DATA

64K Note: When compiling Program Units with the 64K Pascal system,
you must use the first level "swapping" Compiler option. Write {$S+} at
the beginning of your unit's source text, before any Pascal text. The
"swapping" Compiler option is further discussed in Part II of this manual,
Chapter 5.

The Unit Heading

There are two different forms of unit heading, depending on whether you
are writing a Regular Unit or an Intrinsic Unit. The Regular Unit heading is
written this way:

new
identifier

The Intrinsic Unit heading is written this way:

new
identifier

dsegnum 1---~H
constant

INTRINSIC CODE
csegnum
constant

In both cases, the new identifier is the same as the identifier written in the
USES declaration in the program that calls the Program Unit.

The Intrinsic Unit's csegnum (code segment number) and optional
dsegnum (data segment number) are two different integers. They are
chosen from the range 7 to 31 for the Pascal 64K system, and 7 to 57 for the
Pascal 128K system.

The word DATA and a dsegnum are required if and only if the Intrinsic Unit
declares global variables in either its interface or its implementation. Local
variables declared inside procedures or functions do not count.

You assign the csegnum and dsegnum numbers when you write an Intrinsic
Program Unit. You must be careful that they do not duplicate any other

Writing a Program Unit III-215

III-216

segment numbers used by your program. Here are some things to consider
when choosing these numbers:

o They must be different from each other and different from any code or
data segment numbers used by any other Intrinsic Units accessed by the
same program.

o While any program is executing, its main program uses segment 1.
Therefore, never use this number for an Intrinsic Unit.

o Numbers 0, 2 through 6, and 58 through 63 are reserved for use by
Pascal.

o If you write a unit with a csegnum or dsegnum greater than 31, the
programs that use the unit must be executed under the 128K Pascal
system.

o If the program that uses the Program Unit defines any SEGMENT
procedures or functions, or uses any Regular Units, Pascal will assign a
number to each such procedure, function, or unit, starting serially from 7.
These numbers must not conflict with the numbers you assign to
Intrinsic Units. See Chapter 15, "Segment Numbers."

o Numbers already assigned to Apple Pascal Intrinsic Units should not be
duplicated, if possible. They are the following:

20 TURTLEGRAPHICS (code)
21 TURTLEGRAPHICS (data)
22 APPLESTUFF
28 CHAINSTUFF
29 TRANSCEND
30 LONGINTIO
31 PASCALIO

The Interface Section

A Program Unit's interface section immediately follows its unit heading.
This is the only part of the Program Unit that is directly accessible to the
program that calls it. It is the part that is "visible" from the outside; it
specifies how any program that uses the unit can communicate with it. It

Chapter 12: Program Units

consists of the word INTERFACE followed by constant, type, and variable
declarations and/ or procedure and function headings:

uses
INTERFACE ,__~__. declaration

constant
declarations

type
declarations

variable
declarations

procedure
heading

function
heading

The interface declarations become "public"-any program that uses the
Program Unit can access them just as if they were declared in the program
itself.

You can read the interface section of any Program Unit from its codefile by
using the LIBMAP utility program described in Part II, Chapter 8.

You can write comments in the interface section, which can be read from
the codefile by LIBMAP. However, such comments will increase the codefile
size.

The following rules apply to writing a Program Unit interface section:

o A USES declaration must be included if the Program Unit uses another
Program Unit. For the rules under which one unit can use another unit
see below, "Nesting Program Units."

o No label declarations are allowed in the interface section.
o No SEGMENT procedures or functions are allowed in a Program Unit.
o The constant, type, and variable declarations in the interface

section follow the same syntax and are allowed the same range as such
declarations in a program.

Writing a Program Unit III-217

III-218

o The procedure and function headings consist of the procedure and
function definitions without their program blocks. See Chapter 8 for
syntax details.

o The j $I} ("include file") Compiler option may not be used in the interface
section.

For an illustration of an interface section, see the sample Program Unit
given later in this chapter.

The Implementation Section

A Program Unit's implementation section contains the blocks corresponding
to the procedure and function headings contained in its interface section. If
there are any such headings, an implementation section must be written; if
there are no such headings, it must be omitted. The implementation section
also contains declarations and other procedures and functions necessary to
support these routines. These supporting declarations and routines are
"private"; they cannot be accessed from outside the Program Unit.

The implementation section immediately follows the last procedure or
function heading in the interface section. It consists of the word
IMPLEMENTATION followed by declarations:

label
IMPLEMENTATION-----~--- declarations

constant
declarations

variable
declarations

procedure
declaration

function
declaration

The label, constant, and variable declarations are written the same way as
in a program. Each procedure or function declaration corresponds to a
procedure or function heading in the interface section. It consists of a block

Chapter 12: Program Units

preceded by the procedure or function identifier and a semicolon. This form
is identical to the form in which a FORWARD procedure or function is
written, as described in Chapter 8.

The following rules apply to writing a Program Unit implementation
section:

o It can use other Program Units called by USES declarations in the
interface section, but it may not contain any "private" USES declarations
of its own.

o It may not contain any type declarations.
o The label, constant, and variable declarations in the implementation

section follow the same syntax and are allowed the same range as such
declarations in a program; except that the only place afile variable may
be declared is as a variable parameter of a procedure or function.

o It may contain its own procedures and functions, defined as in a
program, for use only in the implementation section.

o Each block in the implementation section corresponding to a procedure
or function heading in the interface section may contain its own local
declarations, as well as program statements. It must be preceded by the
routine identifier and a semicolon; parameter lists and function type
identifiers are not repeated, however.

The Initialization Section

A Program Unit's initialization section is optional. If included, it constitutes
a compound statement. This statement is executed as soon as any program
that uses the unit starts running, before its own code is executed. It is
written exactly like the main part of a program: BEGIN, followed by a series
of statements separated by semicolons, and END:

1--.,.....-. statement 1----.--+1

If you omit the initialization section, write just END instead. If this
terminates the source text to be compiled, follow END with a period; if the
Program Unit is one of a series to be compiled together, follow END with a
semicolon.

Writing a Program Unit III-219

UNIT OPENS;
INTRINSIC CODE 17 DATA 18;

The principal purpose of the initialization section is to intialize variables
declared in the unit, and perform other "housekeeping" chores before the
unit is used. It is executed only once.

When writing an initialization section, bear these rules in mind:

o It may not contain any declarations or procedure or function definitions
of its own.

o It may not access any declarations or routines in the program that uses
the unit; in particular, it cannot intialize variables declared in the using
program.

o However, it can freely access all the declarations and routines in both the
interface and implementation sections of its unit, together with public
material from any other unit called in the interface section. It can
initialize the unit's variables, which are now global to the host program.

A Sample Program Unit

The following is a complete Intrinsic Unit with a data segment and an
initialization, to demonstrate the techniques just described. It provides
convenient features for opening textfiles.

INTERFACE

VAR OFILRESULT, NFILRESULT: INTEGER;
{Two public variables: these are both initialized to -1,

and subsequently used by the public procedures to hold
results from the IORESULT function. Because of these
variables, the data segment is needed.}

PROCEDURE OPENOLDFILE CVAR F: TEXT; VAR FILENAME: STRING>;
PROCEDURE OPENNEWFILE CVAR F: TEXT; VAR FILENAME: STRING>;
{Two public procedures for opening text files: these are
similar except that OPENOLDFILE uses RESET while
OPENNEWFILE uses REWRITE. If the pathname has no suffix,
the suffix .TEXT is added. I/O checking is turned off
while the file is opened, and then IORESULT is used to
check whether the file was opened successfully.
OPENOLDFILE puts the result in OFILRESULT and OPENNEWFILE
puts the result in NFILRESULT; the host program can check
these variables to find out what happened.}

III-220 Chapter 12: Program Units

IMPLEMENTATION

{A private procedure that i5 called by the public one5, to
add the .TEXT 5uffix to a filename if it doe5n't have a
5Uffix:}

PROCEDURE ADDSUFF CVAR FILENAME: STRING>;
BEG 11'1

IF POS C'.TEXT', FILENAME>= B
THEN FILENAME := CONCAT CFILENAME, '.TEXT'>

END;

{The fir5t of the public procedure5. The parameter li5t
i5 made into a comment, 5ince the parameter5 have already
been declared in the interface:}

PROCEDURE OPENOLDFILE {CVAR F:TEXT; VAR FILENAME:STRING>>;
BEG 11'1

ADDSUFF CFILENAME>;
U I-}
RESET CF, FILENAME>;
U I+}
OFILRESULT := IORESULT

END;

{The other public procedure. Again, the parameter li5t i5
made into a comment:}

PROCEDURE OPENNEWFILE {CVAR F:TEXT; VAR FILENAME:STRING>>;
BEG 11'1

ADDSUFF CFILENAME>;
{$I-}

REWRITE CF, FILENAME>;
{$! +}

NFILRESULT := IORESULT
END;

{The initialization, which provide5 initial value5 for the
two public variable5. The value -1 i5 cho5en becau5e it
i5 never returned by the IORESULT function:}

BEG 11'1
NFILRESULT := -1;
OFILRESULT := -1

END.

Writing a Program Unit III-221

III-222

Nesting Program Units

A Program Unit may use other Program Units if you include a USES
declaration in its interface section.

These rules apply to nesting Program Units:

o An Intrinsic Unit cannot use a Regular Unit.
o At each level of nesting, including the program that uses the first unit, all

nested units must be specified in the USES declaration. Moreover, they
must be specified in order, with the most deeply nested first.

Here is an example of a host program using a Regular Program Unit that has
Intrinsic Program Units nested two deep inside it:

PROGRAM EGGCUP;
USES YOLK, WHITE, SHELL;

UH IT SHELL;
INTERFACE

USES YOLK, WHITE;

UNIT WHITE; INTRINSIC CODE 23 DATA 24;
INTERFACE

USES YOLK;

UNIT YOLK; INTRINSIC CODE 25;

To compile and execute EGGCUP, you would follow these steps:

1. Compile YOLK and place the resulting codefile in a library.
2. Compile WHITE while the library containing YOLK is accessible to the

Compiler. Place the result in the same or a different library.
3. Compile SHELL while one or more libraries containing both YOLK and

WHITE are accessible to the Compiler.
4. Compile EGGCUP while YOLK, WHITE; and SHELL are all accessible to

the Compiler.
5. Because SHELL is a Regular Unit, link the compiled codefiles for

EGGCUP and SHELL into a single executable codefile.
6. When executing the resulting codefile, make sure that both YOLK and

WHITE are accessible in one or more libraries. SHELL is no longer
needed.

Chapter 12: Program Units

Changing Units and Host Programs

One advantage of using Program Units is that they allow you to create a
hierarchical structure of logically separated program sections. When you
make changes in such a structure, however, keep these rules in mind:

o If you change the source text of a program or unit that uses a Regular
Unit, you must recompile it and then use the Linker to relink the Regular
Unit into its codefile.

o If you change a program or unit that uses an Intrinsic Unit, you need to
recompile it. But if the change does not require a change in the operation
of the Intrinsic Unit, you do not need to recompile the unit.

o If you change a Regular Unit's interface section, you must recompile it
and then recompile all programs or units that use it. You must then use
the Linker program to relink it into all their codefiles.

o If you change a Regular Unit's implementation section, you must ,
recompile the unit and then use the Linker program to relink it into the
codefiles of all programs that use it.

o If you change an Intrinsic Unit's interface section, you must recompile it
and then recompile all programs or units that use it.

o If you change an Intrinsic Unit's implementation or initialization section,
you need only recompile the unit.

Controlling loading of Units

If not otherwise instructed, the Compiler automatically arranges to load all
Program Unit code, including the code for nested units, into Pascal memory
space before the start of program execution. When memory space is limited,
you may want to use one of Apple Pascal's Compiler options to control
when your Program Unit code is loaded. You have two choices:

o The "no-load" option j$N+) keeps all Program Units out of memory until
actually needed. This does not, however, prevent their initialization
sections (if any) from being executed.

o The "resident" option j$R) allows you to associate the loading of specific
Program Units with specific procedures or functions. The Program Units
are loaded into memory only while the routines are being executed.

The syntax for writing Compiler options is given in Chapter 14. The options
themselves are discussed more fully in Chapter 15 under "Executing Large
Programs," and in Part II of this manual, Chapter 5.

Controlling Loading of Units III-223

III-224

64K Note: These techniques are particularly important if you run
programs that use Program Units in the 64K Pascal system. For further
memory-saving suggestions, see Chapter 15.

Chapter 12: Program Units

Chapter 13 Libraries

III-225

III-226

Libraries are special codefiles that are not directly executed. The purpose
of libraries is to make Intrinsic Unit codefiles accessible to your programs
during compilation and execution. Program Units are described in
Chapter 12. Here are the ways that libraries help your programs access
Intrinsic Units:

o During program compilation, every Intrinsic Unit that the program uses
must either reside in the file SYSTEM.LIBRARY or be specified by a
"using" Compiler option.

o During program execution, every Intrinsic Unit that the program uses
must be accessible through one of the kinds of library described below.

Here are the ways that libraries help your programs access Regular Units:

o During program compilation, every Regular Unit that the program uses
must either reside in the file SYSTEM.LIBRARY or be specified by a
"using" Compiler option.

o During program linking, if the Run command is used, all Regular Units
needed by your program must be in SYSTEM.LIBRARY. Otherwise you
must use the Compile command to compile your program and then the
Link command to invoke the Linker explicitly, giving it the name of the
Regular Unit codefile. These commands are described in Part II of this
manual, Chapter 2.

Because Regular Units are incorporated into your program's codefile, they
do not need to be present during program execution. Leaving Regular Units
in a library after you have compiled and linked your program has
disadvantages:

o Leaving Regular Units in a library allows less space for Intrinsic Units,
which must be in a library during program execution.

o Whenever you change a Regular Unit in a library, you must create a new
library.

There are three kinds of libraries:

o SYSTEM.LIBRARY, the system library accessible to all programs.
o A Program Library. This is a library that is specific to one program.
o A Library Name File. This is a textfile, specific to one program, that

contains the names of one or more libraries or unit codefiles.

Apple Pascal provides several methods for building and inventorying
libraries:

o You can rearrange SYSTEM.LIBRARY or create a Program Library with
the Apple Pascal LIBRARY program described in Part II, Chapter 8.

Chapter 13: Libraries

o You can create a Program Library from a single unit codefile by using the
Pascal 1.3 Filer to rename it.

o You can write a Library Name File by following the instructions later in
this chapter.

o You can analyze the contents of any library, or any library unit codefile,
with the Pascal LIBRARY and LIBMAP programs described in Part II,
Chapters.

Libraries in the 64K and 128K Pascal Systems

The Apple Pascal 64K and 128K systems have different library capabilities.
Table 13-1 compares the kinds of library options available under the 64K
system with those available under the 128K system.

Libraries in the 64K and 128K Pascal Systems IIl-227

III-228

Table 13-1. Pascal Library Options: 64K and 128K Systems

64K System

Allows one library on line
per program:

SYSTEM. LIBRARY
Must be on system disk
Keeps its own name
Files can be shared
Limit: only one on line

Chapter 13: Libraries

128K System

Allows up to six libraries
on line per program:

PROGRAM LIBRARY FILE
Same disk as program
Takes name of program

code file and adds .LIB
Files cannot be shared
Limit: one per program

or replace PLF with a

LIBRARY NAME FILE
Same disk as program
Takes name of program

code file and adds .LIB
Facilitates library file

sharing
Limit: one per program
Lists filenames of up to

5 library files

LIBRARY FILES
Up to 5 usable by a program
Any name
Can be shared by programs

SYSTEM.LIBRARY
Must be on system disk
Keeps its own name
Files can be shared
Limit: only one on line

SYSTEM.LIBRARY

SYSTEM.LIBRARY is the name of the library file that comes with the Apple
Pascal software. To be accessed, it must be on the same disk as the file
SYSTEM.PASCAL. It is accessible to all programs, and is automatically
searched for needed units during program compilation and execution. In its
original form, SYSTEM.LIBRARY contains these units:

LONGINTIO TRANSCEND APPLESTUFF PASCALIO

CHAINSTUFF TURTLEGRAPHICS

All of these are Intrinsic Units. They are used by certain Apple Pascal
built-in operations, as follows:

LONGINTIO is required by the long integer data type and all arithmetic
operations involving long integers. It also is required by the STR function
that converts numeric values to strings.

TRANSCEND is required by the trigonometric and logarithmic functions of
Apple Pascal-SIN, COS, ATAN, LOG, LN, and EXP-plus the square root
funtion SQRT.

APPLES TUFF is required by the operations RANDOM and RANDOMIZE,
plus several miscellaneous I/O operations: KEYPRESS, PADDLE, BUTTON,
and NOTE.

PASCALIO is required by the I/O procedure SEEK, and the procedures
WRITE, WRITELN, READ, and READLN when they are used with data of
type REAL.

CHAINS TUFF is required by the program chaining operations discussed in
Chapter 16.

TURTLEGRAPHICS is required by the screen graphics operations discussed
in Chapter 11.

You can change the contents of SYSTEM.LIBRARY by using the LIBRARY
utility program described in Part II of this manual, Chapter 8.

These rules govern the use of SYSTEM.LIBRARY:

o SYSTEM.LIBRARY must reside on the system disk-the disk that also
contains SYSTEM.PASCAL. Otherwise Pascal cannot find it.

o SYSTEM.LIBRARY may contain up to 16 units.

SYSTEM.LIBRARY III-229

III-230

Pmgram libraries

A Program Library is a library file, on the same disk as the program's
codefile, that is given the same name as the program's codefile except that
its suffix is .LIB rather than .CODE. For example, if a program's codefile has
the filename

MAIL:SORT.CODE

then the corresponding Program Library will have this designation:

MAIL:SORT.LIB

Here are some rules about Program Libraries:

o Program Libraries may be used only with the 128K Pascal system.
o A Program Library, like SYSTEM.LIBRARY, may contain up to sixteen

units.
o A program may have only one Program Library, although it may access

SYSTEM.LIBRARY as well.
o A Program Library may be accessed directly by only one program.

However, other programs may access it through Library Name Files.

To compile a program that uses units in a Program Library you must specify
the Program Library by means of a "using" Compiler option, described later
in this chapter.

If the name of your program's codefile is more than 11 characters long and
does not end in .CODE, then Pascal looks for a Program Library name
formed by truncating the codefile name to 11 characters and adding .LIB.
For example, if your program's codefile is

PANDORA:SVSTEM.STARTUP

then Pascal will look for a Program Library named

PANDORA:SVSTEM.STAR.LIB

Program Libraries have these advantages over SYSTEM.LIBRARY:

o They can be smaller because they contain only the units needed by a
specific program.

o They do not need to take up space on the same disk as
SYSTEM.PASCAL.

o There is less risk of duplicating segment numbers, because Program
Libraries contain only the units needed by a specific program.

Chapter 13: Libraries

library Name Files

A Library Name File is a textfile you create that contains a list of
filenames of up to five library files that contain Intrinsic Units your program
needs. As long as its filename is correctly given, a library file listed in a
Library Name File can be on any disk that is on line at the start of program
execution. The Library Name File uses the same naming convention as a
Program Library: you give it the name of the program's codefile, using .LIB
as the suffix. The specific format for a Library Name File is described in the
next section of this chapter.

Here are some rules about Library Name Files:

o Library Name Files may be used only with the 128K Pascal system.
o A program may have only one Library Name File, although it may access

SYSTEM.LIBRARY as well.
o A program can have a Library Name File or a Program Library, but not

both because they both would have the same name.

By listing library file filenames in a Library Name File, you direct the
system at the start of execution time to search the files with these
filenames to find any Intrinsic Units needed by the program. Later in this
chapter, you will see how library files on the same disk as the program or on
a different disk can be listed in a Library Name File and how they can be
shared by more than one program.

For a program requiring only a few units, you will find that a Program
Library will take care of your library file needs. For a larger and more
complex application-one using a large number of Intrinsic Units-you
should instead use a Library Name File. Using a Program Library limits you
to units residing on the same disk as the executing program.
SYSTEM.LIBRARY also has a limited utility for large applications: it must
reside on the system disk, where it takes up valuable space.

These are the advantages of using Library Name Files for your application
programs:

o Up to six library files (including SYSTEM.LIBRARY) can be made
available to a program. As before, each library file can hold up to 16 unit
segments, although the maximum number of segments allowed is 64.

o A library file can be shared by two or more programs by listing it in
separate Library Name Files for each of the programs.

o Disk space can be conserved by having only one copy of the same
Intrinsic Unit shared between programs.

o Your program can use library files on different disks.

Library N arne Files III-231

Ill-232

Making a Library Name File

A Library Name File is a textfile that must conform to a specific text format.

To make a Library Name File, use the Editor to make a file following this
format:

LIBRARY FILES:
<filename>
<filename>
<filename>
<filename>
<filename>
$$

Here are some notes on this format:

o The Lin LIBRARY must be the first character on the first line in the file.
You cannot have any blank lines, spaces, or other characters at the top of
the file or between lines. The string "LIBRARY FILES:" may be in
uppercase or lowercase. Press RETURN after each line.

o Below LIBRARY FILES: and also beginning at the left margin, type on
separate lines the filenames (followed each time by RETURN) for each
file you want to designate as a library file. You can have five or fewer
filenames in your file. The system will ignore any filenames listed after
the fifth one.

o Two dollar signs($$) make up the last line of the file no matter how
many filenames you use.

After you've made your Library Name File, give it the name of the
program's codefile, but with the .LIB suffix, such as UPDATE.LIB. The
following paragraphs tell you in more detail how to select and arrange
library files, including those to be shared by using the Library Name Files.

Using the library Name File

This section gives several examples of how to use library files with the
Library Name File.

Chapter 13: Libraries

MAIL:
UPDATE.CODE
PREP. LIB
UPDATE.LIB

UTILS:
SORT.CODE
SORT.LIB

{a volume}

Using One library File With Two Programs

Suppose you have written two short applications, called SORT and
UPDATE, each one stored on a separate disk. Each has to have a set of
Intrinsic Units on line when being executed. Right now the Intrinsic Units
are stored in the library file named PREP.LIB on the same disk (MAIL:) as
UPDATE:

MAIL:

UPDATE.CODE

PREP. LIB

{a volume}

{a program codefile}
{a library file}

If you wanted either one of the applications to be able to use the Intrinsic
Units contained in PREP.LIB, you would first have to list the filename of
PREP.LIB in a Library Name File on the associated disk, as shown here:

{a program codefile}
{a library file}
{a Library Name File library files:

{a volume}

MAIL:PREP.LIB

}

Note that the Library Name File takes the same name (except for the
suffix) as the codefile for the program (UPDATE) that uses it. Also note that
for both programs to share the same library file-in this case PREP.LIB
you do not need to place PREP.LIB itself on both disks. Instead, you leave
the file on the disk MAIL: and list its filename in a Library Name File on the
other disk, UTILS:

{a program codefile}
{a Library Hame File library files:

MAIL:PREP.LIB

}

Now PREP.LIB is a shared library file, its units usable by both programs
even though it resides on only one of the two disks. Of course, the disk
MAIL: must be on line when the program SORT is executed so that SORT
may have access to the library file PREP.LIB.

Library Name Files IIl-233

III-234

Using Several Library Files With One Program

If you have a number of library files on the same disk as the executing
program where, for example, the program SEARCH.CODE has the filename
REPORT:SEARCH.CODE, your Library Name File (with the filename
REPORT:SEARCH.LIB) would contain

LIBRARY FILES:

REPORT:LIB1 .LIB

REPORT: LIB2. LIB

REPORT:LIB3.CODE

$$

LIB I.LIB, LIB2.LIB, and LIBS.CODE are sample names for library files. (You
may use any name for a file containing Program Units, as we did for
LIBS.CODE, although using the suffix .LIB makes it easier to remember that
it is a library of units.)

Using the Pascal Prefix in a Library Name File

You could simplify the writing of a Library Name File by setting the Pascal
prefix to the name of the disk you are currently using. For example, if you
set the Pascal prefix to the volume name, REPORT: (or, say, #9:) before
executing SEARCH.CODE, you could write the Library Name File more
simply, like this:

LIBRARY FILES:

LIB1 .LIB

LIB2.LIB

LIB3.CODE

$$

The system will attach the prefix to a library filename before opening that
file. Setting the prefix is described in Part II of this manual, Chapter S.

If you use the Pascal prefix in conjunction with the set of filenames listed in
the Library Name File, you must make sure that the prefix is set to produce
the correct filenames so that the program can find its library files when it is
executing. If you successively execute programs on different disks, or
programs with library files on different disks, you will need to change the
Pascal prefix before executing each program to ensure that the filenames
for the shared library are correct at execution time. You may find it
convenient to rely on setting the prefix during program development, but
you would probably not ask a user to set the prefix before running an
application program. A more foolproof way would be to use the percent
prefix before each filename, as explained later.

Chapter 13: Libraries

ACCOUNTS:
POST.CODE
POST.LIB

{a volume}

Using Seve1ral Library Files With Several Programs

A program on one disk can use library files on a different disk. For example,
say that you want to use two of the library files on the disk REPORT: for a
program called POST.CODE on a second disk, ACCOUNTS:, without
physically moving those two files from the original disk (REPORT:). You
can do this easily by listing the library files needed by POST.CODE in a
Library Name File called POST.LIB. You can use the complete filename, as
in the following example, or set the Pascal prefix to REPORT: before
running the program, as explained in the previous section.

{a program codefile}
{a Library Name File library files:

REPORT: LIB1. LIB
REPORT: LI B2. LIB
$$ }

Note that the library files LIBLLIB and LIB2.LIB, physically located on the
first disk (REPORTS:), are shared by both programs (SEARCH and POST)
but that LIBS.CODE is not shared because its filename is not listed in the
Library Name File on the second disk (ACCOUNTS:). Had it been listed in
the Library Name File POST.LIB, then it too would have become a shared
library, usable as well by the program POST.CODE, even though the actual
library file was physically located on the disk of the program
SEARCH.CODE along with the other two library files.

Many possible arrangements of library files are supported by the Pascal
128K system. The examples just mentioned are simply hints to help you get
started in developing your own shared libraries. As you can see, you will
want to give considerable thought to the overall structure of your
application and to the number of disk drives you presently have on line. In
particular, you will want to plan the kind of library files appropriate to each
program, the files you will designate as shared libraries, and the best
arrangement on disk of all the files for a particular application program. The
section "How the System Searches Libraries," later in this chapter, gives a
brief description of how libraries are searched for the Intrinsic Units
required by the executing program.

Using the Percent Prefix in a library Name File

You can use the percent prefix to make a Library Name File independent of
its disk name. Because the percent prefix is set to the name of the disk
containing the executing codefile, you can use the percent prefix in the

Library Name Files III-235

III-236

Library Name File to replace the volume names of the listed library files.
Suppose you had this set of files:

MYFILE: {a volume}
MIX.CODE {a program codefile}
MIX.LIB {a Library Name File}
OLD. LIB {a library file}
NEW.LIB {a library file}

If you wanted to use the percent prefix, the contents of the Library Name
File for MIX.CODE, which is MIX.LIB, would be

LI BR ARY FI LES:
%OLD. LIB
%NEW. LIB
$$

Then when you execute MYFILE:MIX.CODE, the system sets the percent
prefix to MYFILE:, opens up the Library Name File MIX.LIB, and reads the
filenames for the two library files OLD.LIB and NEW.LIB. In this case the
system expands the filenames like this:

%OLD.LIB becomes MYFJLE:OLD.LIB
%NEW.LIB becomes MYF!LE:NEW.LIB

The"%" stands for the disk name, MYFILE:, of the program MIX.CODE.

I
Making Life Easy: Keep in mind when developing an application that
the grouping of related programs and their libraries together on the same
disk facilitates the use of the percent prefix to specify library files.

The 1'Using" Compiler Option

The "using" Compiler option lets you specify a library other than
SYSTEM.LIBRARY as the location of Program Units needed during program
compilation. It is written as $U followed by the complete filename of a
library, and is inserted inside the USES declaration at the beginning of your

Chapter 13: Libraries

program. It directs the Compiler to the specified library for all units named
after it, up to the next "using" option. For example:

USES CAT, {$U YARD:KENNEL.LIB} SETTER, TERRIER,
{$U BOWL:WATER.L!B} GOLDFISH;

With this USES declaration, the Pascal Compiler will look for the unit CAT
in SYSTEM.LIBRARY on the system disk, as usual. It will look for the units
SETTER and TERRIER in the library KENNEL.LIB on the disk YARD:. It
will look for the unit GOLDFISH in the library WATER.LIB on the disk
BOWL:.

The "using" Compiler option is necessary when you are compiling a
program that uses units that are not in SYSTEM.LIBRARY.

For further information about Compiler options, see Chapter 14 and Part II
of this manual, Chapter 5.

How the System Searches Libraries

The following step-by-step description will help you choose the library file
approach best suited to the particular application you are developing.

When a program is executed, the system first examines it to determine
whether or not it uses any Intrinsic Units. If it does not, the program is
loaded and run. If it does, the system looks at the different types of library
files, in the following order, to find the required units:

1. Program Library
2. Library Name File
3. Library files whose filenames are listed in a Library Name File
4. SYSTEM.LIBRARY

The system first looks for a file of the same name as the executing program
but with the suffix changed from .CODE to .LIB. Then it tries to open the
file corresponding to its new name (progname.LIB). If the file exists, the
system determines whether it is a codefile or a textfile. If it finds a codefile
(the file we call a Program Library), the system looks in the file for the
required Intrinsic Units. If it finds instead a textfile (the file we call a
Library Name File), the system collects the filenames of the library files
listed there, and then looks in those files for the required Intrinsic Units.

If you have set a prefix and the names of the files listed in the Library Name
File require a prefix, the system attaches the prefix before searching for the
files.

How the System Searches Libraries III-237

111-238

If there are Intrinsic Units needed that have not been found in a Program
Library or by means of a Library Name File, or if your program has not used
either of these libraries at all, the system looks in SYSTEM.LIBRARY. If the
missing units are not found in SYSTEM.LIBRARY, or if SYSTEM.LIBRARY
is not on the system disk, Pascal displays an error message and returns
control to the Command line.

The system searches for the Intrinsic Units until it finds all of them or until
it runs out of library files and gives an error message. If it finds the units
before it has looked in all the relevant library files, it stops searching and
begins executing the program.

Chapter 13: Libraries

Chapter 14 Compiler Options

III-239

III-240

Compiler options are instructions to the Pascal Compiler that you write in
your program's source text. They take effect at the point where the
Compiler reads them during compilation. There are four kinds of options:

o Options that control the operation of the Compiler itself, such as choosing
whether or not it will create a program listing;

o Error-checking options that allow you to turn on and off certain
automatic error-reporting features;

o Options that allow you to control the compilation and loading of program
segments and Program Units;

o Miscellaneous Compiler options.

The specific Compiler options provided by Apple Pascal are discussed in
detail in Part II of this manual, Chapter 5. This chapter covers their syntax
rules and includes a summary.

Compiler Option Syntax

The Compiler recognizes Compiler options because they always begin with
a dollar sign followed by a capital letter, and are enclosed in the same
delimiters as comments. Some Compiler options include plus or minus signs
to indicate that an option is to be turned on or off. Others are followed by a
filename or other string of characters. The only place a Compiler option can
contain a space character is between it and its argument (for example,
between it and a filename). Do not write any space characters within the
option syntax itself. Here are some examples:

{$P} {$G+} ("$1-*) {$UMYDISK:MYFILE.CODE}

When the Compiler encounters a beginning comment delimiter followed by
a dollar sign-($ or (*$-it treats the subsequent text as one or more
Compiler options, until it reads a space character or the closing comment
delimiter. You can string several options together, using commas to separate
them; don't add extra spaces:

{$P,$G+,$I-} (*$P,$G+,$I- ")

However, an option that is followed by a name or string of characters must
be the last option in the sequence. All characters between the option letter
and the closing delimiter are taken as the name, except spaces before or
after the name. If the first character of a name is + or - , you must write a
space between it and the option letter.

Chapter 14: Compiler Options

Finally, you can insert a space character and write a comment. All text
between the space and the closing bracket will be ignored by the Compiler:

{$P,$G+,$I- The comment field starts with a space like this}

Some Compiler options must be placed in specific locations. These locations
are specified in Part II, Chapter 5. Other options may be written any place in
your source text, subject to these rules:

o You can write a Compiler option any place you can write a Pascal
statement.

o Once a Compiler option has been executed anywhere in a program it
remains in force until superseded by execution of a countermanding
Compiler option.

o Any option followed by a name or string must be the last one in a
sequence.

Compiler Option Summary

Table 14-1 is a summary of the Apple Pascal Compiler options, in
alphabetical order. For each option it gives its symbol or symbols, the
default option that holds when any program begins, and the action it
performs. If the option is discussed in this Language Manual, a reference
is included.

Compiler Option Summary III-241

Table 14-1. Compiler Options

Command Default

$C string

$G+ $G- $G-

$1+ $1- $1+

$1 filename

$1+ $1- $1-

$1 filename

$N+$N- $N-

$NS digit

$P

$Q+ $Q- $Q-

$R+ $R- $R+

$R unit name or
$R segment number

$S+ $S- $S++ $S-

$U+$U- $U+

$U filename

$V+ $V- $V+

III-242

Action

Embed comment in codefile

Permit/forbid GOTO statements

1/0 checking on/off

Include named file in source text

Make/omit a Compiler listing

Send Compiler listing to file

Prevent/ allow unit loading

Advance automatic segment numbering

Paginate Compiler listing

Screen off/on during compilation

Range checking on/ off

Load segment

Compiler swapping on/off

User/system level compilation

Specifies file containing Program Unit

Varstring checking on/ off

Reference

Chapter 7

Chapter 10

Chapter 15

Chapter 15

Chapter 15

Chapter 6

Chapter 15

Chapter 15

Chapter 13

Chapter 6

All Compiler options are discussed in Part II, Chapter 5, "The Compiler."
Those options for which no reference to this Language Manual are given
above are fully covered there.

Chapter 14: Compiler Options

Chapter 15 Large Program Management

III-243

III-244

No matter how much memory space your hardware provides, the day will
come when it is not enough. This chapter gives you some suggestions on
how to make the most of the available memory when working with large or
complex Pascal programs. Even when memory space is not a problem, you
may find that these suggestions help you create cleaner and more efficient
programs.

There are four areas where large programs most commonly generate
problems:

o editing
o compiling
D linking
o executing

The available techniques for coping with large-program problems in these
areas are discussed separately below.

Editing Large Prngra.ms

The Apple Pascal Editor has a file capacity of 17920 characters with the
64K system and 32256 characters with the 128K system. Ordinarily, all the
text to be compiled as one program is present in a single textfile.

When a program outgrows the Editor's capacity, you must break it up. You
can do this by using the "include" Compiler option to pull a series of
separate files of source text into one compilation. This option is described in
Part II of this manual, Chapter 5.

Compiling Large Programs

Being able to edit a large source text is no guarantee that the Compiler will
be able to compile it. The compilation process has these limitations:

o The maximum number of procedures and/or functions allowed in any
segment is 254.

o The maximum amount of P-code allowed for any block is 1999 bytes.
o The nesting limit for procedures and functions is 8 levels.

These limitations are discussed under "Size and Complexity Limits" in
Chapter 8.

Chapter 15: Large Program Management

The Compiler might fail to process a large or complex program for either of
two reasons:

o The source text exceeds one of the limitations listed above.
o The source text is satisfactory, but there is not enough memory available

for the Compiler to process it.

If the problem is size or complexity of the source text, you can try these
remedies:

o Where the Compiler reports "procedure too long," break your program
down into smaller procedures. Look for ways to create shorter, more
straightforward routines.

o Where the Compiler reports "too many procedures," write part of your
program in separately compilable Program Units, or use nested
SEGMENT procedures.

If the problem is insufficient memory on the 64K Pascal system, use the
"swapping" Compiler option described in Part II of this manual, Chapter 5,
to release more memory during compilation. The "swapping" Compiler
option affects only the operation of the Compiler; it does not provide more
memory during execution. If you are using the {$S++} Compiler option and
there is still not enough memory for compilation, use the Command-level
Swap option described in Part II, Chapter 2, as well. Swapping during
compilation is effective only with the 64K Pascal system.

A general solution to size, complexity, or memory problems during
compilation is to break your program into separately compilable Program
Units. Program Units are described in Chapter 12.

linking large Programs

When linking a large program, it is possible for the Linker to fail because
there is not enough memory available to store the routines being linked.

A general solution is to change some Regular Program Units to Intrinsic
Program Units. Intrinsic Units do not need to be linked.

With the 64K Pascal system, you can sometimes alleviate the problem of
insufficient memory during linking by using the Command-level Swap
option described in Part II of this manual, Chapter 2. This technique has no
effect with the 128K Pascal system.

Linking Large Programs III-245

III-246

Executing Large Programs

The most common large-program problems occur during program execution.
Forestalling them is an important part of the programmer's art. Apple
Pascal provides a selection of techniques to help you. They can be classified
in three general areas:

o Programming methods that get the same tasks done with less memory
usage and/or less Pascal code. These are summarized next, under
"Efficient Programming."

o Ways of freeing memory space that would otherwise be occupied by
operating system code. See "Using Operating System Memory," below.

o Techniques for managing program segments. These are described below
in the section "Program Segmentation."

64K Memory Versus 128K Memory

The 64K and 128K Apple Pascal systems use memory in different ways. In
the 64K system, about 38K of memory is available for all P-code, 6502 code,
and data. They share the same memory space.

In the 128K system, about 43K of memory is available for 6502 code and
data. An additional 38K or so is available for P-code. So with the 128K
system it is important to distinguish between techniques that conserve data
space and techniques that conserve P-code space. With the 64K system it
does not matter.

In the following sections, techniques that conserve 128K data space are
marked [l 28K DATA}; techniques that conserve 128K code space are
marked [l 28K CODE}.

Efficient Programming

A number of memory-conserving programming methods have been
mentioned so far in this manual. Here is a brief summary of them:

o Declare minimum size data types. With strings, specify the maximum
size of each variable. Pack arrays and records wherever possible, and use
variant record types. Use BYTESTREAM or WORDSTREAM instead of
array types of fixed size. [128K DATA]

o Use dynamic variables instead of static variables. [128K DATA]

Chapter 15: Large Program Management

o Use MARK and RELEASE to optimize usage of the memory space
allocated for dynamic variables. [128K DATA]

o Use repetition statements and recursive techniques where appropriate,
instead of linear routines. [128K CODE]

o Use IF statements instead of CASE statements if the ordinal values of the
CASE selectors are widely spread. [128K CODE]

o Make similar program sequences into procedures or functions, where
possible. [128K CODE]

o Specify SEGMENT procedures and functions. [128K CODE]
o Use the j$I-f and j$R-f Compiler options to reduce code size (at the

expense of decreasing automatic error checking). [128K CODE]
o Use the Compiler options j$N+J and j$Rf to keep segments out of

memory until needed. [128K CODE]

Using Operating=System Memory

When you start up Apple Pascal, all the Pascal operating system code is
loaded into memory. However, Apple Pascal provides techniques by which
you can keep some of the operating system code out of memory, thereby
increasing the memory space available for user code and data. There are
two ways you can accomplish such operating-system swapping:

o By executing the Swap command from the Pascal Command level before
running your program. This process is described in Part II of this manual,
Chapter 2.

o By using the CHAINSTUFF procedures SWAPON and SWAPGPON.
These are described in Chapter 16 under "Program Chaining."

The results in both cases are the same. You liberate memory space that
would otherwise contain operating system code. In the 64K system it
becomes available for data, 6502 code, or P-code. In the 128K system it
becomes available only for P-code.

The cost of operating-system swapping is that certain program operations
become slower, because when they are called the required operating system

Executing Large Programs III-247

III-248

code must be loaded from the Pascal system disk. Two levels of swapping
are available:

o With level 1, the code that implements the 1/0 procedures REWRITE,
RESET, and CLOSE is swapped out. Your program gains 2274 bytes of
memory space.

o With level 2, the code that implements the I/O procedures GET and PUT
is swapped out, in addition to the level 1 code. These procedures slow
down, together with the WRITE, WRITELN, READ, and READLN
procedures that call them. Your program gains 810 more bytes for a total
gain of 3084 bytes of memory.

In addition to the foregoing, the Pascal operating system uses 2048 bytes of
memory space when it reads a disk directory. This happens during any
REWRITE, RESET, or CLOSE procedure with a block-structured device or
disk file. The space can be freed for program use by executing a MARK,
RELEASE, or NEW procedure call. [128K DATA]

Program Segmentation

To make the most efficient use of the memory space available for program
code and data, you can divide programs into segments. This section gives
essential information on how Apple Pascal implements segmentation.

A segment is code (or data space) that can be loaded into memory by itself,
independent of other segments. Every program consists of at least one
segment, and some programs consist of many segments. Whenever a
program is compiled, the Compiler and Linker create the following
segments in the codefile:

o Each SEGMENT procedure or function becomes a segment in the
codefile.

o Each Regular Unit that the program uses becomes a segment in the
codefile.

o The main program itself becomes a segment in the codefile. This
includes the program's non-SEGMENT procedures and functions.

Similarly, whenever a Regular Unit is compiled, the result is a code segment
for the unit itself, plus an additional segment for each Regular Unit that is
used within the unit being compiled. (Note that SEGMENT procedures and
functions are not allowed inside units.)

Chapter 15: Large Program Management

When an Intrinsic Unit is compiled, it produces a code segment, and may
produce a data segment as well. (Note that an Intrinsic Unit cannot use a
Regular Unit.)

Segments do not nest-every segment is just one segment and does not
contain any other segments. For example, if the declaration of a SEGMENT
procedure contains the declaration of another SEGMENT procedure, the
result is two distinct code segments, even though they are nested
syntactically and the scope is nested.

The Segment Dictionary

Every codefile (including library files) contains a body of information called
a segment dictionary. The segment dictionary contains an entry for each
segment in the codefile; the entry has all the information the system needs
to load and execute the segment.

The segment dictionary has slots for 16 entries. Therefore, one codefile can
contain at most 16 segments. In the case of a program, there is one segment
for the program itself, one for each SEGMENT procedure or function, and
one for each Regular Unit used by the program.

Intrinsic Units used by a program do not require entries in the segment
dictionary of the program's codefile. An Intrinsic Unit's code segment is
never in the program's codefile-it is in a library file, and appears in the
library file's segment dictionary.

Therefore a program can have a maximum of 16 segments, not counting
segments from Intrinsic Units. Counting segments from Intrinsic Units, a
program can have up to 52 segments, as explained below.

The Run-Time Segment Table

When a program is executed, the Pascal Interpreter uses a segment table,
which contains an entry for each segment that is used in executing the
program. This table thus contains the following entries:

o entries for 6 segments for the Pascal operating system
o an entry for each segment in the segment dictionary of the program's

code file
o an entry for each Intrinsic Unit segment (both data and code segments)

used by the program

Program Segmentation III-249

III-250

In the 128K Pascal system, the segment table has slots for up to 64 entries.
The operating system uses 6, and slots 58-63 are reserved for Pascal. Thus
52 slots are left for the program to use. Remember that only 16 can be in the
program's codefile; any excess over 16 must be Intrinsic Unit segments.

In the 64K Pascal system, the segment table has slots for up to 32 entries.
The operating system uses 6; thus 26 slots are left for the program to use.
Because only 16 can be in the program's codefile, any excess over 16 must
be Intrinsic Unit segments.

Segment Numbers

A segment number is an index into the segment table; thus at run time,
every segment has a segment number in the range 0 .. 63 and no two
segments in the program can have the same number.

These segment numbers are assigned to the program segments (except
Intrinsic Unit segments) when the segment entries are placed in the
codefile's segment dictionary (before run time). Numbers are assigned as
follows:

o The program itself is Segment 1.
o The segments used by the system are 0 and 2 .. 6. These numbers are

never assigned to segments of the program.
o The segment numbers of Regular Unit segments and of SEGMENT

procedures and functions are automatically assigned by the system; they
begin at 7 and ascend. Note that after a Regular Unit is linked into a
program, it might not have the same segment number that it had when it
was compiled.

The segment number of an Intrinsic Unit segment is determined by the
unit's heading, when the Intrinsic Unit is compiled. You can find these
numbers by examining the segment dictionary of the library file with the
LIBMAP utility program, as described in Part II of this manual, Chapter 8.

To summarize the above, the segment numbers of the program itself, the
segments used by the system, and any Intrinsic Units used by the program
are fixed before the program is compiled; the segment numbers of Regular
Units and of SEGMENT procedures and functions are not fixed, and are
assigned as the program is compiled and linked, in ascending sequence
beginning with 7.

Normally, the only time you need to specify segment numbers is in writing
an Intrinsic Unit, as explained in Chapter 12.

Chapter 15: Large Program Management

I
Remember: If your program has any segments with a segment number
greater than 31, or if it uses any Intrinsic Units with segment numbers
greater than 31, it must be executed under the 128K Pascal system.

The "Nextseg" Option

When unavoidable segment-number conflicts arise there is a solution: the
Compiler has a "nextseg" option which allows you to specify the segment
number of the next Regular Unit, SEGMENT procedure, or SEGMENT
function encountered by the Compiler. For a discussion of Compiler options,
see Chapter 14.

The "nextseg" option has the form

j$NSnum)

where num is a literal integer constant that should be in the range 8 .. 57.
The effect is to set the next segment number to num.

The "nextseg" option is ignored if it precedes the program heading; this
means that it cannot be used to specify the segment number of the program
itself.

The "nextseg" option will work only if the specified number is greater than
the default number that would be automatically assigned. If the number
specified in the "nextseg" option is less than or equal to the default segment
number, the option is ignored.

For example, suppose that you want to use an Intrinsic Unit named ZEBRA,
whose code segment number is 7 and whose data segment number is 8.
Your program also contains a SEGMENT procedure:

PROGRAM ELEPHANT;
USES ZEBRA;

SEGMENT PROCEDURE HORSE;

The Compiler will automatically compile the HORSE procedure as segment
number 7; when you try to execute the program, the Pascal system will not
execute the codefile because the program has two different segments with
the number 7. There are two remedies: recompile ZEBRA with different

Program Segmentation III-251

III-252

segment numbers (if you have the source for ZEBRA) or use the "nextseg"
option in your program:

PROGRAM ELEPHANT;
USES ZEBRA;

{$NS 9}
SEGMENT PROCEDURE HORSE;

Now HORSE becomes segment 9 instead of segment 7, and the conflict is
avoided.

Chapter 15: Large Program Management

Loading of SEGMENT Procedures and Functions

Normally, the code of a SEGMENT procedure or function is present in
memory only as long as it is active. If it is not active when it is called, it is
loaded from the codefile (on disk). The following program illustrates this:

PROGRAM ONE; {Segment ONE is always in memory.}

SEGMENT PROCEDURE ALPHA; {In memory only when active.}
BEGIN

END;
SEGMENT PROCEDURE BRAVO; <In memory only when active.}

SEGMENT PROCEDURE CHARLIE; {In memory only when active.}
BEGIN {Body of CHARLIE}

ALPHA; {When this is executed, the segments in
memory are ONE, ALPHA, BRAVO, and CHARLIE.}

END;
BEGIN {Body of BRAVO}

CHARLIE; {When this starts executing, the segments in
memory are ONE, BRAVO, and CHARLIE.}

ALPHA; {When this is executed, the segments in
memory are ONE, BRAVO, and ALPHA.}

END;
BEGIN {Body of ONE}

ALPHA; {When this is executed, the segments in
memory are ONE and ALPHA.}

BRAVO; {When this starts executing, the segments in
memory are ONE and BRAVO.}

END.

The "resident" Compiler option can be used to control the loading of
SEGMENT procedures and functions, as explained below.

Program Segmentation III-253

III-254

Loading of Program Unit Segments

Normally, all segments of program Units used by a program are loaded
automatically before the program begins executing, and remain in memory
throughout program execution. For example, consider the following
program where DELTA and GAMMA are two units, either Regular or
Intrinsic:

PROGRAM TWO
USES DELTA, GAMMA;

BEGIN

END.

Throughout program execution, the segments in memory are TWO, DELTA,
and GAMMA. The loading of Program Unit segments can be controlled by
the "no load" and "resident" Compiler options, as explained below.

In any case, the initialization section of every Intrinsic Unit is executed at
program startup time. The order in which unit names are listed in the USES
statement at the beginning of the program is significant; the initialization
code for the units is executed in this order.

The "No Load" Compiler Option

The "no load" Compiler option has the form

UH+>

The option is placed at the beginning of the main program body (after the
BEGIN). It causes all unit segments to be swapped in and out in the same
way as SEGMENT procedures: thus a unit segment is in memory only when
a procedure or function in its INTERFACE is referenced by the program.

The "no load" option does not prevent the initialization section of a unit
from being loaded and executed before program execution; but after
initialization, the unit segment is unloaded until it is activated. The
initialization code is not executed when the unit is reloaded.

Consider the following program, where HUGEPROC is a large SEGMENT
procedure and BIG UNIT is a large unit. The system does not have enough
memory to hold HUGEPROC and BIG UNIT at the same time, along with the
program itself.

Chapter 15: Large Program Management

PROGRAM THREE;
USES BIGUHIT;

SEGMEHT PROCEDURE HUGEPROC;
BEGIH

EHD;

BEGIH
{$1'1+} {Keep5 BIGUHIT out of memory until needed.}
HUGEPROC;

CALCULATE; <A procedure in BIGUHIT}

HUGEPROC
EHD.

First HUGEPROC is called; BIGUNIT is not in memory because of the "no
load" option. When CALCULATE is called HUGEPROC is not in memory,
because it is a SEGMENT procedure; it is immediately swapped in. As soon
as no part of BIG UNIT is active, it is again swapped out of memory, and
HUGEPROC can be called again.

The "Resident" Compiler Option

The "resident" Compiler option has one of the following forms:

<SR identifier}
<SR number}

where the identifier is the name of a unit or a SEGMENT procedure or
function, and the number is the segment number of a unit or a SEGMENT
procedure or function. This unit, procedure, or function is then said to be
"resident" within the procedure or function that contains the option.

The "resident" option is placed at the beginning of the body of a procedure
or function (after the BEGIN). It alters the handling of segments that would
otherwise be in memory only when active: that is, SEGMENT procedures
and functions, and units under the "no load" option.

When such a segment is called from a procedure or function that specifies it
to be resident, it is immediately loaded into memory and remains there as

Program Segmentation III-255

PROGRAM FOUR;
USES BIGUHIT;

SEGMENT PROCEDURE HUGEPROC;
BEGIH

END;
PROCEDURE CALLHUGEPROC;

VAR I : I HTEGER;
BEG Iii

long as the calling procedure or function is active. For example, consider the
following program:

FOR 1:=1 TO 188 DO HUGEPROC
END;

PROCEDURE CALLCALCULATE;
VAR I: I HTEGER;
BEG Iii

FOR 1:=1 TO 188 DO CALCULATE {A procedure in BIGUHIT}
END;

BEG Iii
{$ti+} {Keeps BIGUHIT out of memory until needed.}
HUGEPROC;

CALCULATE;

CALLHUGEPROC;

CALLCALCULATE
END.

III-256

This resembles the previous example, but the CALLHUGEPROC and
CALLCALCULATE procedures are new. As written, these two procedures
have a problem: since HUGEPROC is a SEGMENT procedure, it will be
swapped in from disk 100 times when CALLHUGEPROC executes, and
because of the "no load" option in the main program body, BIG UNIT will be
swapped in 100 times when CALLCALCULATE executes. This amount of

Chapter 15: Large Program Management

PROCEDURE CALLHUGEPROC;
VAR I : I tiTEGER;
BEGIH
UR HUGEPROC}

swapping is obviously undesirable, and it can be prevented by using the
"resident" option in each of these procedures:

FOR I:=1 TO 1BB DO HUGEPROC
EHD;

PROCEDURE CALLCALCULATE;
VAR I : I HTEGER;
BEGIH
UR BIGUHin

FOR I:=1 TO 1BB DO CALCULATE {A procedure in BIGUHIT}
EHD;

Now HUGEPROC will be kept in memory as long as CALLHUGEPROC is
active, and BIGUNIT will be kept in memory as long as CALLCALCULATE
is active.

Program Segmentation III-257

Chapter 16 Miscellaneous Information

III-259

III-260

This chapter rounds out the Apple Pascal Language Manual with a
selection of specialized programming suggestions and techniques. They are
divided into the following sections:

o Suggestions for improving the execution speed of your Pascal programs;
o A summary of techniques for circumventing the strong typing

characteristic of the Pascal language;
o Information about direct memory access from the Pascal program level;
o Miscellaneous information about input/ output operations not included in

Chapter 10;
o A description of Apple Pascal program chaining;
o Several advanced programming techniques, illustrated by sample

programs.

Improving Execution Speed

You can often accomplish the same program task with less execution time
by choosing a different programming method. Most ways to improve
execution speed are part of general programming skills, and hence beyond
the scope of this manual. But there are a few specific points mentioned in
other chapters that are worth summarizing here:

Special, fast P-codes are used to reference the first 16 words in each
procedure's data space. Declaring most-used variables first, so their values
occupy the first 16 words, will improve execution speed.

String and packed array constants are stored in a linked list on the program
stack. Each time one is referenced, the whole list must be scanned to that
point. If your program has many such constants, you can improve execution
speed by using variables and assigning them constant values.

When you swap operating system code to gain memory space, as described
in Chapter 15 under "Executing Large Programs," certain I/O operations are
slowed down. A void swapping if your program needs these operations.

Packing and unpacking packed variables takes time, and should be avoided
where possible.

Error checking takes time. You can speed up program execution by using
the {$R-}, {$I-}, and {$V-} Compiler options, at the expense oflosing the
automatic error checking features they control.

Chapter 16: Miscellaneous Information

When there are no more active invocations of procedures in a segment, the
segment code is removed from memory. Loading segments slows program
execution. You can increase execution speed at the expense of memory
space by using the "resident" Compiler option discussed in Chapter 15. If
you have enough memory space, it allows you to keep several segments in
memory at once.

Defeating Strong Typing

One of the import.ant features of the Pascal language is the way it forces the
programmer to declare specific types for all the data it handles. Some
program tasks, however, are more easily accomplished by overriding this
feature. There are several ways of defeating strong typing. They all follow
the same pattern:

o A data value is stored in memory as data of one type.
o The same memory area is accessed as a data value of another type.

To accomplish meaningful results by defeating strong typing, you must
know how Pascal values are stored in memory-that is, what bit patterns
are created to represent them. This information is presented in
Appendix 3C. Then you can use any of the following techniques to access
the same memory area as if it contained two different data types:

o You can use the built-in type conversion operations ODD, CHR, and ORD,
together with their combinations, to convert data from one scalar type to
another. These techniques are described in Chapter 6 under "Scalar
Operations."

o You can declare free union variant records. This technique can be used
to convert almost any type into almost any other. It is discussed in
Chapter 4, and again in Chapter 6 under "Bit Operations."

o You can write procedures and functions with variable parameters
declared as type BYTESTREAM or WORDSTREAM. Formal parameters
of these types will accept a wide variety of actual parameter types,
treating them as arrays of bytes or words.

o You can use the MOVELEFT and MOVERIGHT procedures to write data
values from one memory area into another. This technique is discussed
in Chapter 6 under "Byte Operations."

Defeating Strong Typing III-261

III-262

o You can write assembly-language EXTERNAL procedures and functions
with untyped variable parameters. Pascal will pass the address of any
variable to such a routine. An example of this technique at work is given
below under "Finding Variables."

o You can write data into a disk file as a file containing records of one type
and read it out as a file containing records of a different type. By using
untyped and device I/O operations, you can make transfers from Pascal
memory to block-structured devices and back without any type checking
at all. These operations are all covered in Chapter 10.

Direct Memory Access

One of the advantages of a higher-level language like Pascal is that it
relieves the programmer of the drudgery of having to work with memory at
the machine level. Sometimes, however, direct memory access is the best
way to accomplish a particular programming task. This section describes
techniques for accessing the actual contents of machine memory from the
Pascal language level.

PEEKs and POKEs

PEEK and POKE are terms borrowed from the BASIC programming
language. The PEEK function accepts an actual address in machine
memory and returns the scalar value of the byte stored there. The POKE
procedure accepts an actual address and a scalar value; it writes the value
in machine memory at that address. These are not built-in Apple Pascal
operations. You have to write them yourself.

Chapter 16: Miscellaneous Information

Here is the Pascal source text:

TYPE BYTE = e .. 255;
VARREC PACKED ARRAY [0 .. el OF BYTE;

VAR TRIX : RECORD CASE BOOLEAN OF
FALSE
TRUE

END;

CADDRESS INTEGER>;
<POINTER : AVARREC)

FUNCTION PEEK CADDR : INTEGER>
BEGIN

TRIX.ADDRESS := ADDR;
PEEK := TRIX.POINTERAC0l

END;

BYTE;

PROCEDURE POKE CADDR : INTEGER; VAL
BEGIN

TRIX.ADDRESS := ADDR;
TRIX.POINTERAC0J VAL

END;

Finding Variables

BYTE>;

Sometimes it is useful to be able to find the absolute memory location of a
Pascal variable. There are two techniques you can use:

With dynamic variables, simply take ORD(PTR), where PTR is the
pointer variable that points to the dynamic variable. The integer returned is
the absolute address of the first (lowest-address) byte of memory space
occupied by the dynamic variable.

With static variables, you can write a short assembly-language routine
that accepts a variable of any Pascal type as its parameter. It returns an
integer value that is the absolute address of the first (lowest-address) byte
of memory space occupied by that variable. Here is an example of such a
routine. The Pascal function definition is written this way:

FUNCTION ADDR CVAR X> : INTEGER; EXTERNAL;

Because ADDR is an EXTERNAL procedure, it accepts the variable
parameter X without any type specification. ADDR simply passes the
address of the actual parameter supplied for X when it is called.

Direct Memory Access III-263

III-264

Here is the source text for the 6502 routine used with ADDR:

;Function ADDR returns address of its own parameter

RETURN .EQU !IJ ;Adrs of temp storage

.FUNC ADDR, 1
PLA ;Save return address
STA RETURN ; in temporary storage
PLA
STA RETURN+1
PLA ;Remove 4 bytes, leaving
PLA ;parameter address for
PLA ;function value
PLA
LDA RETURN+1 ;Retrieve return address
PHA ;and push on stack
LDA RETURN
PHA
RTS ;Return to Pascal
.END

For instructions on how to assemble this 6502 program and link it into a
Pascal program, see Part II of this manual, Chapter 6. Here is how it works:

1. When it calls ADDR, Pascal places the following information on the
evaluation stack:

2 bytes Pascal return address
4 bytes 0 (space for function value)
2 bytes address of variable passed for X

2. The Pascal return address is at the "top" of the stack. The 6502 routine
starts by popping it off the stack and storing it in a temporary register
(bytes $0 and $1 on the zero page).

3. The 6502 routine then increments the stack pointer with 4 PLA
instructions, so that it now points to the address of the variable passed
forX.

4. Instead of popping this address, however, the 6502 routine simply
restores the Pascal return address. The stack now looks like this:

2 bytes Pascal return address
2 bytes address of variable passed for X

Chapter 16: Miscellaneous Information

5. When the 6502 routine exits with an RTS instruction, Pascal removes
its return address from the stack, restoring program execution to the
point where ADDR was called.

6. Because ADDR is a function of type INTEGER, Pascal now removes 2
more bytes from the stack, treating them as an integer value. ADDR
thus returns the address passed to it by Pascal in the form of an integer.

Here is an example of using ADDR together with the POKE procedure
described earlier. It sets the last byte of a Pascal static variable KICKME
to 0:

POKE CADDR CKICKME> + SIZEOF CKICKME> - 1, 0);

SIZEOF (KICKME) returns the number of bytes of memory occupied by
KICKME. It is added to ADDR (KICKME). The resulting value minus 1 is the
absolute memory address of the last byte of KICKME. The POKE procedure
forces it to a value of 0.

Miscellaneous 1/0 Information

This section presents a grab-bag of Apple Pascal input/ output information
to supplement the material in Chapter 10. It includes

o The effect of certain control characters on the screen display;
o How to move the screen cursor with the procedure GOTOXY;
o How to read the current values for the t and i keys from the file

SYSTEM.MISCINFO;
o How to use the KEYPRESS function;
o How to access game control inputs with the PADDLE function;
o How to read the o and • keys with the BUTTON function;
o How to produce audio outputs with the NOTE procedure;
o How to set and test the high bit of characters enterea on the keyboard;
o How to disable the Pascal operating system's response to certain control

characters;
o Rules for Apple Pascal's special handling of control characters with GET,

PUT, WRITE, WRITELN, READ, and READLN;
o Effects of READ and READLN on EOF, EOLN, and the file buffer

variable.

Miscellaneous I/O Information III-265

III-266

Program Unit Required! The Program Unit APPLES TUFF must be
present in an accessible library at the time a program using any of these
I/O operations is compiled or executed:

KEYPRESS PADDLE BUTTON NOTE

You must also write the declaration USES APPLESTUFF; just after the
program heading. APPLESTUFF is originally supplied in the file
SYSTEM.LIBRARY. The USES declaration is further described in
Chapter 12; libraries are discussed in Chapter 13.

Screen Controls

Apple Pascal provides four screen control characters to turn the cursor on
and off and to make the entire display inversed (black on white):

Screen Action ASCII Code Program Statement

Make cursor visible 5 WRITE (CHR(5));
Make cursor invisible 6 WRITE (CHR(6));
Turn inverse video on 15 WRITE (CHR(15));
Turn inverse video off 14 WRITE (CHR(l 4));

When using these characters, observe these limitations and cautions:

o ASCII codes 5 and 6 do not work on the original Apple Ile (without the
65C02 processor) when executing in SO-column mode.

o These controls may have unpredictable results with some non-Apple
SO-column text cards.

o You must remember to restore them to normal (cursor visible, inverse
video off) before exiting your program. Pascal will not do it for you.

The GOTOXY Procedure

The procedure GOTOXY sends the cursor to a specific position on the
screen. It is written

GOTOXY (XCOORD, YCOORD);

where XCOORD and YCOORD are expressions with integer values. XCOORD
gives the horizontal coordinate of the cursor destination; it must be in the
range 0 .. 79. YCOORD gives the vertical coordinate of the cursor destination;
it must be in the range 0 .. 23. The upper left corner of the screen has
coordinates 0,0.

Chapter 16: Miscellaneous Information

Reading t and i Vah.1es

Different configurations of Apple computers produce different ASCII values
for the t and i key functions.

On the Apple Ile and Ile, the t and i keys produce the ASCII values for
CONTR01-K and CONTR01-J, respectively.

On the Apple II, CONTR01-0 and CONTR01-1 are used to move the cursor
up and down, but Pascal translates the keystrokes CONTR01-0 and
CONTR01-1 to CONTR01-K and CONTR01-J, respectively. As a result of
this translation, the ASCII values for CONTROL-0 and CONTR01-1 cannot
be produced by typing on the keyboard of an Apple II. This can cause a
problem when using an 80-column text card on an Apple II, because some
80-column text cards need to use CONTR01-0 and CONTR01-1. The special
II80.MISCINFO file solves this problem by preventing Pascal from
translating CONTR01-0 and CONTR01-1.

If your program needs to check for t and L it should not check for specific
ASCII values because different hardware configurations will produce
different ASCII values fort and i. Instead, your program should get the
current t and i values from SYSTEM.MISCINFO.

The values for the current configuration are stored in the file
SYSTEM.MISCINFO on the startup disk: the t key value at byte 78, and the
i value at byte 79. The file SYSTEM.MISCINFO is discussed in Part I of this
manual.

The following sample procedure reads the character values for t and i from
SYSTEM.MISCINFO and places them in the two global CHAR variables
UpKey and DownKey. It also issues an error message if it cannot read
SYSTEM.MISCINFO.

Miscellaneous I/O Information III-267

III-268

VAR UpKey : CHAR;
DownKey : CHAR;

PROCEDURE SetKeys;
VAR buf : PACKED ARRAY [0 .. 5111 OF CHAR;

f : FILE;
BEGIN

RESET Cf, '*SYSTEM.M!SCINFO'>;
IF BLOCKREADC f, bu f, D o 1 THEN

BEGIN
writeln ('Cannot read *SYSTEM.MISC!NFO');
exit <PROGRAM>

END;
UpKey := buf[78l;
DownKey := buf[79l;
CLOSE C fl

END {SetKeys};

Note that this routine is suitable for the Apple II, Apple Ile (with or without
an 80-column text card), and Apple Ile, but does not work for any external
terminal that generates multiple-character sequences, such as ESCAPE-U
and ESCAPE-D, for arrow keys.

The KEYPRESS Function

The KEYPRESS function provides an easy way for your program to tell if
there is a character waiting to be read in Pascal's type-ahead buffer. It has
no parameters, and returns a boolean value of TRUE if there are one or
more characters waiting.

Because characters wait in the type-ahead buffer until read, a statement
such as

IF KEVPRESS THEN READ <KEYBOARD, CH>;

can be used to retrieve a character that was typed while the program was
doing something else. UNITCLEAR (1) flushes Pascal's type-ahead buffer.

I
External Terminal Caution: KEYPRESS will always return FALSE
when the system uses an external terminal connected via a serial
interface card.

Chapter 16: Miscellaneous Information

Game Input

Apple Pascal provides the function PADDLE to read inputs from the
Apple II GAME connector. It is written with one parameter:

PADDLE (SELECT)

where SELECT MOD 4 is an integer expression with a value of 0, 1, 2, or 3,
representing the four hand control inputs on the GAME connector. PADDLE
returns an integer in the range 0 .. 255, representing the position of the
selected hand control.

Apple Key and Button Inputs

The function BUTTON reads the 6 and • keys; it also reads the 0 and 1
buttons on the Apple hand controls. It is written with one parameter:

BUTTON (SELECT)

where SELECT is an integer expression with a value of 0 to represent the 6
key (or hand control button 0), or 1 to represent the ~ key (or hand control
button 1). BUTTON returns a boolean value; TRUE while the key or button
is pressed, FALSE otherwise.

The Audio Output

Apple Pascal provides one procedure for creating clicks or musical tones
with the built-in speaker. The NOTE procedure is written

NOTE (PITCH, DURATION)

where PITCH is an integer expression with a value in the range 0 .. 50 and
DURATION is an integer expression with a value in the range 0 .. 255. A
PITCH of 0 is silent; PITCH values of 2 through 48 produce an
approximately tempered chromatic scale with sharps and flats. DURATION
values represent arbitrary (but equal) time units during which the note is
sounded.

NOTE (1,1) produces a single click.

The following statement, for example, produces a chromatic octave:

FOR N := 12 TO 24 DO NOTE CN, 10fD;

Miscellaneous 1/0 Information Ill-269

III-270

Setting the High Character Bit

On Apple II models with an 6 key, holding down the 6 key while a
character is typed from the keyboard sets the high bit of that character. On
models with hand controls, pressing button 0 does the same thing. You can
disable this feature, by using the POKE procedure described above under
"Direct Memory Access" to set the value of memory address $BF11
(- 16623) to 0. To restore the high bit feature, set the value of memory
address $BF11 to 128.

The high bit feature affects only characters that Pascal reads from the
keyboard. It has no effect on other inputs to Pascal. When a character is
written to the screen, the high bit is ignored.

You can check whether or not the high bit of a character is set by simply
using the CHR function to test whether or not its ASCII code is greater than
127. You can also use the more complex UNITSTATUS call; it is described
under "UNITST ATUS With the Keyboard" in Chapter 10.

Disabling Control Characters

The following ASCII control characters perform special functions in the
Apple Pascal system: ·

40-Column Mode Olll.ly

CONTROL-A Shows the alternate 40-chara.cter "page" of Pascal's
SO-character display

CONTROL-Z Initiates "Auto-follow" mode; screen scrolls right or
left to follow the cursor

Apple II Plus Only

CONTROL-E

CONTROL-W

AH Configurations

CONTROL-S

CONTROL-F
CONTROL-@

Enables shift between uppercase and lowercase
characters and turns on reverse video
Forces the keyboard into uppercase for the next
character typed and turns on reverse video

Stops any ongoing operating system process or
program
Cancels subsequent program output
Interrupts current program and displays the message
Program Interrupted by User

Chapter 16: Miscellaneous Information

To disable the CONTROL-A, CONTROL-Z, CONTROL-E, and CONTROL-W
effects, as a group, set bit 0 of memory address $BF1C (-16612) to 1. To
reenable these control characters, set bit 0 to 0.

To disable the CONTROL-S, CONTROL-F, and CONTROL-@ effects, as a
group, set bit 1 of memory address $BF1 C (-16612) to 1. To reenable these
control characters, set bit 1 to 0.

You can change the value of memory address $BF1 C by using the POKE
procedure described above under "Direct Memory Access." The change will
remain until Pascal is restarted with a "cold start." A "warm start" will not
affect the value of address $BF1C.

Special Handling of Control Characters

Under some conditions the I/O procedures GET, PUT, WRITE, WRITELN,
READ, and READLN translate the following control characters into other
characters:

o The CR (or RETURN or CONTROL-M) character, ASCII 13
o The DLE (or CONTROL-P) character, ASCII 16
o The CONTROL-C (or ETX) character, ASCII 3

This section explains what happens to these characters during various I/O
operations.

A Word to the Wise: Because of the special handling of these
characters, described below, you should not use GET, PUT, WRITE, and
WRITELN for control-character communication with device drivers. Use
UNITREAD and UNITWRITE instead.

Control Characters With GET and PUT

Files of type TEXT or INTERACTIVE are usually accessed with the text
I/O procedures WRITE, WRITELN, READ, and READLN. When GET and
PUT are used with files of type TEXT and INTERACTIVE, the three control
characters listed earlier may become translated. Here are the rules.

Miscellaneous l/O Information III-271

III-272

The CR character is used in files of characters to mark the end of a line. The
special handling is as follows:

o When this character is read by GET it is converted to a space (ASCII 32).
EOLN then returns TRUE.

o When PUT writes the CR character to a disk file, there is no special
action; the CR character is simply written into the file.

o When PUT writes the CR character to a character device, a line feed
character (ASCII 10) is automatically written immediately after the CR.

The DLE character is used in textfiles as the first character of a
two-character code to represent indentation at the beginning of a line or a
sequence of spaces anywhere on a line; this is called a DLE-blank code and
is explained in Chapter 10 under "The UNITREAD and UNITWRITE
Procedures." The special handling of DLE with GET and PUT is as follows:

o When the DLE character is read by GET, it and the following character
are converted to a sequence of spaces (assuming that a sequence of
GETs is used for reading). The exception is when GET is used to read
from the console; in this case the DLE and the following character are
simply read like any other characters.

o When PUT writes the DLE character to a disk file, there is no special
action; the DLE character and the following character are simply written
out. However, when output is to a character device the DLE character
and the next character following it are converted into a sequence of
spaces.

The CONTROL-C character is used with character devices as an end-of-text
indicator. The special handling is as follows:

o When the CONTROL-C character is read from a disk file by GET, no
special handling occurs; the CONTROL-C is read like any other character.

o When the CONTROL-C character is read from a character device by GET,
it is converted to a space. EOF and EOLN return TRUE.

o When PUT writes the CONTROL-C character, there is no special action;
the CONTROL-C character is simply written out like any other character.

Chapter 16: Miscellaneous Information

Control Characters With WRITE and WRITELN

The control characters listed earlier are handled by the WRITE and
WRITELN procedures as follows:

o Whenever WRITE or WRITELN sends a RETURN character (ASCII 13)
to a character device, it adds a line feed (ASCII 10). WRITE and
WRITELN do not do this when output is to a disk file.

o With both procedures, when a DLE-blank code (ASCII 16 followed by
another character) is written to a character device, the DLE-blank code
is "expanded" to a sequence of spaces. DLE-blank codes are not
expanded when output is to a disk file; the DLE character and the next
character are written like any other characters.

o No special handling is provided for the CONTROL-C character.

Control Characters With READ and READLN

When READ or READLN is used with a variable of type CHAR whose value
is one of the control characters listed earlier, the value is translated as
follows:

o Whenever the RETURN character (ASCII 13) is read, it is converted to a
space (ASCII 32).

o A DLE-blank code found in a textfile is converted by READ to a sequence
of spaces. The exception is when READ is used for input from the
console; in this special case a DLE is not converted but simply read like
any other character.

o When the CONTROL-C character (ASCII 3) is read from a disk file, there
is no special handling; the CONTROL-C is read like any other character.

o When the CONTROL-C character is read from a character device, it is
converted to a space and causes EOF and EOLN to return TRUE.

Miscellaneous READ and READLN Effects
GHMttW Mt

The following facts about READ and READLN are important if you combine
text I/O with GET and PUT calls, or mix reading and writing operations on
the same file variable. You may also need to know exactly when EOLN and
EOF become TRUE with READLN and with numeric variables.

Note that for mixed reading and writing, the rules given below are more
straightforward for INTERACTIVE files than for TEXT files.

Miscellaneous 1/0 Information III-273

III-274

After READ with a CHAR variable and an INTERACTIVE file:

o The file buffer variable contains the character that was read, unless
EOLN or EOF is TRUE. '\

o If the next I/O operation is a PUT, WRITE, or WRITELN, the operation
begins with the character after the one that was read.

o EOF is TRUE if the character read was beyond the end of the file or was
a CONTROL-C character from a character device. In this case the value
of the file buffer variable is undefined.

o EOLN is TRUE if the character read was the RETURN character. In this
case the file buffer variable contains a space.

o EOLN is also TRUE if EOF is TRUE.

After READ with a CHAR variable and a TEXT file:

o The file buffer variable contains the character after the character that
was read, unless EOLN or EOF is TRUE.

o If the next I/O operation is a PUT, WRITE, or WRITELN, the operation
begins with the second character after the one that was read.

o EOF is TRUE if the character read was the last character in the file or if a
CONTROL-C was read from a character device. In this case the value of
the file buffer variable is undefined.

o EOLN is TRUE if the character read was the last character on the line
(not counting the RETURN character). In this case the file buffer
variable contains a space.

o EOLN is also TRUE if EOF is TRUE.

After READ with a numeric variable and a TEXT or INTERACTIVE file:

o The file buffer variable contains the character after the last character of
the numeric string that was read, unless EOLN or EOF is TRUE.

o If the next I/O operation is a PUT, WRITE, or WRITELN, the operation
begins with the second character after the last character of the numeric
string.

o EOF is TRUE if the last character of the numeric string was the last
character in the file or a CONTROL-C was read from a character device.
In this case the value of the file buffer variable is undefined.

o EOLN is TRUE if the last character of the numeric string was the last
character on the line (not counting the RETURN character). In this case
the file buffer variable contains a space.

o EOLN is also TRUE if EOF is TRUE.

Chapter 16: Miscellaneous Information

After READ with a STRING variable and a TEXT or INTERACTIVE file:

o The file buffer variable contains a space that represents the RETURN
character at the end of the line, unless EOF is TRUE.

o If the next I/O operation is a PUT, WRITE, or WRITELN, the operation
begins with the first character on the next line.

o EOF is TRUE if the line read was the last line in the file. In this case the
value of the file buffer variable is undefined.

o EOLN is always TRUE.

After READLN with any variable and an INTERACTIVE file:

o The file buffer variable contains a space that represents the RETURN
character at the end of the line, unless EOF is TRUE.

o If the next I/O operation is a PUT, WRITE, or WRITELN, the operation
begins with the first character on the next line.

o EOF is TRUE if the line read was the last line in the file. In this case the
value of the file buffer variable is undefined.

o EOLN is never TRUE.

After READLN with any variable and a TEXT file:

o The file buffer variable contains the first character on the next line,
unless EOLN or EOF is TRUE.

o If the next I/O operation is a PUT, WRITE, or WRITELN, the operation
begins with the second character on the next line.

o EOF is TRUE if the line read was the last line in the file. In this case the
value of the file buffer variable is undefined.

o EOLN is TRUE only when EOF is TRUE.

Program Chaining

Apple Pascal provides facilities by which one program can chain to another.
This means that the first program specifies the second one by giving its
filename; the system then executes the second program as soon as the first
one terminates normally. It also allows the first program to pass a string
value to the second program. This feature allows almost any information to
be passed, because the string can be a filename and can thus specify a
communications file containing almost anything.

Program Chaining III-275

Ill-276

Program chaining is accomplished by means of six procedures:

SETCHAIN SETCVAL GETCV AL

SWAPON SW APGPON SW APOFF

These procedures are discussed in the sections that follow.

Program Unit Required! The Program Unit CHAINS TUFF must be
present in an accessible library at the time a program using any of the
program chaining procedures is compiled or executed. You must also
write the declaration us Es c HA 1 N s Tu FF ; just after the program
heading. CHAINS TUFF is originally supplied in the file
SYSTEM.LIBRARY. The USES declaration is further described in
Chapter 12; libraries are discussed in Chapter 13.

The SETCHAIN Procedure

The SETCHAIN procedure call has the form

SETCHA!N C NEXTFILE)

where NEXTFILE is a string value up to 23 characters. It should be either
the filename of a code file or the filename of an exec file with the prefix
EXEC/. As soon as the program terminates normally, the system will
proceed to execute the file whose name is the value of NEXTFILE.

When using SETCHAIN, bear these rules in mind:

o Programs are run exactly as if they had been executed from the Pascal
command line. Thus it is not necessary to supply the suffix .CODE for a
code file or .TEXT for an exec file.

o If the program is halted because of any run-time error, or as a result of
executing the HALT procedure, chaining does not occur. However a
termination caused by the EXIT procedure is considered a normal
termination and chaining proceeds.

When your program uses chaining, you can use wildcards (<null>, %,
or *)to specify the volume name of the program to be chained to. Wildcards
are discussed under "External Files" in Chapter 10. For example, if you
want the set of programs

MASTER: {a volume}

PARAMS.CODE {an executable program}
BUDGET.CODE {an executable program}
GOALS.CODE {an executable program}
FDRECST.CODE {an executable program}

Chapter 16: Miscellaneous Information

to be executed in the order

GOALS.CODE
PARAMS.CODE
BUDGET.CODE
FORECST.CODE

you use these calls to the SETCHAIN procedure:

o In GOALS.CODE use the procedure call

SETCHAIHC'%PARAMS'>;

o In PARAMS.CODE use the procedure call

SETCHAIHC'%BUDGET'>;

o In BUDGET.CODE use the procedure call

SETCHA!HC'%FORECST'>;

By using the percent prefix when specifying the next file to be chained to,
you avoid having to know the file's volume name. To start running the
programs in the chain, you execute MASTER:GOALS. Again, all that is
necessary is that you place the files on line and on the same disk.

The SETCV Al Procedure

The SETCV AL procedure call has the form

SETCVAL C MESSAGE >

where MESSAGE is a STRING value (up to 80 characters). SETCV AL stores
the MESSAGE in a system location called CHAINV AL, where it can be
picked up by another program.

The GETCVAl Procedure

The GETCVAL procedure call has the form

GETCVAL C MESSAGE >

where MESSAGE is a declared string variable. GETCVAL picks up the
current value of CHAINV AL from the system and stores it in the MESSAGE
variable. If CHAINV AL has not been set by another program (using
SETCVAL), then the value of CHAINVAL is the null string. Once
CHAINV AL has been set, it remains set to the same value until it is changed
by another SETCV AL or the system is restarted.

Program Chaining III-277

III-278

SWAPON, SWAPGPON, and SWAPOFF
¥¥¥¥¥+ AA ; ·' am *®"'Mt' n

Apple Pascal operating system swapping is discussed in Part II, Chapter 2,
under the "Swap" command. The swapping options described there can be
set from within a program using CHAINS TUFF. These procedures take no
parameters. Each one, when called, will cause operating system swapping
during execution of the next program in the chain, as follows:

SW APON First level swapping
SWAPGPON Second level swapping
SW APO FF No swapping (default state)

Examples of Chaining
if44%&•

This section contains two examples to illustrate how chaining works.

Selecting From a Menu of Programs

Suppose that a disk named GAMES: contains a collection of game programs
whose code files have the following names:

CHESS.CODE
CHECKERS.CODE
BLASTOFF.CODE
GOMOKU.CODE
BACKGAMMON.CODE
BLACKJACK.CODE
HEARTS.CODE
SPROUTS.CODE

You could use the Filer to display a list of filenames on the GAMES: disk,
then return to the Command level and execute a selected program. With
chaining, however, you can write a "front-end" program to display a menu

Chapter 16: Miscellaneous Information

of all the available games. The user chooses one by typing a number, and
the front-end program chains to the selected game program:

PROGRAM FRONT;
USES CHAINSTUFF;

VAR GAMENUM: INTEGER;

BEGIN
{Display a greeting}
WRITELNC'Welcome to GAMES!'>;
WRITELN;
{Display the menu}
WRITELNC'Select game from list by typing its number:'>;
WRITELN;
WRITELNC'1
WRITELNC '2
WRITEUH '3
WRITELNC '4
WRITELNC'S
WRITELNC '6
WRITELNC'7
WRITELNC '8
WR ITELN;

Chess');
Checkers'>;
Blastoff');
Gomoku');
Backgammon');
Black jack'>;
Hearts');
Sprouts');

{Get a number from the user}
WRITEC'Type a number from 1 to 8, then press RETURN: ');
READLNCGAMENUM>;
{Make sure the number is valid}
WHILE NOT CGAMENUM IN [1 .. 81) DD BEGIN

WRITEC'Number must be from 1 through 8-try again: ');
READLNCGAMENUM>

END;
{Set chaining to filename of selected game; use wildcard}
CASE GAMENUM OF

1: BEGIN
SETCHAINC'%CHESS'>;

2:
3:
4:
5:
6:
7:
8:

END
END.

SWAPDN {Big program; needs extra memory space}
END;
SETCHAINC'%CHECKERS'>;
SETCHAINC'%BLASTOFF'>;
SETCHAINC'%GOMOKU');
SETCHAIN<'%BACKGAMMON'>;
SETCHAINC'%BLACKJACK'>;
SETCHAINC'%HEARTS'>;
SETCHAINC'%SPRDUTS')

Program Chaining III-279

III-280

Using SETCV AL and GETCV AL, you can also have the FRONT program get
the user's name and pass it to the selected game program. To do this, the
FRONT program declares a string variable NAME and includes the
following lines:

{Get user's name and store it in CHAINVAL}
WRITEC'Type your name, please: ');
READLNCNAMD;
SETCVALCNAMD

Now a game program that wants the user's name can obtain it by calling
GETCV AL with its own string variable UN AME:

GETCVAU UNAMD

The value of UN AME in the game program will be the same as NAME in the
FRONT program.

Accessing the Filer From a Program

By using chaining, you can invoke the Pascal Filer from a program and then
return to your program with the Filer's Quit command. Here's how to do it:

l. Call SETCV AL in your program, giving it the filename of your program.
This will place the filename in CHAINV AL.

2. Call SETCHAIN, giving it the filename of the Pascal Filer. End the
filename with a period to indicate that it has no suffix.

3. When your program finishes execution, it will chain to the Filer. You
can use any of the Filer commands, as if it had been invoked from the
Pascal command level.

4. When you Quit the Filer, it will check to see if there is a filename in
CHAINV AL. If there is, it will chain to that file and set CHAINV AL to
the null string. If not, it will return to the Pascal command level as
usual.

5. Note that you could put the name of a different program in CHAINVAL
in step 1 above. The Filer would then quit to that program.

Chapter 16: Miscellaneous Information

Here is an example of invoking the Filer from the middle of a word
processing program:

PROGRAM WORDMIX;
USES CHAINSTUFF;

... program text

WRITE ('Type F to exit to Filer: '>;
READ <COMMAND>;
IF COMMAND IN C'F','f'l THEN

BEGIN
SETCVAL C'LETTERS:WORDMIX'>;
SETCHAIN ('*SYSTEM.FILER.'>

END
END. <End of WORDM!X}

Programming Techniques

This section describes some programming techniques too specialized for
inclusion in the rest of this manual. In each case, a sample program or
program fragment is listed. The techniques are

o Record linking-creating a series of linked record variables in memory;
o Screen dumping-transferring text from screen memory to an external

device such as a printer;
o Creating a dynamic text array in memory;
o Binary tree creation-an example of using recursion to create a binary

tree of linked record variables.

Record Linking

By using dynamic variables, you can store multiple records in a structure of
linked record variables. Such a structure is a series of record variables,
each of which contains a pointer field that points to the next one in the
series.

Programming Techniques III-281

TYPE DATE = RECORD
DAY, YEAR : INTEGER;
MONTH : STRING;
LIHK : ADATE

EHD;

VAR FIRST, CURRENT

BEGIN
HEW CF I RST>;
CURRENT := FIRST;
REPEAT

Here is a typical process for creating linked record variables:

1. Declare a base type for the desired record structure but add one more
field, declaring it as a pointer type. This declaration adds one word of
length to each record variable.

2. Declare one pointer variable to point to the first linked record variable,
and one or more additional to point to record variables being processed.

3. To create the first record variable, use NEW and the first pointer
variable.

4. To create each succeeding record variable, use NEW and the pointer
field of the preceding record variable.

5. Set the pointer field of the last linked record variable to the pointer
constant NIL. This unique constant allows your program to detect the
last variable in the series.

Let's see how we might create a linked series of record variables of the type
DATE (a record type used in Chapter 4):

{Declare a base type}

{Hew field-a pointer variable}

{Declare two more pointers}

{Create first record variable}
{Point CURRENT to it}

... process CURREHTA ...

HEW CCURREHTA.LIHK>;
CURRENT := CURREHTA.LIHK;

UNTIL ... some condition ...
CURREHTA.LIHK ·= HIL;

{Create next record variable}
{Point CURRENT to it}
{Repeat until done}
{Last pointer field set to HIL}

EHD.

III-282

This program fragment creates a linked series of record variables until the
condition following UNTIL is satisfied. It then assigns the constant NIL to
the last link pointer. Note that the pointer variable FIRST remains
unchanged, pointing to the first linked record variable. We can always point
CURRENT to the first variable by assigning it the value of FIRST.

Chapter 16: Miscellaneous Information

Thereafter, every execution of

CURRENT := CURRENTA.LINK

carries us down the series one variable. CURRENT A always identifies the
record presently accessible. When the field CURRENT A .LINK is found to
contain the pointer constant NIL, we know that CURRENT A is the last
record in the series.

Screen Dumping

It is sometimes necessary to dump characters directly from screen memory
to an external device such as a printer. You can do this by using the PEEK
and POKE operations described above to access memory directly.

The sample procedure listed below can be used on an Apple Ile with an
Apple SO-Column Text Card or an Apple Ile in SO-column mode.

Programming Techniques III-283

The following sample procedure assumes that PEEK and POKE are
available to it:

PROCEDURE SCREEHDUMP CSTARTLIHE, EHDLIHE
{uses PEEK and POKE}

IHTEGER>;

COHST OLDBASL = 1915; {Hex S77B}
OLDBASH = 2843; {Hex $7FB}
STORE81! = -16383; {Hex SCl!I! 1; so·ft switch for 81!-col auxiliary}
PAGE20H = -16299; {Hex $Cl!55}
PAGE20FF -1631!1!; {Hex $Cl!54}

VAR BASEADDR, X, V : IHTEGER;
CH : CHAR;
P IHTERACTIVE;

BEGIH
RESET CP, 'PRIHTER:'>;
V : = STARTLI HE;

{Open printer}
{Initialize counter}

WHILE V <= EHDLIHE DO

EHD;

III-284

BEGIH
GOTOXV Cl!, V>; {Move cursor to beginning of start line}
BASEADDR := PEEKCOLDBASL> + PEEKCOLDBASH> * 256; {Find cursor}
FOR X := I! TO 79 DO

BEGIH
POKECSTORE81!, I!);
IF ODDCX > THEH

POKECPAGE20FF, ll>
ELSE

{Set up for page switching}

{Select 81!-col main memory}

POKECPAGE20H, I!); {Select 81!-col card memory}
CH := CHRCPEEKCBASEADDR + CX DIV 2>>>; {Read memory}
POKE CPAGE21!FF, I!>; {Switch back to page 1>
WRITE CP, CH> {Send character to printer}

EHD;
WRITELH CP>; {Go to next line}
V := V + 1 {Count a line}

EHD

When SCREENDUMP is called from a Pascal program and given two integer
parameters in the range 0 .. 23, it sends to the external device PRINTER: the
contents of the monitor screen at that moment. The first parameter
specifies the first screen line dumped, and the second parameter the last.

Chapter 16: Miscellaneous Information

PROCEDURE CreateArray;

CONST
FreeSpace= 2Wl!l~;

BytesinBlock= 511;
WordsinBlock= 256;
ByteslnArray= 80e0;
MaxArraylndex= 7999;

Creating a Dynamic Text Array

The following fragment of Pascal source text demonstrates a method by
which you can dynamically allocate a variable-length packed array of
characters (a text array). The procedure works like this:

l. A check is made to ensure that there is enough space for the array. If
there is not, a message is displayed, and the procedure is exited.

2. The number of bytes available for a dynamic buffer is calculated.
3. The first block of the buffer is allocated, and a pointer to its head is

defined.
4. Other blocks are sequentially allocated until there is not enough space

left to allocate another.
5. All of the blocks in the buffer are transformed into a packed array of

characters.

{Words of stack/heap space to be
reserved to prevent overflow}

{Number of bytes in a block minus one}
{Number of words in a block}
{Maximum number of bytes in text array}
{Maximum index into text array}

{Note: the values assigned to ByteslnArray and MaxArraylndex can
approach 32767, but are limited by program and memory size}

TYPE
BlockBuffer= PACKED ARRAY [0 .. ByteslnBlockl OF CHAR;

{The block-sized input/output buffer}
TextArray= PACKED ARRAY C0 .• MaxArraylndexl OF CHAR;

{The text array, divided into BlockBuffer
sized chunks}

Programming Techniques III-285

VAR
Loop,
WordsinArray,
BytesCalcBuffer,
WordsCalcBuffer,
BytesActualBuffer

INTEGER;
PtrBuffer : ABlockBuffer;
PtrArray : ATextArray;
TrixBuffer : PACKED RECORD

CASE BOOLEAN OF

{Maximum number of words in the array}
{Humber of bytes allowed in the buffer}
{Humber of words allowed in the buffer}
{Humber of bytes currently in the buffer}

{Pointer to buffer}
{Pointer to text array}
{Record for conversion of buffer to a
text array, and for use as a temporary
buffer pointer}

TRUE: CIB: ATextArray>;
FALSE: CBB: ABlockBuffer>;

END;

BEGIN
{Check to see if there is enough room to allocate the buffer
for the array. Note: MEMAVAIL returns the number of available
words.}

IF MEMAVAIL < Freespace THEN
BEGIN

WRITELH C'Hot enough room for text buffer.'>;
READLH;
EXIT CCreateArray>

END;

{Calculate the number of bytes allowed in the buffer; defined as
the smaller of "available memory" or the defined array size
CBytesinArray)}

WordsCalcBuffer :• MEMAVAIL - Freespace;
WordsinArray:= CBytesinArray DIV 2>;
IF WordsCalcBuffer > WordsinArray THEN

BytesCalcBuffer:= BytesinArray
ELSE BytesCalcBuffer:= WordsCalcBuffer * 2;

{Allocate the space for the buffer}
HEW CTrixBuffer.BB>; {Allocate the first block, with a

pointer to its head}

{Allocate the remaining blocks in the buffer. Since the 2nd
through nth blocks are allocated sequentially after the 1st
block, their pointers are discarded.}

FOR Loop:• 1 to CBytesCalcBuffer DIV WordsinBlock - 1) DO
HEW CPtrBuffer>;

{Transform the buffer into an array to enable byte-oriented procedures
and functions}

PtrArray:• TrixBuffer.IB;
BytesActualBuffer:• BytesCalcBuffer;

END;

III-286 Chapter 16: Miscellaneous Information

Once the text array has been created, you are free to use byte-oriented
procedures and functions, such as SCAN and MOVELEFT, with PtrArray as
a parameter. Individual characters within the array can be referenced as

PtrArrayACElementl

where Element is in the range O .. BytesCalcBuffer. If you attempt to write to
elements outside of this range, you will probably overwrite part of your
program.

Binary Tree Construction

The following is an example of a recursive program. BINTREE constructs a
group of linked records in memory, representing a balanced tree. Each node
of the tree contains a value entered by the user. Other recursive programs
can be written to search the tree for a specific value, or access the nodes in
a specific order.

To use this program, type a number representing the number of nodes to be
stored, followed by a value for each node. BINTREE creates a record of type
NODE in memory for each value. It then displays all the values on the
screen in the form of a horizontal tree structure with each level of
branching indented.

PROGRAM BINTREE;

TYPE PTR = ANODE;
NODE = RECORD

VALUE : I l'ITEGER;
LEFT, RIGHT : PTR

END;

VAR N : INTEGER;
BASE : PTR;

Programming Techniques III-287

III-288

FUNCTION BRANCH CH : INTEGER> PTR;
VAR HEWVAL : PTR;

X, L, R : INTEGER;
BEGIN

IF H = B THEN BRANCH ·= NIL
ELSE

BEGIN
L := H DIV 2;
R:=H-L-1;
READ CX>;
HEW CHEWVAL>;
WITH HEWVALA DO

BEGIN
VALUE := X;
LEFT := BRANCH CL>;
RIGHT := BRANCH CR>

END;
BRANCH ·• HEWVAL

END
END;

PROCEDURE SHOWTREE CHEXT
VAR I : I HTEGER;
BEGIN

IF NEXT <> NIL THEN
WITH HEXTA DO

BEGIN

PTR; COUNT

SHOWTREE CLEFT, COUHT+1>;

INTEGER>;

FOR I :• 1 TO 5 * COUNT DO WRITE C' '>;
WRITELH CVALUE>;

END;

BEGIN

SHOWTREE CRIGHT, COUHT+1>
END

READ CH>;
BASE := BRANCH CH>;
WRITELH;
SHOWTREE <BASE, B>

END.

Chapter 16: Miscellaneous Information

Appendix3A Syntax Diagrams

IJI-289

Identifier

letter

letter

digit

underscore

Type Declaration

--s C ·I ".~e;;.,, f-0--l __ typ_e_ .. f--O)'

Constant Declaration

III-290 Appendix 3A: Syntax Diagrams

Variable Declaration

new
identifier

Long Integer Type

INTEGER
length

attribute

User-Defined Scalar Type

new
identifier

Subrange Type

constant

Subrange Type

constant

type

III-291

III-292

String Type

STRING-~-----------.....,..;--

Set Type

Set Constructor

t--....-----....... -... expression t--..---...

Appendix 3A: Syntax Diagrams

unsigned
integer

constant

expression t-----.,.-~--..,.-~

Array Type

Record Type

RECORD

index
type

Record Type Field list

new
identifier

Record Type Field List

type

END

element
type

variant
part

III-293

III-294

Record Type Variant Part

tag
identifier

,,..._7'P-~ constant ~-...-+ii

WITH Statement

Pointer Type

record
variable

reference

Appendix 3A: Syntax Diagrams

tag
type

identifier

field
list

statement

NEW Procedure

pointer
variable
identifier

constant 1--~-.1

MARK and RELEASE Procedures

MARK

RELEASE

MARK and RELEASE Procedures

pointer
variable
identifier

III-295

Expression

simple ___ __, ... < t---o...,_-1'11

expression

Simple Expression

lll-296 Appendix 3A: Syntax Diagrams

simple
expression

Term

,....._ _ _, I ~--,

Term IIl-297

III-298

Factor

unsigned
constant

variable
reference

function
call

set
constructor

factor

expression

Unsigned Constant

constant
identifier

unsigned
number

Appendix 3A: Syntax Diagrams

character 1---~-t

Unsigned Number

Function Call

function
identifier

expression ..._~-<>-t

Assignment Statement

variable
reference

Assignment Statement

expression

III-299

III-300

Variable Reference

variable
identifier

CONCAT Function

CON CAT

Appendix 3A: Syntax Diagrams

expression .__~_...,..

field
identifier

FOR Statement

FOR identifier expression

TO DO statement

DOWNTO

WHILE Statement

expression statement

REPEAT Statement

REPEAT 11--....,,...- UNTIL expression

REPEAT Statement III-301

IF Statement

expresssion statement statement 1--__ .,..

CASE Statement

CASE expression OF

caseclause 11-----.,..--,

END

OTHERWISE statement

CASE Statement Case Clause

,....._ constant 11--~_..,.. statement

III-302 Appendix 3A: Syntax Diagrams

SEGMENT

GOTO Statement

_t=::\ -~ ~
~

EXIT Procedure

EXIT

Procedure Definition

identifier

PROGRAM

,.....,__ ______ __, _ _.,., PROCEDURE new ,__ _ __,... parameter
identifier list 11--_,__,»1

block

Procedure Definition III-303

III-304

Function Definition

type
identifier

Parameter list

new
identifier

Parameter Declaration

Appendix 3A: Syntax Diagrams

1--...----....... · parameter 1---,,....__.,..
list

block

new
identifier

type
identifier

REWRITE

Procedure Call

identifier

File Type

FILE

TEXT

OF
component 1---.,_......,..

type

INTERACTIVE 1----------------

REWRITE Procedure

file
identifier

REWRITE Procedure

string
expression

lll-305

III-306

RESET Procedure

file
identifier

CLOSE Procedure

file
identifier

EOF Function

string
expression

option
identifier

~r----.:-T--~ 1(\-J d file L--1)"'\ J ~ ~ ~\:::::J l \JI i entifier l\V .

Appendix SA: Syntax Diagrams

WRITELN !t--~_,.,..

WRITE Procedure

file
identifier

WRITELN Procedure

file
identifier

Value Specifier

value
expression

Value Specifier

width
expression

value
specifier

value
specifier

decimal
places

expression

Ill-307

READLN o--~--....

III-308

READ Procedure

file
identifier

READLN Procedure

file
identifier

EOLN Function

Appendix SA: Syntax Diagrams

variable
reference

UNI TREAD

UNITWRITE

length
expression

BLOCKRE.AD and BLOCK.WRITE Functions

BLOCKREAD

BLOCKWRITE

count
expression

file
identifier

variable
reference

blocknumber
expression ,___..,...___,

UNITREAD and UNITWRITE Procedures

unitnum
expression

blocknumber ,____,M ~--.,..;.......---.

expression

UNITREAD and UNITWRITE Procedures

variable
reference

mode
expression

III-309

111-310

Program Unit Compilation

Program Unit Syntax

unit
heading interface

Regular Unit Heading

new
identifier

Appendix 3A: Syntax Diagrams

1--..---+-1 implementation

UNIT

Intrinsic Unit Heading

new
identifier

dsegnurn 1--~--.
constant

Interface Section

INTERFACE 1--~--i»I

Interface Section

INTRINSIC

uses
declaration

constant
declarations

type
declarations

variable
declarations

procedure
heading

function
heading

CODE
csegnurn
constant

III-311

Implementation Section

IMPLEMENTATION t--....,---.t

III-312 Appendix 3A: Syntax Diagrams

label
declarations

constant
declarations

variable
declarations

procedure
declaration

function
declaration

Appendix 3B Floating-Point Numbers

Ill-313

III-314

This appendix contains further details on arithmetic, rounding, and
input/ output operations with values of type REAL. It supplements, in
greater technical detail, the following information in other sections of this
manual:

o Your options for writing real constants in source text, as explained in
Chapter 2, "Numbers."

o The text formats in which READ and READLN will accept real values, as
explained in Chapter 10, "The READ and READLN Procedures."

o The text formats in which WRITE and WRITELN output real values, as
explained in Chapter 10, "The WRITE and WRITELN Procedures."

o The format in which real values are stored in memory, as described in
Appendix 3C, "Memory Allocations for Data Types."

Definitions

The following definitions explain some special terms used in this appendix.

Binary floating-point number: A 32-bit string characterized by three
components: a sign, a signed exponent, and a significand. Its numeric value,
if any, is the signed product of its significand and 2 raised to the power of its
exponent.

Exponent: The component of a binary floating-point number that normally
signifies the power to which 2 is raised in determining the value of the
represented number. Occasionally, the exponent is called the signed or
unbiased exponent.

Biased exponent: Exponents are stored as values that range from 0 to 255.
The biased exponent equals the unbiased exponent plus 127.

Significand: The 24-bit component of a binary floating-point number that
consists of the implicit bit to the left of the binary point and the fraction
field to the right of the binary point. The implicit bit is not stored.

Fraction: The 23-bit field of the significand that lies to the right of its
implied binary point.

Rounding: When the result of an arithmetic operatfon cannot be
represented exactly as a binary floating-point number (for example, 1/3
or 1/10), it must be rounded. The rounding method for Apple Pascal values
of type REAL is described in a later section of this appendix.

Appendix 3B: Floating-Point Numbers

Normalized numbers: The storage format of all binary floating-point
numbers. Normalized numbers are characterized by the assumption of a
leading 1 in the significand. All Apple Pascal real-value arithmetic is done
with normalized numbers.

Exceptions

Apple Pascal recognizes the following set of exceptional conditions in
floating-point arithmetic:

o Overflow
o Underflow
o Division by zero
o Inexact result
o Invalid operation
o Integer conversion (an invalid operation)

Exceptions may cause program halts or may allow the program to continue
with inexact or meaningless results. The responses to each exception are
listed below.

Overflow

The overflow exception occurs when a correctly rounded result is larger
than the largest normalized single-precision real number. That number is
described as follows:

Storage Format

Sign= 0,1
Exponent = 254
Fraction = all ones

Binary Representation
2254 - 127 " 1.11..1

Decimal V slue

3.402823e38

The response to an overflow is a program halt.

Exceptions III-315

III-316

Underflow ,.
The underflow exception occurs when the magnitude of a nonzero result is
less than 1.1754944 x 10-38 (2- 126). The response to an underflow is to set
the result to 0 and continue.

Division by Zerro

The division-by-zero exception occurs in a division operation when the
divisor is 0 and the dividend is a nonzero number (for example, 2/0). The
response is to halt the program.

Division of 0 by 0 is a special case, covered in the section "Invalid
Operation."

Inexact Result

The inexact exception occurs when a result has been rounded or has
overflowed. The response to an inexact result is to continue.

Invalid Operation

This exception arises in a variety of arithmetic operations. Any exception
other than overflow, underflow, division by zero, and inexact result falls in
the category of invalid operations. Invalid operations are exceptions that do
not occur frequently enough to deserve special classification.

The following events are invalid operations:

o Division of 0 by 0.
o SQRT of a value less than 0.
o Conversion of a real value to an integer when overflow makes a correct

conversion impossible. The integer conversion exception is signaled by
TRUNC and ROUND if their arguments exceed the bounds of the
predeclared type INTEGER.

The response to any invalid operation is to halt the program.

Appendix SB: Floating-Point Numbers

This section describes the format of the numbers used by the Apple Pascal
floating-point system. A normalized, single-precision number has the form

x = +I - 2E -127 <> (l.F)

where

+/-=sign bit(+ is 0, - is 1),

E = exponent, and

F =X's 23-bit fraction that, together with an implicit leading 1, is the
significand. The significand ranges between 1.00 .. 0 and 1.11..1 (because the
leading bit is always 1, it is not stored).

The number X above is represented in memory storage as shown in
Appendix 3C.

These numbers offer the same precision (slightly more than 7 significant
decimal places) as the DEC PDP-11 format and slightly more than the IBM
370 short format.

Accuracy

The following sections describe those aspects of the floating-point system
that affect the accuracy of rounding and input/output conversions.

Rounding Modes

If the result of an arithmetic operation is exactly representable in the
single-precision format, that result will be returned. Otherwise, the result
will be rounded to nearest value, with ties going to the even value.

Input/Output Ccmversions

The use of floating-point arithmetic requires the conversion of numbers
from decimal to binary on input and from binary to decimal on output. The
error that occurs in these conversions will be less than 1 unit of the
destination's least significant digit. The I/O conversions are used by READ,
READLN, WRITE, and WRITELN.

Accuracy III-317

III-318

This section describes how real values may be written to and read from text
files, using the built-in procedures READ and WRITE. READLN and
WRITELN work similarly to READ and WRITE, respectively. Because text
files represent numbers in decimal notation, and the computer uses a binary
representation internally, such input and output require number base
conversions from decimal to binary and binary to decimal.

Real values appear as character strings in two different contexts: as source
text submitted to the Compiler (real constants), and as text files written
and read by Pascal programs. The syntax of real numbers applies in both
cases. The Compiler converts character strings to numbers differently than
READ and WRITE do. It uses a simpler and less accurate method of
decimal-to-binary conversion than READ and WRITE.

Input: Decimal to Binary

When READ expects a real value, it searches for the first nonblank
character, which is assumed to be the first character of the real value.
READ throws away any blanks it finds in the meantime (for this purpose,
carriage returns are counted as blanks). All subsequent characters, up to
but not including the first character failing to satisfy the syntax of a real
number, are assumed to belong to the real value. The file's buffer variable is
left pointing at the delimiting character.

If the first nonblank characters can't be interpreted as a real number, or if
an end-of-file (EOF) was encountered before a real value could be found, a
syntax error results. This error signals the invalid operation exception. An
EOF may delimit the last real value in the file, acting as the "first character
failing the syntax."

When Pascal reads a real number, digits and decimal points are interpreted
in the usual way. E ore can be read (roughly) as times ten to the -power.
Any number of digits can be read, and all of them will contribute to the
conversion. The exponent part has a range of 0 to 99.

The decimal-to-binary conversion signals underflow whenever a nonzero
input produces a zero result. It signals overflow whenever an input exceeds
the largest representable number. It signals inexact whenever the
conversion is not exact. Both underflow and overflow are checked after
rounding.

Appendix 3B: Floating-Point Numbers

Output: Binary to Decimal

For writing real values, WRITE statements take parameters of three forms:

REXP:El REXP:El:E2 REXP

where REXP is an expression of type REAL, and El and E2 are expressions
of type INTEGER. El is called the width expression, and gives a minimum
number of characters to be written. E2 is called the decimal places
expression, and asks for a specific number of digits to appear to the right of
the decimal point.

REXP:El asks for the value REXP to be written as

- x.xxxxxxxE+ yy

In this "floating" form, the signs will vary, but the form will always include
one digit to the left of the point and a two-digit exponent with a sign. The
value of REXP is rounded to the number of digits needed to fill up the field
width given by El.

REXP:El:E2 asks for the valueREXP to be written as

bbbbb-xxxx.yyy

In this "fixed-point" form, there is no exponent, and the value REXP is
rounded to E2 decimal places to the right of the point. The number of digits
to the left of the decimal point are implied by the magnitude of REXP.
Enough blanks are padded on the left to fill out the field width given by El.
If the width El is insufficient, it is ignored and as many characters are
written as are needed to represent the value of REXP with E2 decimal
places.

The parameter REXP (without El and E2) asks for the default "floating"
form with El set to 12. This form gives 6 significant digits of precision.

Messy Details: If E2 is missing, any El less than 8 is increased to 8. If
E2 is present, any El less than E2 + 3 is increased to E2 + 3. Then, if El
is greater than 80, El is decreased to 80, and if E2 is present, it is
decreased by an equal amount.

A zero value is always written 0. 0, regardless of El and E2. It is padded
with blanks left and right to fill the given field width and to keep its decimal
point aligned with those of other values written with the same WRITE
parameters.

Accuracy III-319

Appendix 3C Memory Allocations for Data Types

III-321

III-322

Every Pascal typed variable occupies a specific format in machine memory.
This appendix tells you what the formats are.

Variable Sizes

Scalar types may have two standard sizes, depending on whether or not
they are packed. The following table shows scalar sizes.

Scalar Type Unpacked Size Packed Size

Integer one word one word (16 bits)
Char one word one byte (8 bits)
Boolean one word one bit
Subrange one word if smallest value > = 0, then number of

bits in largest value, else one word
User-defined one word number of bits needed to represent the
Scalar number of scalars in the scalar list

Scalar types become packed only when they are elements of packed arrays
or fields of packed records. The ways that packed scalars are fitted into
these types are discussed below and in Chapter 4, under "Packed Arrays"
and "Packed Records."

Other simple types cannot be packed. The following table shows their sizes
in memory.

Type

Real
Long Integer
Pointer
String

Size

two words
for form INTEGER[X]: (X+3) DIV 4 + 1 words
one word
for string of max length N: (N+2) DIV 2 words

Structured types-records, arrays, sets, and files-always occupy a whole
number of words whether they are packed or not. The number of words
occupied depends on the internal structure given to the type.

Records

Each field that is a simple type is allocated a size as indicated above. If the
record is a packed record, then the packed sizes are allocated. Variant

Appendix 30: Memory Allocations for Data Types

record tag fields given an identifier occupy the same space as they would if
they were ordinary fields. Free union variants have no tag fields. The
example below indicates the memory space allocated to each field in a
typical record, including the variant part:
PACKED RECORD

HAME : STRIHG<2B>;

SEX : CMALE, FEMALE>;

ID : e .. 8191

MARRIED:BOOLEAH;

CASE HASCHILDREH:BOOLEAH OF

EHD;

{11 words}

{1 bit>

{13 bits}

{ 1 bit}

{ 1 bit}

In this case, the total record size is 14 words with the first 11 words going to
the NAME field, the next word for the SEX, ID, MARRIED, and
HASCHILDREN fields, and the last two words either going to the
NUMCHILDREN and OLDEST fields or to the STERILE and BLOODTYPE
fields, depending on the value of the HASCHILDREN tag field.

Because the allocation of fields starts with the least significant bit within a
word, the SEX, ID, MARRIED, and HASCHILDREN fields are allocated
within word 12 as follows:

SEX bit e
ID bits 1 .• 13
MARRIED bit 14
HASCHILDREN bit 15

NUMCHILDREN and OLDEST are allocated words 13and14, respectively.
However, if this case variant of the record had been declared as

CASE HASCHILDREN:BOOLEAN OF
TRUE:CNUMCHILDREN, OLDEST:INTEGER>;

then OLDEST would have been allocated word 13 and NUMCHILDREN
word 14, because the Compiler allocates fields backward within such a list.
(This backward allocation also applies to lists of variables in VAR
declarations.)

Variable Sizes III-323

III-324

If a field is packable, but there is not enough room in a given word for that
field to fit, the entire field is moved to the beginning of the next word. This
packing method leaves some unused space in the first word. An example is

TYPE PART = PACKED RECORD
PARTHUM: I! .. 511; {word 1, bits I! .. 8}

AMOUNT: INTEGER; {word 2, al 1 bits}
ORDERQTY: 1 .. 99; {word 3, bits I! .. 6}

END;

In this example bits 9 through 15 of the first word go unused because the
integer won't fit there. Also, note that bits 7 through 15 of the third word go
unused, but because the record size must be a whole number of words, the
total record size is exactly three words.

Accordingly, if PART is used as part of a larger record

PARTSHEET = PACKED RECORD
WHICHPART:PART; {words 1 .. 3}
INITIAL: CHAR; {word 4, bits ll .. 7}

END;

the record type PART is considered to be a three-word chunk, and although
the INITIAL field would have fit into the third word of PART, it is not put
there.

Arrays

For an array to be packed, the size of the array element must be 8 bits or
less. Arrays of records or other structured types are not packed. If the
element size is 8 bits or less, then each 16-bit word of the array gets the
largest possible integral number of elements. In the array

PACKED ARRAY C-11! .. 11!1 OF l! .. 7;

each word of the array contains five three-bit elements (with bit 15 of each
word empty); the array contains a total of five words (21 divided by 5,
rounded up). Array elements are allocated in increasing word order in
memory and in increasing bit order within each word.

Appendix 3C: Memory Allocations for Data Types

Note that the array declarations

PACKED ARRAY [1 •. 10 l OF

PACKED ARRAY [1 •. 2J OF BOOLEAN;

PACKED ARRAY [1. . 10, 1 .. 2 J OF BOOLEAN;

ARRAY [1..H'Jl OF PACKED ARRAY [1..21 OF BOOLEAN;

are all equivalent, and that the "inner" array of booleans gets packed into
one word (14 bits unused), whereas the "outer" array of arrays does not get
packed (the size of its elements is one word).

Sets -A set occupies the number of bits equal to the largest element's ordinal
value plus one, and is rounded up to a whole number of words. For example,
the declaration

TYPE A = SET OF 20 .. 63;

B = SET OF 40 •• 64;

allocates 4 words for A and 5 words for B.

Files -File variables occupy space in memory as follows:

Untyped file variables: 40 words

Typed file variables: 300 words plus the size of the buffer variable

Type TEXT or INTERACTIVE: 301 words

The size of a typed file's buffer variable is the same as any ordinary variable
of the same type as the file type (for instance, 1 word for
FILE OF INTEGER, 2 words for FILE OF REAL, and so on).

Variable Sizes III-325

III-326

Memory Formats

Integers are stored in adjacent bytes, with the least significant byte at the
lowest memory address. This is also the byte located by any pointer to the
integer. A 16-bit integer therefore looks like this:

0

Low Byte

Pointer

Integer Type
7 0

High Byte

7

Low
Memory

~--------;;.,,.. High
Memory

Real numbers occupy 4 bytes of memory, with the least significant byte at
the lowest address. The 23 lowest bits express the number's fraction, the
next 8 bits its exponent, and the highest bit its sign. Pointers locate the
lowest byte:

0

Pointer

Low
Memory

7 0

Fraction

Real Type
7 0

Appendix 3C: Memory Allocations for Data Types

7 0

Exponent

7

Sign

High
Memory

Pascal stores ordinary (not packed) CHAR variables in the same way as
integers, with the ASCII code occupying the low byte. The upper byte is not
initialized, and should be ignored:

Character Type
0 7 0 7

11111111111111111
----~----~~~~

ASCII Code

t
Pointer

Low
Memory

Garbage

High
Memory

Unpacked boolean variables are stored in the same way as integers. Only
the least significant bit is read to determine the boolean value. However, the
logical operators operate on all 16 bits. Packed boolean variables are stored
as single bits.

Long integers are stored as binary-coded-decimal (BCD) digits, each
occupying 4 bits of memory. The format is rounded up to the next complete
word.

Pointers are stored in the same way as integers. Pascal interprets their
values as memory addresses. The value of a pointer variable may be
converted into an integer with the ORD function.

Memory Formats III-327

III-328

Strings are stored as successive bytes of ASCII code, preceded by a length
byte. Pointers point to the length byte, which is an unsigned binary number
indicating how many ASCII characters follow. Thus the string actually
begins at the pointer address plus one:

String Type
0 7 0 7 0 7

111111111111111111111111111111--~~~
'-~---~~~'-------y-----'---~-....~~~'----y-----'

Length
Byte

t
Pointer

Low
Memory

First
Character

Second
Character

and
soon

High
Memory

Sets are stored as packed arrays of up to 512 bits, each bit corresponding to
the ordinality of one possible member. The number of bits depends on the
base type of the set. The value of each bit indicates whether or not the
member it represents is in the set: 1 for in, 0 for not in.

Arrays, records, and files are stored as linear collections of the simpler types
that make them up. For details, see the discussion of "Variable Sizes" above.

Appendix 3C: Memory Allocations for Data Types

Appendix 3D Useful Assembly-Language Macros

III-329

Ill-330

The .MACRO directive provides a convenient way to include often-used
routines in your 6502 assembly-language programs. Each macro is given an
identifier; it can then be called elsewhere in the 6502 program. With the
.REF directive, it can also be called by other 6502 programs. All this is
explained in Part II, Chapter 6.

This appendix contains descriptions and listings of a collection of 6502
macros that you may find useful in assembly-language programming. Each
macro description gives the form of its call from elsewhere in the 6502
program. In the form specifications, parameters enclosed in parentheses ()
are required; parameters enclosed in angles < > are optional.

The POP Macro

This macro saves the word on the top of the stack in a specified location; its
action is complementary to the PUSH macro.

Form: POP (location)

location = The address in which the word is to be stored .

. MACRO POP
PLA
STA %1
PLA
STA %1+1
.ENDM

The PUSH Macro

This macro pushes the word in a specified location onto the top of the stack;
its action is complementary to the POP macro.

Form: PUSH (location)

location = The address from which the word is to be taken .

. MACRO PUSH
LDA %1+1
PHA
LDA %1
PHA
.ENDM

Appendix SD: Useful Assembly-Language Macros

The RMVBIAS Macro

This macro removes from the evaluation stack the four zero bytes (the bias)
passed for a Pascal function.

Form: RMVBIAS

.MACRO
PLA
PLA
PLA
PLA
.ENDM

The MOVE Macro

RMVBIAS

This macro moves the word value stored at one location to another location.

Form.: MOVE (from), (to)

from = The address whose value is to be moved.

to = The address to which the value is to be moved .

. MACRO MOVE
LDA %1
STA %2
LDA % 1+1
STA %2+1
.ENDM

The DEBUGSTR Macm
¥/Wfttt

This macro generates ASCII strings to aid debugging, if DEBUG = 1
(TRUE). If DEBUG = 0 (FALSE), no strings are generated.

Form: DEBUGSTR (message), <jumpto>

message = The message to be inserted into the code as a .ASCII directive.
Note that four asterisks are added before and after the message.

The DEBUGS TR Macro III-331

IIl-332

.MACRO

. IF
ZPAGE
.ENDC
. IF
. IF
STA
.ELSE
• l F
STX
.ELSE
. l F
STY
.ENDC
.ENDC
.ENDC
.ENDC
. IF
. IF
STA

jumpto = The optional location to which execution should jump (to bypass
the debug message).

.MACRO DEBUGSTR

. IF DEBUG

. IF 18%2" (} HU

JMP %2
.ENDC
.ASCII 81 * * * ... % 1 * * * * 00

.ENDC

.ENDM

The SAVEREGS Macro

This macro saves the values of specified registers starting at a specific
zero-page location. Any combination of A, X, and Y may be saved.

Form: SAVEREGS (location), <regl>, <reg2>, <reg3>

location= The zero-page location at which the register values are to be
saved. If this parameter is omitted, the ZPAGE LOCATION NOT SPECIFIED
message will be displayed.

regl, reg2, reg3 =The registers from which the values are to be saved;
they are all optional.

SAVEREGS

LOCATION NOT SPECIFIED

U%2~'()16H

n%2Gl=nAu
%1

%1

u%2u=01yea

%1

G!%301()HU

u% 3 01=oaA•~

% 1+1

;Check for first register
;Accumulator?

;X register?

;V register?

;Check for second register
;Accumulator?

Appendix 3D: Useful Assembly-Language Macros

.ELSE

. IF
STX
.ELSE
. IF
STY
.EHDC
. ENDC
.EHDC
.EHDC
. IF
. IF
STA
.ELSE
. IF
STX
.ELSE
. IF
STY
.ENDC
.ENDC
. ENDC
.ENDC
.ENDM

.MACRO

. IF
ZPAGE
.EHDC
. IF
. IF
LDA

°'%3u=nxu
% 1+1

n%3u=nyn
% 1+1

~ax 4 n < > au1

B'%4u=nAu
%1+2

n%4n=nxau
%1+2

1a,;4n=~•yn

%1+2

; x register?

; v register?

;Check for third register
;Accumulator?

;X register?

;V register?

The RESTRIEGS Macro

This macro restores the values of specified registers, by reading values
starting from a specific zero-page location. Any combination of A, X, and Y
may be restored.

Fo:rm: RESTREGS (location), <regl>, <reg2>, <reg3>

location = The zero-page location at which the register values are stored.
If this parameter is omitted, the ZPAGE LOCATION NOT SPECIFIED
message will be displayed.

regl, reg2, reg3 =The registers into which the values are to be restored;
they are all optional.

RESTREGS

LOCATION NOT SPECIFIED

Bl%281()119H

1ax 2 au=uAu

% 1

;Check for first register
;Accumulator?

The RESTREGS Macro III-333

.ELSE
• IF
LDX
.ELSE
• IF
LDY
.EHDC
.ENDC
.ENDC
.ENDC
• IF
• IF
LDA
.ELSE
• IF
LDX
.ELSE
• E F
LDY
.ENDC
.ENDC
.ENDC
.ENDC
• IF
. IF
LDA
.ELSE
• IF
LDX
.ELSE
• IF
LDY
.ENDC
.EHDC
.ENDC
.ENDC
.ENDM

III-334

11x2u=11x1U ; x register?
%1

nx2n=a~y•c ; y register?
%1

111x31n()IUI ;Check for second register
ux3u~nAH ;Accumulator?
%1+1

u,;3n:IHIXEB ; x register?
%1+1

11,;3n 2 11y11 ; y register?
% 1 ... 1

nx41111()UIH ;Check for third register
1cx 4 111=•~Au ;Accumulator?
% 1 +2

eex4aa:H)(H ; x regi5ter'?
%1+2

nx411:11:10y1a ; y register?
% 1 +2

The SET Macro

This macro sets specific bits within a byte.

Form: SET (bits),(byte)

bits = The bits to be set.

Appendix 3D: Useful Assembly-Language Macros

byte = The address of the byte whose bits are to be set .

. MACRO SET
LDA #%1
ORA %2
STA %2
.ENDM

The RESET Macro

This macro resets specific bits within a byte.

Form: RESET (bits),(byte)

bits= The bits to be reset (set to 0).

byte = The address of the byte whose bits are to be reset.

.MACRO RESET
MASK .EQU FF

LDA N%1"MASK is EXCLUSIVE DR
AND %2
STA %2
.ENDM

The SWITCH Macro

This macro performs an n-way branch based on a switch index. The
maximum value of the switch index is 127 with bounds checking provided
as an option. The A and Y registers, and the C, Z, and N status flags, are
destroyed by the macro. The X register is not modified by the macro.

Form: SWITCH <index>, <bounds>,(address table),<.,>

index = The variable that is to be used as the switch index. If it is omitted,
the accumulator is used as the index.

bounds = The maximum allowable value for the index. If the index
exceeds this value, the carry bit is set and execution continues. If this
parameter is omitted, then no bounds checking is performed.

address table = A table of addresses used by the switch. Note that the
address -1 is used, because of the RTS instruction.

The SWITCH Macro III-335

.MACRO
• IF
LDA
.ENDC
. IF
CMP
BCS
.ENDC
ASL
TAY
LDA
PHA
LDA
PHA
. IF
RTS
.ENDC

$il99
.EHDM

IIl-336

SWITCH

* = If the asterisk is supplied as the fourth parameter, the macro will push
the switch address but will not exit to it; execution will continue after the
macro.

oax 11D()l~U ;If param1 then
;Load A with index %1

ux2ou<>"aa ;If param2 then
;Perform bounds check
;on switch index

01%2+ 1
$099

A

%3+1,Y

%3,Y

;Get switch address from the
;table and push onto stack

H%4"()1DifH ;If param4 <> * then
;Exit to code
;Else Continue

The MOVEDATA Macro

This macro moves up to 255 bytes within the assembly-language code/data
space, in descending order. The A and X registers are destroyed; Y is not
modified.

Form: MOVEDATA (from), (to), (count)

from = The byte address of the location from which the move is to occur.

to= The byte address of the location to which the move is to occur.

Appendix 3D: Useful Assembly-Language Macros

count = The number of bytes to move. If count is zero, the message ZERO
IS A BAD COUNT is displayed .

. MACRO MOVEDATA

.IF %3=0
ZERO IS A BAD COUNT
.ENDC
LDX #%3

$99 LDA %1-1,X
STA %2-1, x
DEX
BNE $99 ;Loop until done
.ENDM

The MOVEDINC Macro

This macro moves up to 255 bytes within the assembly-language code/data
space, in ascending order. The A and X registers are destroyed; Y is not
modified.

Form: MOVEDINC (from), (to), (count)

from = The byte address of the location from which the move is to occur.

to :::: The byte address of the location to which the move is to occur.

count = The number of bytes to move. If count is zero, the message ZERO
IS A BAD COUNT is displayed .

. MACRO MOVED INC

.IF %3=!/J
ZERO IS A BAD COUNT
.ENDC
LDX #9

$99 LDA % 1 'x
STA %2,X
INX
CPX #%3
BCC $99 ;Loop until done
.ENDM

The MOVEDINC Macro Ill-337

. MACRO

. IF

. IF
NO BITS
.ELSE
LDA
AND
BEG
.ENDC
.ELSE
LDA
AND
EOR
. IF
BEG
.ELSE
BNE
LDA
AND
BEG

$099
.ENDC
.ENDC
.ENDM

III-338

The BITBRANCH Macro

This macro causes a branch if specified bits within a byte are on or off. The
A register is destroyed; X and Y are unmodified.

Form: BITBRNCH (data), <bitson>, <bitsoff> ,(branch)

data = The location of the byte whose bits are to be checked.

bitson = The bits of this optional byte specify which bits of the data byte
must be on if the branch is to occur.

bitsoff = The bits of this optional byte specify which bits of the data byte
must be off if the branch is to occur.

branch = The address to which execution should branch if the bits of the
data byte specified by bitson are on, and the bits specified by bitsoff are off.

If the bits specified by bitson are not on, or if the bits specified by bitsoff are
not off, the specified branch is not taken. You need not specify both bitson
and bitsoff, but you must specify at least one of them, or the message NO
BITS SPECIFIED will be displayed .

BITBRNCH
"%21H=OBll
e1x3•0=10lll

SPECIFIED ;Generate an error

#%3
%1
%4 ;Bits off only

#%2
%1
#%2
ux3DlglDOD

%4 ;Bits on only

U99
#%3
%1
%4 ;Both conditions have been met

Appendix 3D: Useful Assembly-Language Macros

The NOTBITBR Macro

This macro is the converse of macro BITBRNCH. It causes a branch if
specified bits within a byte are not on or off. The A register is destroyed; X
and Y are unmodified.

Fo:rm: NOBITBR (data), <bitson>, <bitsoff> ,(branch)

data = The location of the byte whose bits are to be checked.

bitson = The bits of this optional byte specify which bits of the data byte
must be on if the branch is not to occur.

bitsoff = The bits of this optional byte specify which bits of the data byte
must be off if the branch is not to occur.

branch = The address to which execution should branch if the bits of the
data byte specified by bitson are not all on, and the bits specified by bitsoff
are not all off.

If any one of the bits specified by bitson are not on, or if any one of the bits
specified by bitsoff are not off, the specified branch is taken. If the bits
specified by bitson are on, and the bits specified by bitsoff are off, the
specified branch is not taken, and execution continues with the next
instruction. You need not specify both bitson and bitsoff, but you must
specify at least one of them, or the message NO BITS SPECIFIED will be
displayed.

The NOTBITBR Macro III-339

.MACRO NOTBITBR

. IF H%2Dl=D8ll0

. IF "%3n•=acen
NO BITS SPECIFIED ;Generate an error
.ELSE
LDA #%3
AND %1
BNE %4 ;Bits off only
.ENDC
.ELSE
LDA #%2
AND %1
EOR #%2
. IF ux3u=c•n
BNE %4 ;Bits on only
.ELSE
BNE %4
LDA #%3
AND %1
BNE %4 ;Both conditions have been met
.ENDC
.ENDC
.ENDM

III-340 Appendix 3D: Useful Assembly-Language Macros

Appendix 3E Summary of 6502 Opcodes

Ill-341

III-342

Notation

The following notation applies to this summary:

A
x, y
M

c
p

s
./

"
¥

I
I

v
PC
PCH

PCL

OPER

Accumulator

Index Registers

Memory

Borrow

Processor Status Register

Stack Pointer

Change

No Change

Add

Logical AND

Subtract

Logical E}(clusive Or

Transfer From .Stack

Transfer To Stack

Transfer To

Transfer To
Logical OR

Program Counter

Program Counter High

Program Counter Low

Operand

Immediate Addressing Mode

FIGURE 1 ASL-SHIFT LEFT ONE BIT OPERATION

FIGURE 2 ROTATE ONE BIT LEFT (MEMORY
OR ACCUMULATOR)

FIGURE 3 ROTATE ONE BIT RIGHT (MEMORY
OR ACCUMULATOR)

NOTE 1: BIT - TEST BITS

Bit 6 and 7 are transferred to the status register. If the
result of A/\ M is zero then Z=1, otherwise Z=O.

Appendix SE: Summary of 6502 Opcodes

6502 Microprocessor Instructions

ADC Add Memory to Accumulator with LOA Load Accumulator with Memory

Carry LOX Load lndex X with Memory

AND ''ANo·· Memory with Accumulator LOY Load Index Y with Memory

ASL Sh1f1 Left One 811 !Memory or LSR Shift Righi one Bit !Memory or

Accumulator) Accumuletori

BCC Branch on Carry Clear NOP No Operation

BCS Branch on Carry Set ORA "OR" Memory with Accumulator
BEQ Branch on Result Zero

BIT Test Bits 1n Memory with
PHA Push Accumulator on Stack

Accumulator
PHP Push Processor Status on Stack

BMI Branch on Result Minus
PLA Pull Accumulator from Stack

.SNE Branch on Result not Zero
PLP Pull Processor Status from Steck

BPL Branch on Result Plus AOL Rotate One Bit Left (Memory or

BAK Force Break Accumulatorl

eve Branch on Overflow Clear ROA Rotate One Bit Right !Memory or

BVS Branch on Overflow Set Accumulator1

CLC Clear Carry Flag
RTI Return from Interrupt

CLO Clear Decimal Mode
ATS Return from Subroutine

CLI Clear Interrupt Disable 811 SBC Subtract Memory from Accumulator

CLV Clear 0Yerflow Flag with Borrow

CMP Compare Memory and Accumulator SEC Set Carry Flag

CPX Compere Memory and Index X SEO Set Decimal Mode

CPY Compare Memory and Index Y SIEI Set Jnterrupt Disable Status

DEC Decrement Memory by One STA Store Accumulator 1n Memory

DEX Decrement Index X by One STX Store Index X 1n Memory

DEY Decrement Index Y by One STY Store Index Y 1n Memory

EOR "ExclusiYe-Or'' Memory with TAX Transfer Accumulator to Index X

Accumulator TAY Transfer Accumulator to Index Y

INC Increment Memory by One
TSX Transfer Stack Pointer to Index X

INX Increment Index X by One
TXA Transfer Index X to Accumulator

INY increment Index Y by One
TXS Transfer Index X to Stack Pointer

TYA Transfer Index Y to Accumulator
JMP Jump to New Location

JSR Jump to New Location Saving

Return Address

6502 Microprocessor Instructions III-343

III-344

Programming Model

15

PCH

I 01

N V

0

A ACCUMULATOR

0

y INDEX REGISTER Y

0

x INDEX REGISTER X

0

PCL I PROGRAM COUNTER

0

s I STACK POINTER

PROCESSOR STATUS REGISTER. "P"

CARRY
'----- ZERO

'------INTERRUPT DISABLE
'-------DECIMAL MODE

'--------- BREAK COMMAND
'------------ OVERFLOW

'------------- NEGATIVE

Appendix 3E: Summary of 6502 Opcodes

Instruction Codes

Ammbly HEX
Na ma Operallon Addressing language OP No. ·r Status Rog.

Oescrlpllon Mode Form Code Byt" NZCtOV

ADC
Add memory to A·M·C -A.C Immediate ADC •Oper 69 2 v'v'v'-. v'
accumulator with carry Zero Page AOC Oper 65 2

Zero Page.X AOC Oper,X 75 2
Absolute AOC Oper 60 3
Absolute.X AOC Oper,X 70 3
Absolute.Y AOC Qper,Y 79 3
(1ndirect.Xl AOC (Oper.X) 61 2
(lndirectl.Y AOC iOper). Y 71 2

AND
"ANO" memory with AAM-A Immediate AND •Dper 29 2 .,;,1---
accumulator Zero Page ANO Oper 25 2

Zero Page.X ANO Oper,X 35 2
Absolute ANO Oper 20 3
Absolute.X ANO Oper.X 30 3
Absolute. Y ANO Oper.Y 39 3
(Indirect.XI ANO (Qper,X) 21 2
(lndirect).Y AND iOper).Y 31 2

ASL
Shift left one bit (See Figure 1) Accumulator ASL A QA 1 v'v'v'---
(Memory or Accumulator) Zero Page ASL Oper 06 2

Zero Page.X ASL Oper.X 16 2
Absolute ASL Oper OE 3
Absolute.X ASL Oper.X 1E 3

BCC
Branch on carry clear Branch on C=O Relative BCC Oper 90 2 ------

llCS
Branch on carry set Branch on C= 1 Relative BCS Oper BO 2 -------

llEO
Branch on result zero Branch on Z=l Relative BEQ Oper FD 2 ------

BIT
Test bits in memory AAM. M1 -N. Zero Page BIT1 Oper 24 2 M7...,l---M6
with accumulator M5-V Absolute BIT1 Oper 2C 3

Bfill
Branch on result minus Branch on N=1 Relative BMI Oper 30 2 ------

llNE
Branch on result not zero Branch on Z=O Relative BNE Oper 00 2 -------

lll'l
Branch on result plus Branch on N =0 Relative BPL oper 10 2 ------

BRK
Force Break Forced Implied BRK2 00 1 ---1--

Interrupt
PC•2IP+

111/C
Branch on overflow clear Branch on V=O Relative BVC Oper 50 2 ------

Note 1 : Bits 6 and 7 are transferred to the status register. If the result of A AND M is zero,
then Z = 1; otherwise Z = 0.

Note 2: A BRK command cannot be masked by setting I.

Instruction Codes III-345

Ammbly HEX
Name Operation Addressing Language OP No "P" St•tus Reg

Description Mode Form Code Byt" NZCIOV

BVS
Branch on overflow set Branch on V 1 Relative BVS Oper 70 2

CLC
Clear carry flag o-c Im pl red CLC 1B 1 0

CLO
Clear decimal mode o-D Implied CLD DB 1 0

CLI
0-1 Implied CLI SB 1 0

CLV
Clear overflow flag o-v Implied CLV BB 1 0

CMP
Compare memory and A-M Immediate CMP •Oper C9 2 vv'v'
accumulator Zero Page CMP Oper cs 2

Zero Page. X CMP Oper.X D5 2
Absolute CMP Op er CD 3
Absolute.X CMP Oper.X OD 3
Absolute.Y CMP Oper.Y 09 3
{Indirect.XI CMP {Oper.X) C1 2
(lndirecll.Y CMP (Oper}.Y 01 2

CPX
Compare memory and X-M Immediate CPX •Oper ED 2 v'v'v'- --
index X Zero Page CPX Oper E4 2

Absolute CPX Oper EC 3

CPY
Compare memory and Y-M Immediate CPY •Oper co 2 vvv'- -
index Y Zero Page CPY Oper C4 2

Absolute CPY Oper cc 3

DEC
Decrement memory M-1-M Zero Page DEC Oper C6 2 v'v'-----
by one Zero Page.X DEC Oper.X 06 2

Absolute DEC Oper CE 3
Absolute.X DEC Oper.X OE 3

DEX
Decrement index X X-1-X Implied DEX CA 1 vv- -
by one

DEY
Decrement index Y Y-1-Y Implied DEY 88 1 vv'----
by one

III-346 Appendix 3E: Summary of 6502 Opcodes

Auembly HEX
Na ma Operation Addr..,lng Language DP No. ..p .. Slatus Reg.

Deacrlptlon Modo Form Code Byte• NZCtDV

EOR
"Exclusive-Or' memory AV M -A lmmed1ate EOA •Oper 49 2 v'v' ---
with accumulalor Zero Page EOR Oper 45 2

Zero Page.X EOR Oper.X 55 2
Absolute EOR Oper 40 3
Absolute.X EOR Oper.X 50 3
Absolute.Y EOR Oper.Y 59 3
!Indirect.Xi EOR (Oper.XI 41 2
llndirect).Y EOR iOper).Y 51 2

INC
Increment memory M • 1-M Zero Page INC Oper E6 2 v'v'----
by one Zero Page,X INC Oper.X F6 2

Absolute INC Oper EE 3
Absolute,X INC Oper,X FE 3

IN)(
Increment index X by one X • 1-X Implied INX EB 1 v'v'----
INV
Increment index Y by one V • 1-Y Implied INY CB 1 v'v'----
JMP
Jump to new location (PCd) -PCL Absolute JMP Oper 4C 3 ------

(PC•2) -PCH Indirect JMP (Oper) 6C 3

JSR
Jump to new location PC•2 I Absolute JSR Oper 20 3 ------
saving return address (PC•l) -PCL

(PC•21 -PCH

LDA
Load accumulator M-A Immediate LOA •Oper A9 2 v'v'----
with memory Zero Page LOA Oper AS 2

Zero Page,X LOA Oper,X 85 2
Absolute LOA Op er AO 3
Absolute.X LOA Oper,X BO 3
Absolute.Y LOA Oper,Y 89 3
(Indirect.Xi LOA (Oper,X) Al 2
(lndirect).Y LOA (Oper),Y Bl 2

UJJ(
Load index X M-X Immediate LOX #Qper A2 2 v'v'----
with memory Zero Page LOX Op er A6 2

Zero Page,Y LOX Oper.Y B6 2
Absolute LOX Oper AE 3
Absolute.Y LOX Oper.Y BE 3

UIY
Load index Y M-Y Immediate LOY •Oper AO 2 v'v'----
with memory Zero Page LOY llper A4 2

Zero Page,X LOY Oper,X 84 2
Absolute LOY Oper AC 3
Absolute.X LOY Oper,X BC 3

Instruction Codes III-347

Ammbly HEX
Namm Operalion Addrmlng l.Jngu•o• OP No. ·r St•lus Reg.

Ducriptlon Modo Form Code Byl" NZCIDV

LSI!
Shift right one bit (See Figure 1) Accumulator LSR A 4A 1 Ov\/---
{memory or accumulator) Zero Page LSR Oper 46 2

Zero Page.X LSR Oper.X 55 2
Absolute LSR Oper 4E 3
Absolute.X LSR Oper.X SE 3

Niii'
No operation No Operation Implied NOP EA 1 - -----

ORA
·off' memory with AV M-A Immediate ORA •Oper 09 2 ..;..;----
accumulator Zero Page ORA Oper 05 2

Zero Page.X ORA Oper.X 15 2
Absolute ORA Oper 00 3
Absolute.X ORA Oper.X 10 3
Absolute.Y ORA Oper.Y 19 3
(Indirect.XI ORA (Oper.X) 01 2
(lndirect).Y ORA (Oper).Y 11 2

PHA
Push accumulator A I Implied PHA 411 1 ------
on stack

PHP
Push processor status P I Implied PHP 08 1 ------
on stack

PLA
Pull accumulator A I Implied PLA 61! 1 ..;..;----
from stack

PLP
Pull processor status p t Implied PLP 28 1 From Stack
from stack

ROl
Rotate one bit left (See Figure 2) Accumulator ROLA 2A 1 ..;..;..;---
(memory or accumulator) Zero Page AOL Oper 26 2

Zero Page.X ROL Oper.X 36 2
Absolute ROL Oper 2E 3
Absolute.X ROL Oper.X 3E 3

ROii
Rotate one bit right (See Figure 31 Accumulator ROR A 6A 1 ..;..;..;---
(memory or accumulator) Zero Page ROR Oper 66 2

Zero Page.X ROA Oper,X 76 2
Absolute ROR Oper 6E 3
Absolule.X ROR Oper,X 7E 3

III-348 Appendix SE: Summary of 6502 Opcode8

Ammbly HEX
Nam11 Opmllon Addressing Language OP No. ·r Status Reg.

Qegcrlptlon Mode Form Coda BytH NZCIDV

RTI
Return from interrupt P!PC! Implied RTI 40 1 From StacK

ATS
Return from subroutine PC!. pc,1 -PC Implied ATS

60
1 ------

SBC
Subtract memory from A- M-C -A Immediate SBC •Oper E9 2 v'v'v'---
accumulator with borrow Zero Page SBC Oper E5 2

Zero Page.X SBC Oper,X F5 2
Absolute SBC Oper ED 3
Absolute.X SBC Oper.X FD 3
Absolute.Y SBC Oper.Y F9 3
(Indirect.XI SBC (Oper.X) E1 2
(lndirectl.Y SBC (Oper).Y F1 2

SEC
Set carry flag 1-c Implied SEC 38 1 --1---

SEO
Set decimal mode 1-0 Implied SEO FB 1 ----1-

SEI
Set interrupt disable 1-1 Implied SEI 7B 1 ---1--

status

STA
Store accumulator A-M Zero Page STA Oper BS 2 ------
in memory Zero Page.X STA Oper,X 95 2

Absolute STA Oper BO 3
Absolute,X STA Oper,X 90 3
Absolute.Y STA Oper,Y 99 3
!Indirect.XI STA (Oper,X) B1 2
(indirectJ.Y STA (Oper).Y 91 2

STX
Store index X in memory X-M Zero Page STX Oper 86 2 ------

Zero Page.Y STX Oper,Y 96 2
Absolute STX Oper BE 3

STY
Store index Y in memory Y-M Zero Page STY Oper 84 2 ------

Zero Page,X STY Oper,X 94 2
Absolute STY Oper BC 3

TAX
Transfer accumulator A-X Implied TAX AA 1 v'v' ----
to index X

TAY
Transfer accumulator A-Y Implied TAY AB 1 v'v'----
to index Y

TSX
Transfer stack pointer s-x Implied TSX BA 1 v'v'-·---
to index X

Instruction Codes III-349

Assembly HEX
N1m1 Operation Addressing language OP No. "P" St1tu1 Reg.

Oemlptlon Mode Form CINle Byt11 NZCIDV

TXA
Transfer index X X-A Implied TXA BA 1 "" - - -to accumulator

TXS
Transfer index X to x-s Implied TXS 9A 1 ------
stack pointer

TYA
Transfer index Y Y-' Implied TVA 98 1 v'v'----
to accumulator

III-350 Appendix 3E: Summary of 6502 Opcodes

Hex Operation Codes

00- BAK
01 - ORA - I Indirect. XI

02 -

03 -
04 -

05 - ORA - Zero Page

06- ASL - Zero Page
07 -

08 - PHP

09- ORA - Immediate

OA - ASL - Accumulator

OB -

oc -
OD - ORA - Absolute

OE - ASL - Absolute

OF -
10 - BPL

11 - ORA - Ond1rectl, Y

12-

13-

14 -

15 - ORA - Zero Page, X
16 ~ ASL - Zero Page, X
17-
18 - CLC
19 - ORA - Absolute, Y
1A-

1B-

1C-

1 D - ORA - Absolute, X
1E - ASL - Absolute, X
lF-
20 - JSR

21 - AND - tlndirect, Xl

22 -

23 -
24 - BIT - Zero Page

25 - AND - Zero Page

26 - AOL - Zero Page

27 -
28- PLP

29- AND - Immediate

2A - AOL - Accumulator

2B-

2C - BIT - Absolute
2D - AND - Absolute

2E - AOL - Absolute

Hex Operation Codes

2F -

30 - BMI
31 - AND - !Jnd1rectJ, Y

32 -
33 -

34 -

35 - AND - Zero Page. X

36 - AOL - Zero Page. X

37 -

38 -
39 -

3A -
3B -

3C-

SEC
AND - Absolute, y

30 - AND - Absolute. X

3E - AOL - Absolute, X

3F -

40 - ATI

41 - EOA - (Indirect, Xl

42 -

43 -

44 -
45 - EOR - Zero Page

46 - LSR - Zero Page

47 -
48 - PHA
49 - EOA - Immediate

4A - LSR - Accumulator

48 -

4C - JMP - Absolu1e

4D - EOA - Absolute

4E - LSA - Absolute
4F-

50 - 8VC
51 - EOA llndirectl. Y
52-

53-

54-

55 - EOA - Zero Page, X

56 - LSA - Zero Page. X
57-

58 - CLI

59 - EOA - Absolute. Y

SA,-
58-
5C-

SD - EOR - Absolute, X

SE - LSR - Absolute, x
SF -

60 - ATS
61 - ADC - (Jnd1rect. XI

62 -

63 -

64 -

65 - ADC - Zero Page

66- ROA _:_ Zero Page

67 -
68 - PLA

69 - AOC - Immediate

6A - ROA - Accumulator

6B -
6C - JMP - Indirect

60 - ADC - Absolute
6E - ROA - Absolute

6F -
70 - BVS

71 - ADC - llndirectl. Y

72-
73 -

74 -

75 - ADC - Zero Page,

76 - ROA - Zero Page.
77 -

78 - SEI

79 - ADC - Absolute. Y
7A-

78 -
7C-

7D - ADC - Absolute, x
7E - ROA - Absolute. X

7F -
80 -
81 - STA - !Indirect. xi

82 -

83 -
84 -STY - Zero Page
85 - STA - Zero Page

86 - STX - Zero Page

Bl -
88 - DEY

89 -

BA - TXA
88-

BC - STY - Absolute

x
x

III-351

III-352

BO - ST A - Absolute
BE - STX - Absolute
BF -
90 - BCC

91 - STA - llnd1rectl y

92 -
93-
94 - STY - Zero Page

9S - STA - Zero Page

96- STX - Zero Page.

97 -

9B - TYA
99 - STA - Absolute. Y
9A - TXS
9B-
9C-
90 - STA - Absolu1e. X

9E -
9F-
AO - LOY - Immediate
A1 - LOA - llnd1rect, x1

A2 - LOX - Immediate
A3-
A4 - LOY - Zero Page
AS - LOA - Zero Page
A6 - LOX - Zero Page

A7 -

AB - TAY
A9 - LOA - Immediate
AA-TAX
AB-
AC - LOY - Absolute
AD - Absolute
AE - LOX - Absolute
AF-
BO- BCS
B1 - LOA - llndirectl, Y
B2-
B3-

x
x
y

84 - LO'Y - Zero Page. X

BS - LOA - Zero Page. X
BS - LOX - Zero Page. Y

B7 -
BB - CLV
B9 - LOA - Absolute. Y
BA -TSX

BB -
BC - LOY - Absolu1e X
BO - LOA - Absolute. X
BE - LOX - Absolute. Y

BF -
CO - CPY - Immediate
Cl - CMP - <Indirect. Xi

C2 -
C3-
C4 - CPY - Zero Page
CS - CMP - Zero Page
C6 - DEC - Zero Page•
C7-
CB- INY
C9 - CMP - Immediate
CA -DEX
CB-
CC -CPY - Absolu1e
CO -CMP - Absolute
CE '-- DEC - Absolute
CF-
00- BNE
01 - CMP - llndirectl, Y
02-
03-
04-
DS - CMP - Zero Page. X
06 - DEC - Zero Page, X
07-
DB- CLO
09 - CMP - Absolute. Y
DA-

Appendix 3E: Summary of 6502 Opcodes

DB -
DC -
DO - CMP - Absolute x
DE - DEC - Absolute. X
OF -
EO - CPX - Immediate

E1 - SBC - tlnd1rect. X

E2 -
E3 -
E4 - CPX - Zero Page

ES - SBC - Zero Page
ES - INC - Zero Page
E7 -
EB - INX
E9 - SBC - Immediate
EA -- NOP

EB
EC - CPX - Absolute
ED - SBC - Absolute
EE - INC - Absolute
EF -
FO - BEO
F1 - SBC - llndirecti. Y
F2 -
F3 -
F4 -

FS - SBC - Zero Page. X
F6 - INC - Zero Page, X
F7 -
FB - SEO
F9 - SBC - Absolute. Y
FA -
FB-
FC-
FD - SBC - Absolute, X
FE - INC - Absolute, X
FF-

Appendix3F Tables

III-353

Table F-1. ASCII Character Codes

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char

0 00 NUL 32 20 SP 64 40 @ 96 60
I OI SOH 33 2I 65 4I A 97 6I a
2 02 STX 34 22 66 42 B 98 62 b
3 03 ETX 35 23 # 67 43 c 99 63 c
4 04 EOT 36 24 $ 68 44 D 100 64 d
5 05 ENQ 37 25 % 69 45 E lOI 65 e
6 06 ACK 38 26 & 70 46 F 102 66 f
7 07 BEL 39 27 7I 47 G 103 67 g
8 08 BS 40 28 (72 48 H 104 68 h
9 09 HT 4I 29) 73 49 I 105 69

10 OA LF 42 2A * 74 4A J 106 6A j
11 OB VT 43 2B + 75 4B K 107 6B k
I2 oc FF 44 2C 76 4C L 108 6C I
13 OD CR 45 2D 77 4D M 109 6D rn
I4 OE so 46 2E 78 4E N 110 6E n
I5 OF SI 47 2F I 79 4F 0 111 6F 0

16 10 DLE 48 30 0 80 50 p 112 70 p
I7 11 DCI 49 3I I 8I 5I Q 113 71 q
I8 I2 DC2 50 32 2 82 52 R 114 72 r
I9 13 DC3 5I 33 3 83 53 s 115 73 s
20 I4 DC4 52 34 4 84 54 T 116 74 t
2I I5 NAK 53 35 5 85 55 u 117 75 u
22 16 SYN 54 36 6 86 56 v 118 76 v
23 I7 ETB 55 37 7 87 57 w 119 77 w
24 I8 CAN 56 38 8 88 58 x I20 78 x
25 I9 EM 57 39 9 89 59 y I2I 79 y
26 IA SUB 58 3A 90 5A z I22 7A z
27 1B ESC 59 3B ; 9I 5B [I23 7B

f 28 IC FS 60 3C < 92 5C \ I24 7C
29 1D GS 6I 3D 93 5D t I25 7D l
30 IE RS 62 3E > 94 5E I26 7E
3I IF us 63 3F ? 95 5F I27 7F DEL

Codes in the range 128 .. 255 are not assigned to specific characters, but are
nevertheless usable as ASCII code values.

Some frequently used control characters are identified in this table as
follows:

BS backspace LF line feed FF form feed ESC escape
HT horizontal tab VT vertical tab CR carriage return SP space

III-354 Appendix 3F: Tables

Reserved Words and Predeclared Identifiers

Reserved words have fixed meanings in Apple Pascal. You can never use
them as identifiers without causing a Compiler error.

Built-in or predeclared identifiers are words that identify standard Apple
Pascal types, variables, procedures, functions, or Program Units. You can
use them, but if you do you destroy their original meaning.

Table F-2A. Apple Pascal Reserved Words

AND
ARRAY
BEGIN
CASE
CONST
DIV
DO
DOWNTO
ELSE
END
EXTERNAL
FILE
FOR
FORWARD
FUNCTION

GOTO
IF
IMPLEMENTATION
IN
INTERFACE
LABEL
MOD
NIL
NOT
OF
OR
OTHERWISE
PACKED
PROCEDURE
PROGRAM

Reserved Words and Predeclared Identifiers

RECORD
REPEAT
SEGMENT
SET
THEN
TO
TYPE
UNIT
UNTIL
USES
VAR
WHILE
WITH

III-355

In Table F-2B, a code is shown to the left of each identifier to indicate what
kind of object the identifier represents. The codes are

p procedure i integer function
b boolean function r real function
t type c char function
k constant f file
s string function other

Table F-2B. Apple Pascal Predeclared Identifiers

r ABS t INTERACTNE p RESET
BLOCKREAD IORESULT p REWRITE
BLOCKWRITE f KEYBOARD ROUND

t BOOLEAN LENGTH SCAN
t BYTESTREAM p MARK p SEEK
t CHAR k MAXINT SIZEOF
c CHR MEMAVAIL r SQR
p CLOSE p MOVELEFT s STR
s CON CAT p MOVERIGHT t STRING
s COPY p NEW - succ
p DELETE b ODD t TEXT
b EOF ORD k TRUE
b EOLN f OUTPUT TRUNC
p EXIT p PAGE b UNITBUSY
k FALSE POS p UNIT CLEAR
p FILLCHAR PRED p UNI TREAD
p GET p PUT p UNITSTATUS
p GOTOXY r PWROFTEN p UNITWAIT
p HALT p READ p UNIT WRITE
f INPUT p READLN t WORDSTREAM
p INSERT t REAL p WRITE
t INTEGER p RELEASE p WRITELN

III-356 Appendix 3F: Tables

Table F-2C. Identifiers Declared in Apple Pascal Program Units

The following identifiers are declared or defined in Program Units supplied with
Apple Pascal.

PASCALIO

PASCALIO

APPLES TUFF

APPLES TUFF
BUTTON
KEYPRESS
NOTE
PADDLE
RANDOM
RANDOMIZE

LONGINTIO

LONGINTIO

CHAINS TUFF

CHAINS TUFF
GETCVAL
SETCHAIN
SETCVAL
SWAPON
SWAPOFF
SWAPGPON

Reserved Words and Predeclared Identifiers

TRANSCEND

ATAN
cos
EXP
LN
LOG
SIN
SQRT
TRANSCEND

TURTLEGRAPHICS

CHARTYPE
DRAWBLOCK
FILLSCREEN
GRAFMODE
INITTURTLE
MOVE
MO VETO
PEN COLOR
SCREENBIT
SCREEN COLOR
TEXTMODE
TURN
TURN TO
TURTLEANG
TURTLEGRAPHICS
TURTLEX
TURTLEY
VIEWPORT
WCHAR
WS'rRING

III-357

IORESUL T Values

Table F-3. IORESULT Values

0 no error; normal I/O completion
1 parity (CRC)
2 illegal volume #

3 illegal I/O request
4 data-com timeout
5 volume went off-line
6 file lost in directory
7 bad file name
8 no room on volume
9 volume not found
10 file not found
11 duplicate directory entry
12 file already open
13 file not open
14 bad input format
16 disk write protected
17 illegal block #

18 illegal buffer address
19 must read a multiple of 512 bytes
20 unknown ProFile error
64 device error

IIJ-358 Appendix SF: Tables

Summary of Size limits

Table F-4. Summary of Size Limits

Maximum size of any block (including main program):

Maximum number of assembly-language procedures and/or functions in one source text:

Maximum number of segments in a codefile:

Maximum number of segments in a program:

Maximum number of procedures and/ or functions within a segment:

Maximum number of nesting levels for procedures and/ or functions:

Default maximum length of the STRING value in a variable declared without explicit size:

Maximum size that can be declared for a STRING variable:

Maximum number of elements in a set:

Maximum representable integer value:

Minimum representable integer value:

Maximum representable absolute real value:

Minimum representable absolute real value:

Maximum representable long integer value:

Summary of Size Limits

1999 bytes of compiled
code

50

16

52 (128K system)
26 (64K system)

254

8

80

255

512

32767

-32768

3.402823466E38

1.401298464E - 45

plus or minus 36 digits

III-359

Part IV Technical Reference

PREFACE

CHAPTER 1

CHAPTER2

IV-ii

Contents

Figures and Tables

The Pascal Environment
System Memory Use 2
Useful Memory Addresses 6

Main Memory Pointers 7
Auxiliary Memory Pointers 7
Identification Flags 8

Screen Mode Flag 8
Flag to Check the Pascal System Version 8
Flag to Check the Interpreter Version 8
Flag to Check the Computer Type 9

The "Ignore External Terminal" Flag 10
Interpreter Addresses 10

How Pascal Loads Code Segments 11

Disk Files
Reading a Disk Directory 14
Textfile Structure 16
Codefile Structure 17
Segments 18
Segment Dictionaries 21
Segment Numbers 27

Contents

vii

ix

1

13

CHAPTER3

Interface Text 28
Code Parts 30

Procedure Dictionaries 32
Procedures 32
Attribute Tables 33

P-Code Procedure Attribute Tables 34
Assembly-Language Procedure Attribute Tables 35
Relocation Tables 37

Linker Information 38
Linker Information Fields 40
Global Address Linker Information Types 40
Host-Communication Linker Information Types 41
Procedure and Function Linker Information Types 43
Miscellaneous Linker Information Types 43

The P-Machine
The Evaluation Stack 4 7
Registers 4 7
The Program Stack and the Heap 48

SYSCOM 49
The Segment Table 50

Activation Records 51
Markstacks 53

Contents

45

IV-iii

CHAPTER4

IV-iv

The P-Machine Instruction Set
Instruction Formats 58
Operand Formats 58

Formats of Variables on the Stack 59
Boolean 59
Integer 59
Long Integer 59
Scalar (User-Defined) 59
Char 60
Real 60
Pointer 60
Set 60
Records and Arrays 61
Strings 61

Formats of Constants in P-Code 61
Conventions and Notation 62
P-Machine Instructions 62

One-Word Loads and Stores 62
Constant 62
Local 63
Global 63
Intermediate 63
Indirect 64
Extended 64

Multiple-Word Loads and Stores (Sets and Reals) 64
Byte Array Handling 65
String Handling 65
Record and Array Handling 66

Contents

57

Dynamic Variable Allocation 67
Top-of-Stack Arithmetic 68

Integers 68
Noninteger Comparisons 69
Reals 69
Strings 70
Logical 70
Sets 71
Byte Arrays 72

Record and Word Array Comparisons 72
Jumps 72
Procedure and Function Calls 73
System Support Procedures 75
Miscellaneous 76

Numerical Listing of Opcodes 76

Contents IV-v

APPENDIX4A

IV-vi

Memory Maps
64K System Memory 82
128K System Memory 83
128K System Auxiliary Memory 84
Code Segments in a Codefile 85
Blocks in a Code Segment 86
Correlation Between Programs and Codefiles 87
Segment Dictionary 88
Interface Text in a Codefile 89
Code Part of a Code Segment 90
Procedure Code Structure 91
P-Code Procedure Attribute Table 91
6502 Procedure Attribute Table 92
Bytes and Words 93
Program Stack 94
Segment Table 95
Activation Record 96
Variable Allocation in an Activation Record 96

Contents

81

CHAPTERl

CHAPTER2

CHAPTERS

Figures and Tables

The Pascal Environment 1
Figure 1-1
Figure 1-2
Figure 1-3
Table 1-1
Table 1-2

Disk Files
Figure 2-1
Figure 2-2
Figure 2-3

Figure 2-4
Table2-l
Figure2-5
Figure 2-6
Figure 2-7
Figure2-8
Figure 2-9

The P-Machine
Figure 3-1
Figure 3-2

Figure 3-3
Figure 3-4

Figures and Tables

The Pascal 64K System 3
The Pascal 128K System: Main Memory 4
The Pascal 128K System: Auxiliary Memory 5
Version Flags Set at Location -16606 ($BF22 Hex) 9
Hardware Identification Bit Settings 10

A Typical Codefile on Disk 17
A Typical Codefile 19
Correlation Between Programs and Segments in
Codefiles 20
A Segment Dictionary 24
Segment Number Assignment 28
Construction of Interface Text in a Codefile 29
The Code Part of a Code Segment 31
A Typical Procedure 33
P-Code Procedure Attribute Table 34
An Assembly-Language Procedure Attribute Table

Relationship of Words and Bytes 46
The Program Stack and Heap With Four Active
Procedures 49
The Segment Table 51
An Activation Record 52

13

36

45

IV-vii

CHAPTER4

APPENDIX4A

IV-viii

Figure 3-5 The Order of Local Variable Allocation in an Activation
Record 53

The P-Machine Instruction Set 57
Table 4-1

Memory Maps

Figures and Tables

P-Codes in Numerical Order 76

64K System Memory 82
128K System Memory 83
128K System Auxiliary Memory 84
Code Segments in a Codefile 85
Blocks in a Code Segment 86
Correlation Between Programs and Codefiles 87
Segment Dictionary 88
Interface Text in a Codefile 89
Code Part of a Code Segment 90
Procedure Code Structure 91
P-Code Procedure Attribute Table 91
6502 Procedure Attribute Table 92
Bytes and Words 93
Program Stack 94
Segment Table 95
Activation Record 96
Variable Allocation in an Activation Record 96

81

Preface

The Technical Reference is written for more advanced users of the
Apple II Pascal 1.3 system. It describes the structure and operation of the
P-machine and parts of the Pascal operating system. Before you use the
information it contains, you should be familiar with the other parts of the
Apple II Pascal 1.3 Manual.

Many of the concepts explained in this Technical Reference are intimately
interrelated. You should first briefly read the entire book to gain an
appreciation of how the concepts are interrelated before attempting to
understand any specific concept in detail.

Here is an overview of what this part of the Apple II Pascal 1.3 Manual
contains. It consists of four chapters:

o Chapter 1: The Pascal Environment. Describes how the Pascal 1.3
system uses the Apple II memory and gives some useful memory
addresses. Describes how code segments are loaded into memory.

o Chapter 2: Diskfiles. Describes in detail the structure and format of
Pascal disk directories, textfiles, and codefiles.

o Chapter 3: The P-machine. Introduces the concept of the Pascal
P-Machine. Describes how the P-Machine resides and works within the
structure of Apple II memory.

o Chapter 4: The P-machine Instruction Set. Gives opcodes and
implementation information for all P-machine instructions.

Preface IV-ix

Chapter 1 The Pascal Environment

IV-I

IV-2

The Apple Pascal system is a version of the UCSD Pascal system, a
pseudomachine-based implementation of Pascal. This means that the
Compiler converts Pascal program text into compact pseudocode or
P-code to be executed by the pseudomachine or P-machlne. The
P-machine is implemented by the Pascal Interpreter-a program written in
the native code of the Apple II's 6502 microprocessor. Every host computer
operating under a version of UCSD Pascal has such an Interpreter that
makes the host computer appear, from the viewpoint of a program being
executed, to be a P-machine. The Interpreter is contained in the file
SYSTEM.APPLE.

The Pascal operating system and various utility programs are also written
in Pascal and run on the same Interpreter. The Pascal Compiler, Assembler,
and Linker together produce completed codefiles of Pascal programs.
Pascal codefiles are stored on external storage media, such as disks. The
structure of codefiles is explained in Chapter 2.

To execute a Pascal program, Pascal loads the code of the program's main
segment from the codefile into memory. It then begins executing the
program code, one instruction at a time. As it finds that additional segments
of the disk codefile are needed in memory for execution of the program, it
loads the necessary segments. The process by which Pascal loads
executable code into memory is explained at the end of this chapter.

System Memory Use

Apple Pascal comes in two versions: a 64K system and a 128K system.
Either system will run on Apple II computers with 128K of memory; only
the 64K system will run on 64K models. The process of loading one or the
other system is described in Part I of this manual, Getting Started.

The two systems use memory differently. 64K system memory usage is
shown in Figure 1-1. 128K system memory usage is shown in Figures 1-2
and 1-3.

Chapter 1: The Pascal Environment

Figure 1-1. The Pascal 64K System

External Language l
Card (Apple II or
Apple II Plus) or
Main Memory
(Apple Ile or

Apple Ile)

Main
Memory

System Memory Use

P-code
Interpreter

and
part of the
Operating
System

~~~~~~~~~-

1/0 Device 
Addresses & RO Ms 

SYSCOM 

part of the 
Operating System 

Program Stack 
(builds down) 

P-code, 6502 code 
and data 

t 
r----------------

Free Memory 

r----------------

I 
Heap 

(builds up) 

Text Screen 

Disk & Console 
Buffers 

Evaluation Stack 
(builds down) 

t 
r----------------

Zero Page 

$FFFF 64K 

$DOOO 52K 

$CFFFF 
$COOOO 48K 

..,.._ KP (Top of Program Stack) 

- NP (Top of Heap) 

$0800 2K 

$0400 lK 

$0200 0.5K 

- SP (Top of Evaluation Stack) 

$0100 0.25K 

$0000 OK 

IV-3 



IV-4 

Figure 1-2. The Pascal 128K System: Main Memory 

Main 
Memory 

P-code 
Interpreter 

and 
part of the 
Operating 
System 

1/0 Device 
Addresses & ROMs 

SYSCOM 

Program Stack 
(builds down) 

data and 
6502 code 

~ r----------------
Free Memory 

r----------------

I 
Heap 

(builds up) 

Text Screen 

Disk & Console 
Buffers 

Evaluation Stack 
(Builds down) 

+ 
r---------------~ 

Zero Page 

Chapter 1: The Pascal Environment 

$FFFF64K 

$0000 52K 
$C00048K 

- KP (Top of Program Stack) 

-- NP (Top ofHeap) 

$0800 2K 

$0400 lK 

$02000.5K 

-. SP (Top ofEvaluation Stack) 

$01000.25K 

$00000K 



Figure 1-3. The Pascal 128K System: Auxiliary Memory 

Auxiliary 
Memory 

Reserved 
for 

System 
Use 

1/0 Device 
Addresses & ROMs 

Part of the 
Operating System 

P-code 
(builds down) 

• r----------------

Free Memory 

Text Screen 

System Use 

$FFFF64K 

$DOOO 52K 

$00000 48K 

..,.. __ CODEP 

$0800 2K 

$0400 lK 

$0000 OK 

The principal difference in memory usage between the 64K and 128K Apple 
Pascal systems is this. In the 64K system, a single area of free memory is 
used by P-code, 6502 code, and data. In the 128K system there are two areas 
of free memory; one is used only by P-code, and the other is used only by 
6502 code and data. 

Here are some additional points about memory usage to supplement the 
information in Figures 1-1, 1-2, and 1-3: 

o In both systems, pointer NP points to the top of the heap space. Pointer 
KP points to the top of the program stack. In the 64K system the stack 
contains P-code, 6502 code, and data; in the 128K system it contains only 
6502 code and data. In the 128K system another pointer, CODEP, points 
to the top of the area used by P-code. The locations of these pointers are 
given below under "Useful Memory Addresses." 

o The beginning of the heap ($0800) is shown for 80-column mode. In 
40-column mode the heap starts lK higher, at $0COO. 

System Memory Use IV-5 



IV-6 

o If a program contains the declaration USES TURTLEGRAPHICS, the 
beginning of the heap is set to $4000 (16K) when the TURTLEGRAPHICS 
unit is loaded. The space below that is used for the high-resolution 
graphics memory. 

o In the 128K system, using either Compiler swapping or operating system 
swapping adds to the space available for P-code, not the space available 
for data and 6502 code. 

Useful Memory Addresses 

There are several addresses in machine memory that contain information 
you may find useful. You can read them with the PEEK function; in some 
cases you can change their values with the POKE procedure. PEEK and 
POKE are described in Part III, Chapter 16. All memory addresses are given 
in hexadecimal form. 

$005A NP: Two-byte pointer to top of Pascal heap in main memory. 

$005C KP: Two-byte pointer to top of Pascal program stack in main 
memory. 

$0060 CODEP: Two-byte pointer to lowest used word in auxiliary memory. 
Its possible value range is $COOO to $800. 

$0062 CODELOW: Two bytes containing the lower limit value for CODEP. 
Memory below this point is reserved. 

$BFOE Screen Mode: One-byte flag to show whether current screen 
display is 80 columns or 40 columns wide. 

$BF21 Pascal System: One-byte flag to show which version of Apple 
Pascal is being used. 

$BF22 Interpreter Version: One-byte flag to show which Pascal 
Interpreter is running, and other information. 

$BF31 Computer Type: One-byte flag to show which Apple computer 
model is being used. 

Where a two-byte address is shown, the memory location given is that of 
the less-significant byte. The more-significant byte is located one memory 
address higher. 

Use of these memory locations is discussed in more detail in the sections 
that follow. 

Chapter 1: The Pascal Environment 



Main Memory Pointers 

NP points to the top of the Pascal heap. The heap grows toward higher 
memory addresses from these locations: 

o $0800 if the screen output is in SO-column mode. 
o $0COO if the screen output is in 40-column mode. 
o $4000 if TURTLEGRAPHICS is being used. 

The heap is discussed in more detail in Chapter 3. 

KP points to the top of the Pascal program stack. The stack grows toward 
lower memory addresses. Its starting point is below $COOO; the actual 
location depends on how much of the operating system is stored between it 
and$COOO. 

When the values of NP and KP meet, free memory is used up and an 
execution error occurs. 

Auxiliary Memory Pointers 

The Pascal 128K system uses CODEP and CODELOW to manage use of 
auxiliary memory. CODEP points to the lowest used word in the auxiliary 
memory space. CODELOW contains the lowest permissible value for 
CODEP. CODELOW defaults to $0800. 

Because CODEP points to the lowest used word in the auxiliary memory 
space, it begins with the value of $COOO and works down until it hits the 
value CODELOW. 

Your program can examine CODEP and CODELOW if it needs to. If your 
program runs under the 128K system, it cannot change CODEP, but it can 
change CODELOW if it uses part of the auxiliary memory. For example, to 
execute a program that uses the 560-dot high-resolution screen, you would 
change CODELOW to $4000 and then change it back to its original value 
after the program has run. 

If you are using the 64K Pascal system on a machine with 128K of memory, 
you can use CODEP as a zero-page pointer to the auxiliary memory space. 
This feature is useful if you are managing this space yourself, rather than 
using the Pascal 128K system to manage it. 

Useful Memory Addresses IV-7 



IV-8 

Here are several important reminders about your use of these variables: 

o You must use even numbers when giving values to these variables 
because they point to words, not bytes. 

o The system does not restore CODELOW or CODEP to their original values 
after executing your program. Whenever you have changed one of these 
variables, be sure to put the value back to what it was before your 
program ends. 

o If your program runs under the 128K system, it can change only 
CODELOW; CODEP is changed only by the Pascal system. 

Identification Flags 

Both the 64K and the 128K system set four identification flags in main 
memory. Your program can use PEEK to read these flags. They are 
described below. 

Screen Mode Flag 

A byte at memory location -16626 ($BFOE hex) tells whether Pascal is 
operating in 40-column display mode or SO-column mode. If it is in 
40-column mode, the value of the byte is O; otherwise it is 4. 

Flag to Check the Pascal System Version 

When Pascal is started up, a flag is set at memory address - 16607 ($BF21 
hex) to identify which Pascal version is the one being used. 

o If Pascal 1.3 is operating, the value of the byte at that location is 4. 
o If Pascal 1.2 is operating, the value of the byte at that location is 3. 
o If Pascal 1.1 is operating, the value of the byte at that location is 2. 

Flag to Check the Interpreter Version 

To identify which Pascal Interpreter is executing, another flag is set at 
startup time, at memory address -16606 ($BF22 hex). This flag uses 
different bit settings to identify the variations being supported, as Table 1-1 
shows. 

Chapter 1: The Pascal Environment 



Table 1-1. Version Flags Set at Location -16606 ($BF22 Hex) 

Bit 

0 

0 

2 

5 
6 

5 
6 

5 
6 

Set To 

0 

1 
0 

0 
0 

0 
1 

Indicates 

The Pascal development system is executing. 

The Pascal run-time system is executing. 

Floating-point operations are not supported. 

Operations using sets are not supported. 

The 48K Pascal Interpreter is executing. 

The 64K Pascal Interpreter is executing. 

The 128K Pascal Interpreter is executing. 

7 0 All console output is directed to the text screen 
pages, an external terminal, or an 80-column 
card. 

7 All console output is directed to the 
high-resolution pages. 

Flag to Check the Computer Type 

By identifying which machine it is running on, an application program for 
the Apple Ile or Apple Ile can take advantage of the computer's unique 
features but retain the capacity to run on the Apple II or Apple II Plus. 
Memory location - 16591 ($BF31 hexadecimal) contains a flag you may use 
to determine from within a program whether the computer is an Apple II, 
Apple Ile, or Apple Ile. If the computer is a Ile, this same memory location 
also specifies whether the computer has an 80-column text card and 
whether it has the auxiliary 64K of RAM memory available on the Apple 
Extended 80-Column Text Card. 

The flag bit settings listed in Table 1-2 are made whenever the Pascal 
system starts up. For the systems listed in the left column, the byte at 
memory location -16591 ($BF31 hex) has the bit settings shown on the 
right. Bits not listed are set to 0. 

Useful Memory Addresses IV-9 



IV-10 

Table 1-2. Hardware Identification Bit Settings 

System Bit 7 Bit6 Bitl BitO 

Apple Ile 

Apple Ile 0 0 0 
with SO-column text card 0 0 1 
with 128K memory 0 1 1 

Apple II or II Plus 0 0 0 0 

For Future Use: It is possible for the computer-type flag to be set so that 
bits 7, 6, 5, 1, and 0 are all set to 1. This value is currently unused, but is 
reserved for future use. 

The "Ignore External Terminal" Flag 

By setting a bit located on the Pascal startup disk, you can force Pascal to 
operate in 40-column mode, even though the hardware configuration may 
have SO-column capabilities. This bit is located in the directory area of the 
startup disk at block 2, byte 25, bit 3 (counting always from 0). If it is set 
to 1, Pascal ignores any SO-column firmware and operates only in 40-column 
mode. 

You can use the utility program SET40COLS to set the "ignore external 
terminal" flag. SET40COLS is described in Part II of this manual, Chapter 9. 

interpreter Addresses 

The Pascal Interpreter contains a 3-word table that gives entry points of 
interest to the advanced programmer. You can access these entry points by 
using the Assembler directive .INTERP. The following list gives their 
meanings. 

.INTERP+O 

.INTER+2 

Address of the Interpreter's run-time execution error 
posting routine. The user can load the A register with 
the error number and execute the 6502 instruction 
JSR ® • r NTERP to invoke the system error message 
routine. 
Address of the BIOS (input/ output handling routine) 
dispatching table 

Chapter 1: The Pascal Environment 



.INTERP+4 Address of the location that contains the address of 
SYSCOM, the area used for communication between 
the Interpreter and the Pascal operating system 

How Pascal Loads Code Segments 

Apple Pascal loads code segments from disk into memory two ways, 
depending on whether the 64K system or the 128K system is running. 

With the 64K system, Pascal simply transfers each segment from the 
codefile to the program stack, moving the KP pointer down as it does so. 

With the 128K system, segment loading is more complicated. Pascal follows 
these steps: 

l. It transfers as much of the segment as it can, in 512-byte blocks, from 
the codefile to the stack/heap space. For this transfer to work, there 
must be at least 512 bytes of memory available. 

2. It transfers the segment from the stack/heap space to auxiliary 
memory. 

3. It repeats steps 1 and 2 until the segment is completely loaded. 
4. If the segment contains 6502 code, Pascal copies the 6502 code to the 

program stack. 
5. If Pascal has copied 6502 code out of the segment, it moves the 

segment's P-code toward higher memory addresses, thereby reclaiming 
the space occupied by the 6502 code. 

The following are potential errors that may occur in the segment loading 
process: 

o With the 64K system, there may not be enough stack space to hold the 
segment. 

o With the 128K system, there may be less than 512 bytes of space 
between the stack and heap pointers. 

o With the 128K system, there may not be enough stack space to hold the 
6502 code. 

o With the 128K system, there may not be enough space in auxiliary 
memory to hold the entire segment. 

How Pascal Loads Code Segments IV-11 



IV-12 

If one of the first three errors occurs, the execution error message 

Stack overflow 

or 

Execution error #4 

will appear on your screen. 

If the fourth error occurs, the execution error message 

Codespace overflow 

or 

Execution error #16 

will appear on your screen. 

Chapter 1: The Pascal Environment 



Chapter 2 Disk Files 

IV-13 



IV-14 

This chapter describes how Apple Pascal stores text and code in disk files. 
It covers three major areas: 

o How to access a Pascal disk directory 
o The structure of textfiles created by the Apple Pascal Editor 
o The structure of codefiles created by the Apple Pascal Compiler and 

Linker 

Reading a Disk Directory 

A disk directory is simply an array of records, each of which contains 
information about one file stored on the disk. By declaring a variable of 
congruent type, you can use UNITREAD to transfer the contents of a disk 
directory to memory. Your program can then access it. Here are the 
necessary declarations: 

Chapter 2: Disk Files 



{First, some general declarations relating to disk directories:} 

CONST maxdir = 77; 
vidleng = 7; 
tidleng = 15; 
fblksize = 512; 
dirblk = 2; 

{Maximum number of entries in directory} 
{Number of characters in volume ID} 
{Number of characters in title ID} 
{Standard disk block length} 
{Directory starts at this disk-block address} 

TYPE daterec = PACKED RECORD {Volume/file data mark} 
month: 0 .. 12; {ll = meaningless date} 
day: 0 .. 31; {Day of month} 
year: 0 .. 100 {100 =dated volume is temporary} 

END {daterec}; 
vid =STRING [vidlengl; {Volume ID} 
dirrange = W • . maxdir; {Possible number of files on disk} 
tid =STRING Ctidlengl; {Title ID} 
filekind = [untypedfile, xdskfile, codefile, textfile, infofile, 

datafile, graffile, fotofile, securedirl; 

{Now, the actual layout of the directory entry for each file stored on 
the disk, plus the type declaration for the directory as a whole. Each 
entry is a packed record with a variant part, and the whole directory 
is an array of such records.} 

direntry 
PACKED RECORD 

dfirstblk: integer; {1st physical disk address} 
dlastblk: integer; {Points to block after last used block} 
CASE dfkind: filekind OF 

END 

securedir, untypedfile: {Volume info-only in dir[ll]} 
[filler1: 0 .. 2048; {Waste 13 bits for compatibility} 
dvid: vid; {Name of disk volume} 
deovblk: integer; {Last block in volume} 
dnumfiles: dirrange; {Number of files in directory} 
dloadtime: integer; {Time of last access} 
dlastboot: daterecl; {Most recent date setting} 

xdskfile, codefile, textfile, infofile, datafile, 
graffile, fotof ile: {Regular file info} 

[filler2: 0 .. 1~24; <Waste 12 bits for compatibility} 
status: boolean; {For filer wildcards} 
dtid: tid; {Name of file} 
dlastbyte: 1 .. fblksize; {Num bytes in last file block} 
daccess: daterecl {Date of last modification} 

directory = ARRAY [dirrangel OF direntry; 

Reading a Disk Directory IV-15 



VAR DIRIHFO : DIRECTORY; 
DEVHUM : INTEGER; 

Having made the foregoing constant and type declarations, your program 
may now declare an array variable DIRINFO of type DIRECTORY and an 
integer variable DEVNUM to supply the volume number of a disk drive. 
UNITREAD will transfer the contents of the disk directory to DIRINFO: 

{Array variable to hold directory info} 
{Volume number of disk drive} 

UHITREAD CDEVHUM, DIRIHFO, SIZEOFCDIRIHFOl, DIRBLK>; 

IV-16 

Textfile Structure 

The special format of a textfile is as follows: 

o There are two blocks (1024 bytes) of header information at the 
beginning of the file. This information is used by the Pascal Editor. The 
Pascal system creates the header page when a user program opens a 
textfile. The header page is transferred only during disk-to-disk transfers; 
transfers to character devices, such as the console or printer, always 
omit the header page. 

o The rest of the file consists of two-block pages. Each page contains lines 
of text, separated from each other by RETURN characters (ASCII 13). No 
line ever crosses a page boundary; thus a page contains only whole lines. 
After the last line on a page, the remainder of the page is filled with NUL 
characters (ASCII 00). READ and READLN skip the NUL characters, and 
WRITE and WRITELN provide them automatically. Thus this page 
formatting is normally invisible to a Pascal program. 

o A sequence of leading spaces in a line may be compressed to a DLE-blank 
code. This code consists of a DLE control character (ASCII 16) followed 
by one byte containing the number of spaces to indent plus 32 (decimal). 
Using this code saves a considerable amount of space in files where 
indentation occurs frequently. The Editor is the main creator of 
DLE-blank codes; it usually outputs a DLE-blank code where a sequence 
of spaces occurs at the beginning of a line. However, the DLE-blank code 
is optional; some lines may have it and others may have space characters 
instead. Also, a line with no indentation may or may not be preceded by a 
DLE character and an indent code value of 32 (meaning 0 indentation). 

Chapter 2: Disk Files 



GET, READ, and READLN convert DLE-blank coding to actual spaces on 
input from a textfile to a file variable of type TEXT or INTERACTIVE; thus 
the compression of spaces is also normally invisible to a Pascal program. 

Various parts of the system that deal with files of characters (such as the 
Editor and the Compiler) are designed to take advantage of the special 
textfile format. For most purposes, it is recommended that you use the 
textfile type for any character files created by your programs. The name of 
every textfile must end in . TEXT. 

Codefile Structure 

The remainder of this chapter is about Apple Pascal codefiles. A codefile 
may be any of the following: 

o Linked files composed of segments ready for execution. 
o Library files with units that may be used by programs in other 

codefiles. 
o Unlinked fil.es created by the Apple Pascal Compiler or Assembler. 

A typical disk codefile resulting from the compilation of a program is 
diagrammed in Figure 2-1. 

Figure 2-1. A Typical Codefile on Disk 

high disk addresses 

first segment 

sixteenth segment 

fifteenth segment 

third segment 

second segment 

segment dictionary 

low disk addresses 

Codefile Structure IV-17 



IV-18 

All codefiles (linked and unlinked) consist of a segment dictionary in 
block 0 of the codefile, followed by a sequence of one to 16 code segments. 
The host program is compiled into one code segment, and each SEGMENT 
procedure, SEGMENT function, or Program Unit is translated into 
another code segment. The ordering of code segments in the codefile (from 
low disk address to high disk address) is determined by the order in which 
the Compiler encounters the executable code of each SEGMENT procedure, 
SEGMENT function, or Program Unit when compiling a program. This order 
may be changed by using the LIBRARY program described in Part II, 
Chapter 8. 

Each segment begins on a boundary between disk blocks (a block is 512 
contiguous 8-bit bytes). Any segment may occupy up to 64 blocks. 

Segments 

A segment is either a code segment or a data segment. Program code is 
stored in code segments. Every program consists of at least one code 
segment, and some programs consist of many code segments. A code 
segment may contain either P-code, 6502 code, or a combination of both. 
Code segments may have three parts: interface text, actual P-code and/ or 
6502 code, and Linker information (Figure 2-2). These parts appear in 
this order on the disk, although not all types of code segments have all three 
parts. For example, interface text is present only in the code segments of 
Program Units. Code segments may be either linked or unlinked. 

Data segments are areas of memory that are set aside at execution time as 
storage space for the local data of Intrinsic Units. In a disk codefile, data 
segments have only an entry in the segment dictionary: they do not occupy 
any blocks on the disk because they have no code part, interface text, or 
Linker information associated with them. 

Chapter 2: Disk Files 



Figure 2-2. A Typical Codefile 

Second Code Segment 
Block 6 

Block 5 

Block 4 

Block 3 

Block 2 

First Code Segment 
Block 1 

Block 0 

high disk addresses 

Interface text 

Linker information 

code part 

interface text 
(unit segments only) 

segment dictionary 

low disk addresses 

byte 511 

byte 0 

By the Way: Figure 2-2 is not meant to imply that all code segments are 
five blocks long; the code part of a segment can contain up to 64 blocks. 

Whenever a complete program codefile is produced by the Compiler (and 
Assembler and Linker, if necessary), the following events occur: 

o The user program or Program Unit results in one code segment in the 
codefile. This includes the user program's non-SEGMENT procedures 
and functions (MUL T2 and STOR in Figure 2-3), and the user program 
body itself (MAIN in Figure 2-3). 

o Each Pascal SEGMENT procedure or function results in another code 
segment in the codefile (BYFOUR and DIVID below). 

o Each Regular Unit that the program USES is linked with the codefile and 
results in a code segment in the codefile (REGUNIT below). Each 
Intrinsic Unit that the program USES does not produce additional code 
segments in the program's codefile. Intrinsic Units are held as segments 
in program libraries, shared libraries, and the SYSTEM.LIBRARY file, 
and accessed by the program at execution time (MAINLIBIU below). 

Segments IV-19 



IV-20 

Figure 2-3. Correlation Between Programs and Segments in Codefiles 

Source text files 

PROGRAM MAIN; 
USES MAINLIBIU,REGUNIT; 
SEGMENT FUNCTION DIVID; 
BEGIN 

END; 
SEGMENT PROCEDURE BYFOUR; 
BEGIN 

END; 

FUNCTION MULT2; 
BEGIN 

END; 

PROCEDURE STOR; 
BEGIN 

END; 

BEGIN 

END 

UNIT REGUNIT; 
BEGIN 

END. 

UNIT MAINLIBIU;INTRINSIC 
CODE 40 DATA41; 
BEGIN 

END 

Chapter 2: Disk Files 

Segments in codefile 
after linking 

REGUNIT code segment 

MAIN "outer" code segment 

MUL T2 function 

STOR procedure 

BYFOUR code segment 

DIVID code segment 

Segment in library 

MAINLIBIU code segment 



Segments are not nested in codefiles as they are in programs. Instead, every 
segment is a separate contiguous area of code and does not contain any 
other segments. For example, if a SEGMENT procedure contains another 
SEGMENT procedure, the compiled result comprises two distinct code 
segments, even though they are nested lexically in the source program. 

Segmenting a program does not change the computation it performs. When 
a SEGMENT procedure, SEGMENT function, or Intrinsic Unit is called 
during the execution of a program, the Pascal Interpreter checks to see if 
that segment is already in memory due to a previous (and still active) 
invocation of the segment. If it is, control is transferred and execution 
proceeds; if not, the appropriate code segment is loaded into memory from 
the disk codefile before the transfer of control takes place. When no more 
active invocations of a segment exist, its code is removed from memory. 

The following sections describe the portions of a code segment in greater 
detail. First the segment dictionary is described. Then the parts of a code 
segment are presented in the order in which they may occur in a codefile: 
the interface text, the code part, and finally the Linker information. The 
code part description is divided into sections describing the similarities and 
differences between the code parts of P-code and assembly-language 
procedures. 

Segment Dictionaries 

Every codefile (including library files) has a segment dictionary in 
block 0 that contains information needed by the Pascal system to load and 
execute the segments in that codefile. A segment dictionary has 16 slots, 
each of which either contains information about one segment, or is empty. 
Each non-empty slot includes the segment's name, kind, size (in bytes), and 
location in the codefile. The location of a code segment is given as the block 
number of the first block in the code part. Blocks in a codefile are numbered 
sequentially from 0, with block 0 as the segment dictionary. The location of 
a data segment is given as 0. 

The information that describes each segment is contained in five different 
arrays within the segment dictionary. All information describing a segment 
is retrieved by selecting corresponding elements from each of these arrays. 

Because a segment dictionary has 16 slots, numbered 0 through 15, one 
codefile can contain at most 16 segments. Intrinsic Units used by a program 
do not require entries in the segment dictionary of the program's codefile, 
because Intrinsic Unit code segments are in a library file, and appear in the 

Segment Dictionaries JV-21 



IV-22 

library file's segment dictionary. Therefore, a program can have a 
maximum of 16 segments, not counting segments from Intrinsic Units. 
Counting Intrinsic Units, the maximum number of segments is limited by 
the total number of segment numbers in the system-64 for the 128K 
system, 32 for the 64K system. However, the system reserves 12 segment 
numbers (0, 2 through 6, and 58 through 63) for its own use. The remaining 
segments may appear in a program codefile, a program library file, 
SYSTEM.LIBRARY, or library files specified in a Library Name File. Each 
of these codefiles can contain a maximum of 16 segments. 

The following Pascal record declaration represents a segment dictionary. 

Chapter 2: Disk Files 



RECORD 

DISKINFO: ARRAY[0 .. 15l OF 
RECORD 

CODEADDR: INTEGER; 
CODELENG: INTEGER 

END; 

{location of code part} 
{length of code part} 

SEGNAME: ARRAY[0 .. 15l OF PACKED ARRAY[0 .. 7J OF CHAR; {segment name} 
SEGKIND: ARRAY [0 .. 15l OF {type of segment} 

CLINKED, {fully executable segment} 
HOSTSEG, {user program code segment} 
SEGPROC, {unused} 
UNITSEG, {compiled Regular Unit} 
SEPRTSEG, {separate procedures and functions} 
UNLINKED-INTRINS, {unlinked Intrinsic Unit} 
LINKED-INTRINS, {linked Intrinsic Unit} 
DATASEG); {data segment} 

TEXTADDR: ARRAYC0 .. 151 OF INTEGER; {address of the first 
block of interface text, if any} 

SEGINFO: PACKED ARRAYC0 .. 15J OF PACKED RECORD 
SEGNUM: 0 .. 255; {segment number} 
MTYPE: 0 .. 15; {machine type} 
UNUSED: 0 .. 1; {unused} 
VERSION: e .. 7 {version number} 

END; 

INTRINS-SEGS: SET OF 0 .. ss; {intrinsic segment numbers needed for 
execution. ss=63 for 128K system; 
ss=31 for 64K system} 

FILLER: ARRAY UlJ..ffl OF INTEGER; <unused bytes filled with 
zeros. ff=67 for 128K 
system, ff=69 for 64K} 

COMMENT: PACKED ARRAY C0 .. 791 OF CHAR {comment} 

END; 

Figure 2-4 shows the structure of a segment dictionary. 

Segment Dictionaries IV-23 



IV-24 

Figure 2-4. A Segment Dictionary 

DISK INFO 

SEGNAME 

SEGKIND 

TEXTADDR 

SEGINFO 

low disk addresses 
high byte low byte 

CODEADDR(block number) 
(segment 0) 

CODELENG(in bytes) 

(segments 1-15) 

1st character 0th character 

3rd character 2nd character 
(seg 0) 

5th character 4th character 

7th character 6th character 

(segments 1-15) 

SEGKIND (segment 0) 

(segments 1-15) 

TEXTADDR (segment 0) 

(segments 1-15) 

VERSION MTYPE SEGNUM 

bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

(segments 1-15) 

INTRINS-SEGS bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

fi~~«~~~~~~~~~~~~ 

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 
FILLER 

COMMENT j 1st character 0th character 

j 79th character 78th character 

high disk addresses 

Chapter 2: Disk Files 

word 0 

32 

33 

34 

35 

96 

112 

128 

144 

145 

146 

147 

148 

216 

255 



I 
By the Way: Figure 2-4 shows lower addresses at the top (in contrast to 
others in this manual) to match the structure of the Pascal segment 
dictionary declaration. 

Each segment dictionary is composed of 

o Five 16-element arrays-one element for each segment slot in the 
segment dictionary of a codefile; 

o Information about the intrinsic segments used by the codefile; 
o An optional comment. 

Each element in the DISKINFO array consists of two words that describe 
the length and location of the segment within the codefile. For code 
segments, the CODEADDR field contains the block number of the .start of 
the code part, and the CODELENG field contains the number of bytes in the 
code part of the segment. For data segments, the CODEADDR field is 0, and 
the CODELENG field contains the number of bytes to be allocated for data 
at execution time (the length of the data segment). Unused slots have their 
CODEADDR and CODELENG fields set to 0 (CODELENG=O defines an 
empty slot). 

Each element of the SEGNAME array is an eight-character array that 
contains the first eight characters of the user program, unit, SEGMENT 
procedure, SEGMENT function, or assembly-language procedure name that 
was translated into the corresponding segment. If the name is shorter than 
eight characters, it is padded on the right by spaces; if the name is longer 
than eight characters, it is truncated to the first eight characters. Unused 
segment slots have SEGNAME fields filled with eight ASCII space 
characters. 

The SEGKIND array describes the type of segment. The possible values are 
as follows: 

0: LINKED. A fully-executable segment. Either all references to Regular 
or Intrinsic Units have been resolved by the Linker, or none were 
present. 

1: HOSTSEG. The main segment of a user program with unresolved 
external references. 

2: SEGPROC. A SEGMENT procedure or function. This type is currently 
not used. 

3: UNITSEG. A compiled Regular (as opposed to Intrinsic) Unit. 

Segment Dictionaries IV-25 



IV-26 

4: SEPRTSEG. Separately assembled procedures or functions, including 
EXTERNAL functions and procedures, and mixed segments of linked 
Pascal and assembly-language code. Assembly-language codefiles are 
always of this type. 

5: UNLINKED-INTRINS. An Intrinsic Unit containing unresolved calls to 
assembly-language procedures or functions. 

6: LINKED-INTRINS. An Intrinsic Unit properly linked with its called 
procedures and functions. 

7: DATASEG. A data segment of an Intrinsic Unit. The segment 
dictionary entry specifies the amount of data space (in bytes) to 
allocate. 

The TEXTADDR array of integers contains pointers to the block number of 
the start of the interface text of each Regular or Intrinsic Unit. The last 
block number of the interface text can be calculated by subtracting 1 from 
the value in the corresponding CODEADDR field. Interface text is described 
in detail below. Only unit segments have interface text; the TEXTADDR 
field is 0 for all other types of segments. 

The SEGINFO array contains one word of additional information about each 
segment. Each word is composed of four fields: 

o Bits 0 through 7 (the low-order byte) of each word specify the segment 
number (SEGNUM). This is the position the code segment will occupy in 
the segment table at execution time. In the 128K system the segment 
table is 64 entries long, hence valid numbers for the SEGNUM field are 
0 .. 63. In the 64K system the segment table is 32 entries long, hence valid 
numbers for the SEGNUM field are 0 .. 31. Segment tables are described in 
Chapter 3. 

o Bits 8 through 11 of the second byte in the SEGINFO word specify the 
machine type (MTYPE) of the code in the segment. The machine types 
are: 

0: Unidentified code, perhaps from another Compiler. 

1: P-code, most significant byte first. 

2: P-code, least significant byte first (a stream of packed ASCII 
characters fills the low byte of a word first, then the high byte). 
This kind of P-code is used by the Apple II family. 

3 through 9: Assembled native code, produced from 

Chapter 2: Disk Files 

assembly-language text. Machine type 7 identifies 
native code for the 6502 microprocessor. 



o Bit 12 of the SEG INFO word is unused. 
o Bits 13 through 15 of the SEGINFO word contain the version number of 

the system. The current version number is 6, indicating Apple II 
Pascal 1.3. 

The SEGINFO array is the last of the five arrays that contain 16 elements, 
one element for each slot. The remainder of the segment dictionary 
contains information pertinent to the execution of the entire codefile. 

In the 128K system, the INTRINS-SEGS field consists of four words (64 
bits); in the 64K system it consists of 2 words (32 bits). These words specify 
which Intrinsic Units are needed to execute the codefile. Each Intrinsic Unit 
in a program library file, SYSTEM.LIBRARY, or a library file specified in a 
Library Name File is identified by a segment number (or two segment 
numbers if the Intrinsic Unit has both a code and data segment). Each one 
of the 64 bits in these words corresponds to one of the 64 possible intrinsic 
segment numbers. If the nth bit is set, the codefile needs the Intrinsic Unit 
whose segment number is n in order to execute. Bits corresponding to the 
segment numbers of unused Intrinsic Units are zeroed. 

The FILLER array contains 68 unused words in the 128K system, 70 in the 
64K system. 

The COMMENT array contains text provided by a $C Compiler option or 
when the LIBRARY program is used. The $C Compiler option is described in 
Part II, Chapter 5. 

Segment Numbers 

At execution time, every segment has a segment number from 0 to 63 in the 
128K system, or 0 to 31 in the 64K system. No two segments in the program 
can have the same number. Segment numbers are assigned as follows: 

o The user program itself is segment 1. 
o The segments used by the Pascal operating system are 0, and 2 through 

6. 58 through 63 are reserved. 

Segment Numbers IV-27 



IV-28 

o The segment number of an Intrinsic Unit segment is determined by the 
unit's heading when the unit is compiled. These numbers can be found 
by using the LIBMAP utility program to examine the segment dictionary 
of the library to which the unit belongs. 

o The segment numbers of Regular Unit segments and of SEGMENT 
procedures and functions within the program are automatically assigned 
by the system as the program is compiled and linked. They begin at 7 
and ascend. Note that after a Regular Unit is linked with a program, it 
may not have the same segment number that was shown for it in the 
library's segment dictionary (when examined with the LIBMAP utility), 
because the Linker may reassign segment numbers of Regular Units. 

Pascal's assignment of segment numbers is summarized Table 2-1. 

Table 2-1. Segment Number Assignment 

Segment 
Numbe:r 

0 
1 
2 ... 6 
7 ... 29 
30 
31 
32 ... 57 
58 ... 63 

Assignment 

Pascal operating system 
User program 
Pascal operating system 
Units, SEGMENT procedures and functions 
P ASCALIO unit 
LONGINTIO unit 
Units, SEGMENT procedures and functions 
Reserved 

Normally, only when writing an Intrinsic Unit do you need to specify 
segment numbers. The factors that go into your choice of Intrinsic Unit 
segment numbers are set forth in Chapters 12 and 15 of Part III. 

Interface Text 

Code segments of Program Units may have interface text before their code 
part; host program segments, SEGMENT functions and procedures, and 
EXTERNAL procedures and functions never have interface text. The 
interface text contains the ASCII text of the INTERFACE section in the 
source text of a Program Unit. The construction of an interface text of a 
segment from its source text (by the Compiler) is shown in Figure 2-5. 

Chapter 2: Disk Files 



Figure 2-5. Construction of Interface Text in a Codefile 

page n 
block n 

block n+ 1 

page n+ 1 
block n+2 

block n+3 

page n+2 
biock n+4 

block n+5 

Source Textfile 

INTERFACE 
USES APPLESTUF 

USES TRANSCEND 
CONSTANT Pl=3 
CONSTANT E=2.7 
TYPE ARRA YSIZE 
VAR INRECORD:I 
VAR CURRENT:CH 
PROCEDURE A; 
PROCEDURE B; 
PROCEDURE C; 
FUNCTION D(IN 
FUNCTION E(AS 

FUNCTION F(PA 
IMPLEMENTATION 
PROCEDURE A; 

Interface Text in Codefile 

USES APPLESTUF 
garbage 

USES TRANSCEND 
CONSTANT Pl=3 
CONSTANT E=2.7 
TYPE ARRA YSIZE 
VAR INRECORD:I 
VAR CURRENT:CH 
PROCEDURE A; 
PROCEDURE B; 
PROCEDURE C; 
FUNCTION D (IN 
FUNCTION E (AS 

FUNCTION F (PA 
IMPLEMENTATION 

unit info 

blockm 

block m+l 

block m+2 

blockm+3 

blockm+4 

The Pascal Compiler reads source text and produces interface text in 
two-block pages of 1024 bytes each. Interface text always starts on a page 
boundary and follows all of the conventions of a textfile, with the 
exception that the last page of the interface text may be either 1 or 2 blocks 
long. The interface text is identical to the source text, except for the first 
and last pages. The information in the first page of the source text is 
truncated, so that the first character in the output page is the character 
following the INTERFACE keyword in the original source text ( U in 
Figure 2-5). This format may leave a considerable amount of unused space 
in the first page. The last page of the source text is truncated after the 

Interface Text IV-29 



IV-30 

IMPLEMENT A TI ON keyword; it is possible that only one block of this page 
may be produced if the IMPLEMENTATION keyword occurs in the first 
block of the page. Valid data in each page of a textfile end with a CR 
(ASCII 13) followed by at least one NULL (ASCII 0). 

The ten characters immediately following the IMPLEMENTATION keyword 
contain special unit information. All ten characters are ASCII spaces, 
except for an E in the ninth position required by the Pascal Compiler and 
LIBRARY programs to terminate the interface text. AP may occur, instead 
of a space, in the second of the ten character positions to signify to the 
Pascal Compiler that the unit requires the PASCALIO standard Program 
Unit. The fourth position will be occupied by an L if the unit requires the 
LONGINTIO standard Program Unit. These items-IMPLEMENTATION, P, 
L, and E-are all considered tokens by the Compiler; thus, their order is 
significant, but their spacing and case are not. 

Interface text is not stripped of nonprinting characters or comments. 
Leaving the comments in the interface text produces more complete 
internal program documentation at the expense of increased codefile length. 

I 
By the Way: The interface text of Program Unit segments is used only 
during compilation. Thus it can be removed from completed codefiles that 
will only be executed. The effect is a reduction in codefile size. 

The TEXT AD DR array of the segment dictionary contains pointers to the 
starting address of the interface text for each segment. The pointers specify 
block numbers, relative to the start of the codefile. The field is 0 for 
segments that are not Program Unit code segments, as well as Program Unit 
segments that do not have an interface part. 

Code Parts 

The code part of a code segment consists of 

o Code for a group of up to 254 procedures; 
o A procedure dictionary, containing information about the procedures. 

Figure 2-6 is a diagram of the code part of a code segment. Each code part 
contains the code for the highest level procedure in the segment, as well as 
the code for each of the non-SEGMENT procedures and functions within 
the segment. The code of the highest level procedure, which is generated 
last, appears highest in the code part. 

Chapter 2: Disk Files 



Figure 2-6. The Code Part of a Code Segment 

high disk or memory addresses 
high byte low byte 

number of procedures l segment number 

r-

. 
,...-

41 

. . 
~ 

I 
CODEADDR 
block boundary 

in this segment of this segment 

pointer to procedure# 1 

pointer to procedure #2 

pointer to procedure #n 

attribute table procedure # 1 

code (highest procedure) 

attribute table procedure #n 

code (lowest procedure) 

attribute table 
procedure #2 

code 

low disk or memory addresses 

. . 

. 

. 

l 
Procedure 

CODELENG 
bytes 

Each procedure in a code part is assigned a procedure number starting 
at 1, for the highest level procedure or SEGMENT procedure, and ranging as 
high as 254. All references to a procedure are made via its segment number 
and procedure number. Translation from a procedure number to the 
location of the procedure code in the code segment is accomplished via 
the procedure dictionary. 

Code Parts IV-31 



IV-32 

Below the procedure dictionary is the code for the various procedures in the 
segment. The procedure dictionary grows downward toward lower disk 
addresses; the code part starts at the first byte of the block specified in the 
CODEADDR field of the segment dictionary and grows upward toward 
higher addresses. 

Pmcedure Dictionaries 

The position of the low-order byte of the highest word in a segment's 
procedure dictionary can be calculated as 

CODEADDR " 512 + CODELENG - 2 

This highest word in a procedure dictionary contains the segment number 
in its low-order (even) byte, and the number of procedures in the segment 
in its high-order (odd) byte. Below this word is a sequence of words that 
contain self-relative pointers to the top (high address) of the code of each 
procedure in the segment (shown in Figure 2-6). 

A Technical Note: A self-relative pointer contains the absolute 
distance, in bytes, between the low-order byte of the pointer and the 
low-order byte of the word to which it points. To find the address referred 
to by a self-relative pointer, subtract the pointer from the address of its 
location. 

A procedure's number is an index into the procedure dictionary: the nth 
word in the dictionary (counting downward from higher addresses) 
contains a pointer to the top (high address) of the code of procedure n. As 0 
is not a valid procedure number, the 0th word of the dictionary is used to 
store the segment number of the code segment and the number of 
procedures in that code segment, as described above. 

Pmcedures 

Each procedure consists of two parts: the procedure code itself (in the lower 
portion of the procedure growing up toward higher addresses), and an 
attribute table of the procedure. Some procedures have a third part called 
the jump table located at the base of the attribute table. Figure 2-7 is a 
diagram of a typical procedure. 

Chapter 2: Disk Files 



Figure 2-7. A Typical Procedure 

high disk or memory addresses 
high byte low byte 

attribu~e table 
(with optional jump table) 

procedure 
c7e 

low disk or memory addresses 

Attribute Tables 

The attribute table of a procedure provides information needed to 
execute the procedure. Procedure attribute tables are pointed to by entries 
in the procedure dictionary of each segment. 

The Compiler produces P-code by compiling source text, and the Assembler 
produces native code by assembling assembly-language. Procedures may 
contain solely P-code or native code, but not a mixture of both. It is possible 
to produce segments with procedures of both code types, by using the 
Linker. In this case the MTYPE field in the segment dictionary is set to the 
value for assembled native code (7), because the code for that segment is 
then machine-specific. The Interpreter is able to determine the type of code 
in a particular procedure via information contained in the procedure's 
attribute table. The format of the attribute table for an assembly-language 
procedure is very different from that for a P-code procedure. These two 
formats are described in the following sections. 

Code Parts IV-33 



IV34 

P~CociE~ Procedure Attribute Tables 

The format of a P-code procedure attribute table is illustrated in 
Figure 2-8. 

Figure 2-8. P-Code Procedure Attribute Table 

high disk or memory addresses 
high byte low byte 

LEX LEVEL l PROCEDURE NUMBER 

ENTER IC 

EXIT IC 

PARAMETER SIZE( in bytes) 

DATA SIZE(in bytes) 

optional jump table 

low disk or memory addresses 

I-

!--, 

self-relative 
pointers to code 

The fields of a P-code procedure attribute table are 

o PROCEDURE NUMBER: This field contains the procedure number. 
The procedure number field is the low-order (even) byte of the highest 
word in the attribute table. 

o LEX LEVEL: This field specifies the depth of lexical nesting of the 
procedure. The lexical level of the Pascal operating system is - 1, the 
lexical level of a user program is 0, that of the first nested procedure is 1, 
and so forth. The LEX LEVEL field is the high-order (odd) byte of the 
highest word in the attribute table. 

o ENTER IC: This field contains a self-relative pointer (again, a positive 
number, pointing back) to the first P-code instruction to be executed in 
the procedure. 

o EXIT IC: This field contains a self-relative pointer to the beginning of the 
sequence of P-code instructions that must be executed to terminate the 
procedure properly. 

Chapter 2: Disk Files 



o PARAMETER SIZE: This field specifies the number of bytes of 
parameters passed to a procedure from its calling procedure. If the 
procedure is afunction, this number includes the number of bytes to be 
reserved for the returned value. 

o DAT A SIZE: This field specifies the number of bytes to be reserved for 
local variables of the procedure. 

At the base of the attribute table there may be a section called the jump 
table. Jump tables are used by the P-machine to determine the locations 
specified by jump instructions. The entries are self-relative pointers to 
addresses within the procedure code. During execution, the JTAB 
pseudoregister points to the PROCEDURE NUMBER field of the attribute 
table of the currently executing procedure. See Chapter 3 for an explanation 
of pseudoregisters. 

All jump instructions include a specified jump offset ( n). In the case of short 
forward jumps, the jump table is ignored, and execution jumps by n bytes. 
In the case of backward or long forward jumps, the jump offset specifies a 
self-relative pointer in the jump table located n bytes below the location 
pointed to by the JTAB register. Execution jumps to the byte address 
pointed to by the self-relative pointer. 

Assembly-language Procedure Attribute Tables 

The format of an attribute table of an assembly-language procedure is very 
different from that of a P-code procedure attribute table. It is illustrated in 
Figure 2-9. 

Code Parts IV-35 



IV-36 

Figure 2-9. An Assembly-Language Procedure Attribute Table 

base-
relative 
relocation table 

segment
relative 
relocation table 

procedure
relative 
relocation table 

interpreter
relative 
relocation table 

high disk or memory addresses 
high byte low byte 

RELOCSEG l PROCEDURE 
NUMBER NUMBER(=O) 

ENTER IC 

number of pointers( n) 

. n self-. relative . pointers 

number of pointers( m) 

. m self-. relative . pointers 

number of pointers(p) 

. p self-. relative . pointers 

number of pointers( q) 

q self-. relative . pointers 

low disk or memory addresses 

n 
nter poi 

to s tart of 
cedure code pro 

The highest word in the attribute table of an assembly-language procedure 
always has a 0 in its PROCEDURE NUMBER field. When the Interpreter 
encounters a 0 in the PROCEDURE NUMBER field as it loads the segment, it 
realizes it must "fix up" references in the procedure code according to 
information contained in the rest of the attribute table. The RELOCSEG 
NUMBER field contains either a 0 or a positive number (the significance of 
which is explained below in conjunction with base-relative relocation). In 
the case of Intrinsic Units without data segments, the number placed in this 
field is 1. The second highest word of the attribute table is, as in P-code 
procedure attribute tables, the ENTER IC field-a self-relative pointer to 
the first executable instruction of the procedure. Following this are four 
relocation tables used by the Interpreter. From high address to low address, 
they are base-relative, segment-relative, procedure-relative, and 
Interpreter-relative relocation tables. 

Chapter 2: Disk Files 



Relocation Tables 

A relocation table is a sequence of records that contain information 
necessary to relocate any relocatable addresses used by code within the 
procedure. Relocatable addresses are relocated whenever the segment 
containing the procedure is loaded into memory. Only native code 
procedures use relocatable addresses; procedures that contain P-code are 
completely position-independent, and no relocation list is needed. 

The format of all four relocation tables is the same: the highest word of each 
table specifies the number of entries (possibly 0) that follow (at lower disk 
addresses) in the table. The remainder of each table comprises that number 
of one-word self-relative pointers to locations in the procedure code that 
must be "fixed." The locations are "fixed" when the segment is loaded by 
the addition of the appropriate relative relocation constant, which is known 
to the Interpreter. 

Addresses pointed to by a base-relative relocation table are relocated 
relative to the address contained in the P-machine's BASE pseudoregister 
if the RELOCSEG NUMBER field of the procedure's attribute table is 0. The 
BASE register is a pointer to the activation record of the most recently 
invoked base procedure (lexical level 0 or - 1). Global (lexical level 0) 
variables are accessed by indexing from the value of the BASE register. If 
the RELOCSEG NUMBER field is not 0, the relocations will be relative to the 
lowest address of the segment whose segment number is contained in the 
RELOCSEG NUMBER field. Base-relative relocation is used by assembly 
procedures that are linked with Intrinsic Units to access the Intrinsic Unit's 
data segment .. PUBLIC and .PRIVATE are the Assembler directives that 
generate base-relative relocation fields. 

Addresses pointed to by a segment-relative relocation table are 
relocated relative to the lowest address of the segment. The value of the 
address of the lowest byte in the segment is added to each of the addresses 
pointed to in the relocation table .. REF and .DEF are the Assembler 
directives that generate segment-relative relocation fields. 

Addresses pointed to by a proced1J1re-relative relocation table are 
relocated relative to the lowest address of the procedure. The value of the 
address of the lowest byte in the procedure is added to each of the 
addresses pointed to in the relocation table. 

The Interpreter-relative relocation fields point to relocatable addresses that 
access Pascal Interpreter procedures or variables. Addresses pointed to by 
an Interpreter-relative relocation table are relocated relative to a table 
in the Interpreter. See the explanation of the .INTERP directive in Part II, 
Chapter 6. 

Code Parts IV-37 



IV-38 

Linker Information 

Following the code part of a segment there may be Linker information. 
Linker information is the portion of a code segment that enables the Linker 
to resolve references to variables, identifiers, and constants between 
separately compiled or assembled code. Segments produced by an 
Assembler always have Linker information. Segments produced by the 
Compiler have Linker information only if they are segments with 
EXTERNAL procedures or Program Units, or user programs that USE 
Regular Units. 

The starting location of Linker information is not included in the segment 
dictionary (as was the case with the starting location of the interface text 
and code parts); it must be inferred. Linker information starts on the block 
boundary following the last block of code for a segment, and grows toward 
higher addresses. The block number of the first record of Linker 
information can be calculated as 

CODEADDR + ((CODELENG + 511) DIV 512) 

where CODEADDR and CODELENG are the values of fields in the segment 
dictionary. 

Linker information is stored as a sequence of records-one record for each 
indentifier, constant, or variable that is referenced but not defined in the 
source, as well as records for items defined to be accessible from other 
procedures. 

The following Pascal declaration describes one record that may appear 
within Linker information. 

Chapter 2: Disk Files 



LITYPES = CEOFMARK, UNITREF, GLOBREF, PUBLREF, PRIVREF, 
CONSTREF, GLOBDEF, PUBLDEF, CONSTDEF, EXTPROC, EXTFUNC, 
SEPPROC, SEPFUNC, SEPPREF, SEPFREF>; {Linker information types} 

OPFORMAT = CWORD,BYTE,BIG>; {label size} 

LCRANGE: 1 .. MAXLC; {currently MAXI NT (32767>} 

PROCRANGE: 1 .. MAXPROC; {currently 254} 

LIENTRY = RECORD 

NAME: PACKED ARRAYC0 .. 7J OF CHAR; {name of unit, proc, or variable symbol} 

CASE LITYPE: LITYPES OF 
GLOBREF, 
PUBLREF, 
PR!VREF, 

{reference to a global address} 
{reference to a host program variable} 
{reference to private variables in a host 
activation record} 

CONSTREF, {reference to a global constant} 
UNITREF, {reference to a Regular Unit} 
SEPPREF, {unused} 
SEPFREF: {unused} 

<FORMAT: OPFORMAT; 
NREFS: ! NTEGER; 
NWORDS: LCRANGE; 
POINTERLIST: ARRAY [1 .. CCNREFS-1) DIV 8)+1l OF 

ARRAY [lil •• 71 OF INTEGER>; {segment-relative pointers} 

GLOBDEF: {global address definition} 
CHOMEPROC: PROCRANGE; 

!COFFSET: LCRANGE>; 

PUBLDEF: CBASEOFFSET: LCRANGE>; {host program variable definition} 

CONSTDEF: CCONSTVAL: INTEGER>; {host program constant definition} 

EXTPROC, {EXTERNAL procedure declaration} 
EXTFUNC, {EXTERNAL function declaration} 
SEPPROC, {separate assembly procedure} 
SEPFUNC: {separate assembly function} 

(SRCPROC: PROCRANGE; 
NPARAMS: INTEGER); 

EOFMARK: {end-of-file mark} 

END; 

CNEXTBASELC: LCRANGE; 
PR!VDATASEG: SEGNUMBER>; 

Linker Information IV-39 



IV-40 

Linker Information Fields 

The Linker information types GLOBREF, PUBLREF, PRIVREF, 
CONSTREF, and UNITREF, all have similar fields. The FORMAT field may 
be BIG, BYTE, or WORD, and specifies the format of the P-machine 
operand that refers to the entity given by the NAME array. See 
"Instruction Formats," in Chapter 4, for a description of these formats. The 
NREFS field specifies the number of references to this entity in the code 
segment; there will be an equivalent number of entries in the 
POINTERLIST array. The NWORDS field specifies the amount of space, in 
words, to be allocated for PRIVREF Linker information types; the NWORDS 
field is ignored for all other Linker information types. 

The POINTERLIST array is a list of pointers into the code segment, each 
of which points to a location within the code segment where there is a 
reference to the entity specified by the NAME array. The locations are given 
as absolute byte addresses within the code segment. The POINTERLIST 
array is composed of records of eight words, but only the first 
((NREFS- 1) MOD 8)+ 1 words of the last record are used. All unused 
words in each array are zeroed. 

Global Address linker Information Types 

Separate assembly-language procedures and functions can share data 
structures and subroutines by means of the .DEF, .REF, .PROC, and .FUNC 
Assembler directives. These directives cause the Assembler to generate 
information that the Linker uses to resolve external references between 
separate procedures andfunctions in the same assembly or between 
procedures and functions assembled separately. Each entity referenced by 
a .REF Assembler directive results in a GLOBREF Linker information type 
entry that designates fields to be updated by the Linker. Each entity defined 
by a .DEF, .PROC, or .FUNC Assembler directive results in a GLOBDEF 
Linker information type entry that provides the Linker with the values to 
fix the .REF references. 

The GLOBREF Linker information type is used to link addresses between 
assembled procedures. The FORMAT field is always WORD. The NREFS 
field specifies the number of pointers in the POINTERLIST array (each of 
which points to a different reference). 

The GLOBDEF Linker information type defines the location of an entity in 
an assembled procedure. The HOMEPROC field contains the number of the 
procedure that defines the entity specified by the NAME array. The 

Chapter 2: Disk Files 



ICOFFSET field specifies the location within the named procedure where 
the entity is defined. The location is given as a byte offset, relative to the 
start of the procedure. There is no POINTERLIST array associated with a 
GLOBDEF Linker information type. 

As a program is linked, the Linker picks up each address defined explicitly 
by .DEF and implicitly by .PROC and .FUNG, and fixes up each reference to 
it in other procedures. The Linker must insert the final segment offset of the 
address in all words pointed to by the POINTERLIST array. 

Hcu:;tuCommunication linker Information Types 

The Assembler directives .CONST, .PUBLIC, and .PRIVATE enable an 
assembly-language procedure or function to share addresses and data space 
with the host program that calls it. Data values and locations are referred to 
by name in both the host program and the called procedure or function. 
Each entity referenced by a .CONST, .PUBLIC, or .PRIVATE Assembler 
directive results in a CONSTREF, PUBLREF, or PRIVREF Linker 
information type entry, respectively, that designates fields to be fixed up by 
the Linker. Each entity defined by a CONSTANT or VARIABLE declaration 
results in a CONSTDEF or PUBLDEF Linker information type entry, 
respectively, that provides the Linker with the values to fix references. As a 
program is linked, the Linker picks up each entity defined by .CONST, 
.PUBLIC, and .PRIVATE, and fixes up each reference to it in other 
procedures. The Linker must insert the final segment offset of the address 
in all words pointed to by the POINTERLIST array. 

The PUBLREF Linker information type is used to link global variables in the 
activation record of a host program to assembly-language procedures or 
Regular Units. The PUBLREF Linker information type results from a 
.PUBLIC directive in an assembly-language procedure or from use of 
variables declared in the INTERFACE of Regular Units. The NAME array 
specifies a variable that is referenced in the segment, and defined as a 
global variable in the host program. The FORMAT field is WORD for 
assembly-language procedures, and BIG for Regular Units. The NREFS field 
specifies the number of pointers in the POINTERLIST array (each of which 
points to a different reference). The Linker must add the offset of the 
referenced identifier to all words pointed to by the POINTERLIST array. 
Activation records are explained in Chapter 3. 

The PUBLDEF Linker information type declares a global variable in the 
host program. A PUBLDEF Linker information type is generated for each 
global variable in the host program that appears in a VAR declaration. The 
BASEOFFSET field specifies the location of the variable specified by the 

Linker Information IV-41 



IV-42 

NAME array within the activation record of the host program that contains 
it. The location is given as a word offset, relative to the start of the data 
area. There is no POINTERLIST array associated with a PUBLDEF Linker 
information type. 

The CONSTREF Linker information type is used to link constants in an 
assembled procedure to a global constant in the host program. The 
CONSTREF Linker information type results from a .CONST directive in an 
assembly-language procedure. The NAME array specifies a constant that is 
referenced in the segment, and defined as a global constant in the host 
program. The FORMAT field is WORD. The NREFS field specifies the 
number of pointers in the POINTERLIST array (each of which points to a 
different reference). The Linker must place the constant value into all 
locations pointed to by the POINTERLIST array. 

The CONSTDEF Linker information type declares a global constant in the 
host program. A CONSTDEF Linker information type is generated for each 
global constant in the host program that appears in a CONSTANT 
declaration. The CONS TV AL field contains the value of the declared 
constant. There is no POINTERLIST array associated with a CONSTDEF 
Linker information type. 

The PRIVREF Linker information type is used to indicate a reference to 
variables of an assembly-language procedure or Regular Unit, to be stored in 
the host program's global data area, and yet be inaccessible to the host 
program. The PRIVREF Linker information type results from either a 
.PRIVATE directive in assembly language, or by the use of global variables 
declared in the IMPLEMENTATION of Regular Units. The FORMAT field is 
always WORD. The NWORDS field specifies the amount of space, in words, 
to be allocated. The NREFS field specifies the number of pointers in the 
POINTERLIST array. The Linker must add the offset of the start of the 
allocated area within the global data area to all words pointed to by the 
POINTERLIST array. 

The UNITREF Linker information type is used to link references between 
Regular Units. The NAME array specifies the name of a Regular Unit that is 
referenced within another Regular Unit. The FORMAT field is always 
BYTE. The NREFS field specifies the number of pointers in the 
POINTERLIST array (each of which points to a different reference). The 
Linker must insert the final segment number of the referenced unit in all 
locations pointed to by entries in the POINTERLIST array. 

Chapter 2: Disk Files 



Procedure and Function Linker Information Types 

Separate assembly-language procedures and functions are referenced via 
EXTERNAL declarations in the calling segment. The Linker information 
types EXTPROG, EXTFUNG, SEPPROG, and SEPFUNG, are used to link 
procedures and functions between segments. Each .PROG or .FUNG entity 
referenced by a PROGEDURE ... EXTERNAL declaration results in an 
EXTPROG or EXTFUNG Linker information type entry, respectively, that 
designates fields to be fixed up by the Linker. All procedure or function code 
that begins with .PROG or .FUNG results in a SEPPROG or SEPFUNG Linker 
information type entry, respectively, that provides the Linker with the 
values to fix references. As each procedure or function is linked, the Linker 
picks up each procedure number and parameter size declared in the 
separate procedure or function, and transfers it to each external reference 
of that same procedure or function. 

The SRGPROG field specifies the procedure number of the referenced or 
declared procedure. The NPARAMS field specifies the number of words of 
parameters indicated in the .PROG or .FUNG directive. There is no 
POINTERLIST array associated with EXTPROG, EXTFUNG, SEPPROG, or 
SEPFUNG Linker information types. 

Miscellaneous Linker Information Types 

The EOFMARK Linker information type indicates the end of Linker 
information records. Additionally, if the segment is of the host program, the 
NEXTBASELG field indicates the number of words in the host program's 
global data area. If the segment is an Intrinsic Unit code segment, the 
PRIVDATASEG field contains the segment number of the associated data 
segment. 

Linker Information IV-43 





Chapter 3 The P-Machine 

IV-45 



IV-46 

The previous chapter discussed the static structure of program codefiles on 
disk and in memory. This chapter discusses the dynamic structure of 
program code as it is being executed in memory. 

The Apple Pascal pseudomachine or P-machine, a version of the UCSD 
Pascal P-machine, is the software-generated device that executes P-code as 
its machine language. Every computer operating under a form of UCSD 
Pascal has been programmed to "look like" this common P-machine, or a 
related variant, from the viewpoint of a program being executed. The 
P-machine has an evaluation stack, several registers, and a user 
memory. The user memory contains the program stack and the heap. 
These memory structures are described in Chapter 1. They are discussed in 
detail below. 

The P-machine supports 

o Variable addressing, including strings, byte arrays, packed fields, and 
dynamic variables; 

o Logical, integer, real, set, array, and string, top-of-stack arithmetic and 
comparisons; 

o Multi-element structure comparisons; 
o Branches; 
o Procedure and function calls and returns, including overlayable 

procedures; 
o Miscellaneous procedures used by system and user programs. 

The P-machine uses 16-bit words, with two 8-bit bytes per word. Words 
consist of two bytes, of which the lower, even-address byte is least 
significant. See Figure 3-1. The least significant bit of a word is bit 0, the 
most significant is bit 15. 

Figure 3-1. Relationship of Words and Bytes 

higher, odd addresses lower, even addresses 

bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

one word 

Chapter 3: The P-Machine 



The Evaluation Stack 

In the Apple II family, the evaluation stack uses a portion of the 6502 
hardware stack, starting at memory location $1FF and growing downward 
to location $100. It is used for passing parameters, for returning function 
values, and as an operand source for many P-machine instructions. When 
an instruction is said to push an item, that item is placed on the top of the 
evaluation stack (the evaluation stack grows downward). The evaluation 
stack is extended by loads and is reduced by stores and most arithmetic 
operations. 

Registers 

The Apple II P-machine uses 8 pseudoregisters, and the hardware stack 
pointer. All registers are pointers to word-aligned structures, except the 
IPC register, which is a pointer to byte-aligned structures. The 
pseudoregisters are the following: 

o SP: Evaluation Stack Pointer. This register contains a pointer to the 
current top of the evaluation stack (one byte below the last byte in use). 
It is actually the Apple II hardware stack pointer. 

o IPC: Interpreter Program Counter. This register contains the address 
of the next instruction to be executed in the currently executing 
procedure. It is located at address $58. 

o SEG: SEGment pointer. This register points to the highest word of the 
procedure dictionary of the segment to which the currently executing 
procedure belongs. It is located at address $56. 

o JTAB: Jump TABle pointer. This register contains a pointer to the 
highest word of the attribute table in the procedure code of the currently 
executing procedure. (Attribute tables are explained in Chapter 2.) It is 
located at address $54. 

o MP: Markstack Pointer. This register contains a pointer to the 
MSST AT field, in the markstack of the currently executing procedure. 
Local variables in the activation record of the current procedure are 
accessed by indexing off of the location pointed to by the MP register. 
(Markstacks are explained later in this chapter.) It is located at 
address $52. 

Registers JV-47 



N-48 

o BASE: BASE procedure pointer. This register contains a pointer to 
the MSSTAT field of the activation record of the most recently invoked 
base procedure (lexical level 0 or 1). Global (lex level 0) variables are 
accessed by indexing off of the location pointed to by the BASE register. 
(Activation records are explained later in this chapter.) It is located at 
address $50. 

o KP: program stacK Pointer. This register contains a pointer to the 
lowest byte of the lowest word actually in use on the program stack. The 
program stack starts in high addresses of user memory and grows 
downward toward the heap. KP is located at address $5C. 

o NP: New Pointer. This register contains a pointer to the current top of 
the heap (one byte above the last byte in use). The heap starts in low 
addresses of user memory and grows upward toward the program stack. 
It contains all dynamic variables. The heap is extended by the standard 
Pascal procedure NEW, and is cut back by the standard procedure 
RELEASE. NP is located at address $5A. 

o STRP: STRing Pointer. This register exists in the 128K Pascal system 
only. It is a pointer to the first element of the linked list of strings and 
packed character arrays on the stack. Whenever the P-machine executes 
an LP A or LSA instruction (see Chapter 4 ), and the literal packed array 
or string constant contained in the instruction is not already on the 
program stack, the P-machine pushes it onto the program stack and links 
it to the list pointed to by this pseudoregister. STRP is located at 
address $5E. 

The Program Stack and the Heap 

The operating system uses two dynamic structures called the program 
stack and the heap to store memory-resident code and data of an executing 
program. The program stack is used to store four kinds of items: 

o In the 64K system only, a code segment for each active program segment 
and for each active Program Unit. 

o In the 128K system only, assembly-language procedures and functions 
for each active program segment and for each active Program Unit. 

o In both systems, an activation record containing local variables and 
markstack parameters for each procedure activation. 

o In both systems, a data segment for each active Intrinsic Unit that 
requires one. 

The heap is used to store dynamic variables. 

Chapter 3: The P-Machine 



Figure 3-2 is a diagram of the Apple Pascal program stack and heap with 
four active procedures. 

Figure 3-2. The Program Stack and Heap With Four Active Procedures 

high memory addresses 

SYSCOM 

code segment (64K only) 

PASCALSYSTEM 
activation record 

r--------------------~ - BASE register 
markstack 

code segment (64K only) 

MAINPROG 
activation record 

r--------------------~ 
markstack 

code segment (64K only) 

UNITPROC 
activation record r---------------------

markstack 

code segment (64K only) 

ALPHAPROCDRE 
activation record r---------------------

markstack 
.-- MP and KP registers 

free memory 

- NP register 
HEAP 

low memory addresses 

SYSCOM 

The operating system and the P-machine exchange information via the 
system communications area (also called SYSCOM) at the bottom (high 
addresses) of the stack. SYSCOM is accessible to both assembly-language 
procedures in the Interpreter and system procedures coded in Pascal (as if it 

The Program Stack and the Heap IV-49 



IV-50 

were part of the Pascal system global data). SYSCOM serves as an 
important communication link between these two levels of the system. 
These are the 
fields in SYSCOM relevant to communication between the operating system 
and the P-machine: 

o IORSLT: This field contains the error code returned by the last activated 
or terminated I/O operation (see Appendix 2H for a list of I/O Error 
messages). 

o XEQERR: This field contains the error code of the last execution error 
(see Appendix 2H for a list of execution error messages). 

o BOMBP: This field contains a pointer to the activation record of the 
procedure that caused the execution error. 

o BOMBIPC: This field contains the IPC value when an execution error 
occurs. 

o SYSUNIT: This field contains the Pascal volume number of the device 
from which the operating system was started up (usually the startup 
disk drive, volume #4). 

o GDIRP: This field contains a pointer to the most recent disk directory 
read in, unless dynamic allocation or deallocation has taken place since 
then (see the MRK, RLS, and NEW instructions in Chapter 4). Disk 
directories are read into a temporary buffer directly above the heap. 

o Segment Table: The segment table is a record that contains information 
needed by the P-machine to read code segments into memory or to 
allocate space for data segments. 

The Segment Table 

Every code segment has a name, but when a given segment references 
another during the execution of a program, it refers not to the segment's 
name, but to the segment's number. The Interpreter uses the segment 
number as an index into the segment table, which contains an entry for 
each segment in the program. See Figure 3-3. The segment table entries are 
indexed by segment number; each entry contains information needed to 
load the segment from the codefile on disk into memory. The segment table 
is a dynamic structure of SYSCOM, but is somewhat analagous to a segment 
dictionary, in that it is used to locate segments on disk. 

Chapter 3: The P-Machine 



The segment table is located in the higher addresses of the SYSCOM area, at 
the bottom of the program stack. It contains entries for 

o The segments of the Pascal operating system itself (numbers 0, 2 .. 6); 
o Each segment in the segment dictionary of the program codefile; 
o Each Intrinsic Unit code and data segment needed by the host program. 

No two segments in an executing program can have the same number 
because the numbers are used to index the segment table. The segment 
table has space for up to 64 entries in the 128K system, 32 in the 64K 
system. Because the system uses some segments, this means that 52 entries 
(26 in the 64K system) are left for the program to use. 

I 
Remember: A program codefile contains 16 or fewer segments; any 
excess over 16 must be in either a program library, SYSTEM.LIBRARY, or 
library files specified in a Library Name File. 

Figure 3-3. The Segment Table 

high memory addresses 

entry 63 (information about 
segment number 63) 

entry 62 

entry I 

entry 0 (information about 
segment number 0) 

low memory addresses 

Activation Records 

When a procedure is called, the code segment containing that procedure 
code is loaded by the Interpreter if it is not already present in memory. An 
activation record for the procedure is built on top of the program stack each 
time the procedure is called. See Figure 3-4. Only code segments require 

The Program Stack and the Heap IV-51 



JV-52 

activation records; data segments do not. The activation record for a 
procedure consists of 

o The markstack, which contains addressing context information (static 
links), and information on the calling procedure's environment; 

o Space for storing the value returned by the procedure, if the procedure is 
a function; 

o Space for parameters passed to the procedure when it is called; 
o Space for the local variables of the procedure. 

Caution: When writing recursive procedures or functions, remember 
that each incarnation creates an activation record. These activation 
records can build up on the stack, causing a stack overflow. For further 
information on recursion, see Part III, Chapter 8. 

Figure 3-4. An Activation Record 

data area 

high memory addresses 

local 
variables 

passed 
parameters 

function 
value 

MSSP 

MSJPC 

MSSEG 

MSJTAB 

MSDYN 

MSSTAT 

low memory addresses 

DATA SIZE 

PARAMETER SIZE 

MARKSTACK 

Space is allocated in the higher addresses of the activation record for 
variables local to the procedure. This variable space is allocated in the 
reverse order that variables are declared. Variables of the same type, whose 
declarations are separated by commas, are allocated space in forward order. 

Chapter 3: The P-Machine 



For example, the declarations 

VAR I, J: INTEGER; 
BOOL: BOOLEAN; 

will cause space in the activation record to be allocated as shown in 
Figure 3-5. 

Figure 3-5. The Order of Local Variable Allocation in an Activation Record 

high memory addresses 

BOOL 

J 

low memory addresses 

Space for parameter passing is allocated below the local variable space. If 
the procedure is a function, space is also reserved (below the parameter 
space) for storing the value returned by the function. A description of the 
format of variables in activation records is given in Chapter 4. The order of 
passed parameters is discussed in Part III, Chapter 9. 

Local variables in the activation record of an active procedure are accessed 
by indexing from the location pointed to by the MP register. Global variables 
in the activation record of an active procedure are accessed by indexing 
from the location pointed to by the BASE register. 

When a procedure is terminated, its activation record is removed from the 
stack. 

Markstacks 

The lower portion of the activation record is called a markstack. When a 
procedure call is made, the current values of the system pseudoregisters 
that characterize the operating environment of the calling procedure are 
stored in the markstack of the called procedure. Thus the system registers 
can be restored to precall conditions when control is returned to the calling 
procedure. 

The Program Stack and the Heap IV-53 



IV54 

A procedure call causes the operating environment that existed in the 
system registers just at the time of the procedure call to be stored in the 
fields of the called procedure's markstack in the following manner: 

System 
Registers 

SP 
IPC 
SEG 
JTAB 
MP 
STRP 

--l> 

--l> 

--l> 

--l> 

--l> 

--l> 

Markstack Fields 

MSSP (MarkStack evaluation Stack Pointer) 
MSIPC (MarkStack Interpreter Program Counter) 
MSSEG (MarkStack SEGment pointer) 
MSJT AB (MarkStack Jump T ABie pointer) 
MSDYN (MarkStack DYNamic link) 
MSSTRP (MarkStack STRing Pointer-128K system 
only) 

The MSDYN field of a markstack contains a pointer to the MSSTAT field in 
the markstack of the procedure that called the new procedure. The 
combined MSDYN fields of all markstacks form a dynamic chain of links 
that describe the "route" by which the new procedure was called. 

The MSST AT field of a markstack contains a pointer to the MSSTAT field 
in the most recent markstack of the procedure that is the lexical parent of 
the called procedure. The Interpreter "knows" which procedure is the 
lexical parent, by looking up the static chain until it encounters a 
procedure whose lexical level is one less than the lexical level of the current 
procedure. The combined MSSTAT fields of a group of markstacks form a 
static chain of links that describe the lexical nesting of the called procedure. 

The NP register is not stored because it does not change during a procedure 
call. The BASE register is not stored on the markstack because its value is 
related only to base procedure calls. 

After building the new procedure's activation record on the program stack, 
new values for the IPC, SEG, JTAB, MP, and STRP registers are established. 
The registers are updated as follows: 

o The IPC register points to the first instruction of the called procedure. 
o The SEG register points to the procedure dictionary of the code segment 

that contains the called procedure. 
o The JT AB register points to the attribute table of the called procedure. 
o The MP register points to the marks tack of the called procedure. 
o The STRP register is initialized to NIL (zero). 

Chapter 3: The P-Machine 



After the registers are updated, the following takes place: 

o If the called procedure has a lexical level of - 1 or 0, the contents of the 
BASE register are saved on the evaluation stack, and the BASE register 
is set to the value of the MP register. 

o Finally, KP is saved on top of the stack and a new value for KP is 
calculated. 

These elements are not part of the markstack or activation record. 

Each time a procedure is called, another activation record is added to the 
program stack. Once again the register values and the appropriate static 
link and dynamic link are stored in the new markstack, and the system 
registers are then updated. Note that the SEG register always points to the 
procedure dictionary of the segment that contains the procedure, and not 
the segment that called the procedure. 

Once the code for a procedure has been loaded into memory, each further 
invocation of the same procedure causes only an activation record to be 
added to the program stack. The code is not loaded again. 

When a return from a procedure occurs, the information in the markstack 
fields is transferred to the system registers, and the activation record of the 
inactive procedure is removed from the stack. 

Additional information on procedure calls, and the relation of attribute 
tables to activation records, can be found in the section "Procedure and 
Function Calls" in Chapter 4. 

The Program Stack and the Heap IV-55 





Chapter4 The P-Machine Instruction Set 

IV-57 



IV-58 

Instruction Formats 

Instructions for the P-machine consist of one or two bytes, followed by 0 to 4 
parameters. Most parameters specify one word of information. There are 
five basic types of parameters: 

UB: Unsigned Byte. Represents a nonnegative integer less than 256. 
The high-order byte of the parameter is implicitly zero. 

SB: Signed Byte. Represents an integer from -128 to 127, in 
two's-complement form. The high-order byte is a sign extension of 
bit 7 of the low order byte. 

DB: Don't-care Byte. Represents a nonnegative integer less than 128; 
thus it can be treated as SB or UB. 

B: Big. This parameter is one byte long when used to represent values 
in the range 0 through 127, and is two bytes long when used to 
represent values in the range 128 through 32767. If the value 
represented is in the range 0 through 127, the high-order byte of the 
parameter is implicitly zero. If the value represented is in the range 
128 through 32767, bit 7 of the first byte is cleared and the first byte 
is used as the high order byte of the parameter. The second byte is 
used as the low-order byte. 

W: Word. A two-byte parameter, low byte first. Represents values in 
the range -32768 through 32767. 

Any exceptions to these formats are noted below, in the descriptions of the 
individual instructions. 

Operand Formats 

Although an element of a structure in memory may be as small as one bit 
(as in a packed array of boolean), variables to be operated on by the 
P-machine are always unpacked into full words. All top-of-stack (tos) 
operations expect their operands to occupy at least one word on the 
evaluation stack. 

Chapter 4: The P-Machine Instruction Set 



Formats of Variables on the Stack 

Variables are stored in activation records and on the evaluation stack in the 
manner described below. 

Boolean 

One word. Bit 0 indicates the value (0= FALSE, 1 =TRUE), and this is the 
only information used by boolean comparisons. However, the boolean 
operators LAND, LOR, and LNOT operate on all 16 bits, in a bitwise manner. 

Integer 

One word, two's complement notation, capable of representing values in the 
range -32768 .. 32767. 

Long Integer 

3 .. 11 words. A variable declared as INTEGER[n] is allocated 
((n+3) DIV 4) + 2 words of memory space. Regardless of the value of a long 
integer, its actual size remains the same as its allocated size. Each decimal 
digit of a long integer is stored as four bits of binary-coded decimal. The 
format of long integers on the stack is as follows: 

word 0 (tos): contains the allocated length, in words. 

word 1 (tos -1): low byte contains the sign (all zeros = positive, all 
ones = negative); high byte not used. 

word 2 (tos-2): four least significant decimal digits. The low byte 
contains the two more significant decimal digits (BCD). 
The high byte contains the two less significant digits. 

word n ( tos - n): four most significant decimal digits. The low byte 
contains the two more significant decimal digits (BCD). 
The high byte contains the two less significant digits. 

The format of long integers in activation records is as follows: word 0 is not 
stored; word 1 is the lowest word in memory; word n is the highest word in 
memory. 

Scalar (User-Defined) 

One word, in range 0 .. 32767. 

Operand Formats IV-59 



IV-60 

Char 

One word, with the low byte containing a character. The internal character 
set is extended ASCII, with 0 .. 127 representing the standard ASCII set, and 
128 .. 255 representing user-defined characters. 

Real 

Two words, whose format is diagrammed in Part III of this manual, 
Appendix 3C. In general, the format for 32-bit real numbers is as follows: 

Bit Item Contained In 

0 . .15 fraction tos 

15 .. 22 fraction 

23 .. 30 exponent tos-1 

31 sign 

Pointer 

One or three words, depending on the type of pointer. Pascal pointers 
(internal word pointers) consist of one word that contains a word address 
(the address of the low byte of the word). Internal byte pointers consist of 
one word that contains a byte address. Internal packed field pointers consist 
of three words: 

word 0 (tos): 
word 1 (tos-1): 
word 2 (tos-2): 

Set 

right bit number of field 
field width (in bits) 
word pointer to the word that contains the field 

0 .. 31 words in an activation record, 1..32 words on the evaluation stack. 
Sets are implemented as bit vectors, always with a lower index of zero. A 
set variable declared as SET OF m..n is allocated (n+ 15) DIV 16 words of 
memory space. All words allocated in an activation record for a set contain 
valid information (the set's actual size agrees with its allocated size). 

A set on the evaluation stack is represented by a word (tos) specifying the 
length of the set, followed by that number of words of information. The set 
may be padded with extra words (to compare it with another set of different 
size, say), and the length word changed to indicate the number of words in 

Chapter 4: The P-Machine Instruction Set 



the structure when padded. Before storing it back in an activation record, 
you must force a set back to the size allocated to it, by issuing an ADJ 
instruction. 

Records and Arrays 

Any number of words. Arrays are stored in forward order, with 
higher-indexed array elements appearing in higher-numbered memory 
locations. Only the address of the record or array is loaded onto the 
evaluation stack, never the structure itself. Packed arrays must have an 
integral number of elements in each word, as there is no packing across 
word boundaries (it is acceptable to have unused bits in each word). The 
first element in each word has bit 0 as its low-order bit. 

Strings 

1..128 words. Strings are a flexible version of packed arrays of CHAR. A 
STRING[n] declaration occupies (n DIV 2)+ 1 words of memory space. 
Byte 0 of a string is the current length of the string, and bytes 
l..length(string) contain valid characters. 

Formats of Constants in P-Code 

Constant scalars, sets, and strings may be embedded in the instruction 
stream, in which case they have special formats. 

o All scalars (excluding reals) greater than 127 are represented by two 
bytes, high byte first. 

o All string literals occupy length(literal)+ 1 bytes of memory space, and 
are word-aligned. The first byte is the length, the rest are the actual 
characters. This format applies even if the literal should be interpreted 
as a packed array of characters. 

o All reals, sets, and long integers are word-aligned and in REVERSE word 
order, that is, the higher-order bits of the real or set are in 
lower-numbered memory locations. 

Operand Formats IV-61 



SLDC_O 
SLDC_l 

0 
1 

SLDC_l27 127 

LDCN 

LDCI 

IV-62 

159 

199 w 

Conventions and Notation 

Each operand on the evaluation stack (for example, tos or tos-1 ), can 
contain from one byte to 256 bytes, depending on its type and value. Unless 
specifically noted to the contrary, operands used by an instruction are 
popped off the evaluation stack (removed from the stack and not returned) 
as they are used. 

In the descriptions of the various P-machine instructions the parameters are 
given as UB , SB , DB , B , or W . The term tos means the operand on the top 
of the evaluation stack, tos -1 is the next operand, and so on. The columns 
of information in the various instruction descriptions have the following 
meaning: 

Column 1 Column 2 Column3 Column 4 

opcode decimal instruction full name and 
mnemonic opcode parameters operation of the 

instruction 

P~Machine Instructions 

This section lists all the P-machine opcodes by their class of operation. 

One-Word loads and Stores 

This section lists opcodes that load and store single words. 

Constant 

Short load one-word constant. For an instruction SLDC_x , push the 
opcode, x , with the high byte zero. That is, push an integer with 
the value x. 

Load constant NIL. Push 0. 

Load one-word constant. Push W. 

Chapter 4: The P-Machine Instruction Set 



local 
SLDL_l 216 Short load local wo:rd. For an instruction SLDL__x , fetch the word 
SLDL_2 217 with offset x in the data area of the executing procedure's activation 

record and push it. 
SLDL_l6 231 

LDL 202 B Load local word. Fetch the word with offset B in the data area of the 
executing procedure's activation record and push it. 

LLA 198 B Load local address. Fetch the address of the word with offset B in the 
data area in the executing procedure's activation record and push it. 

STL 204 B Store local word. Store tos into word with offset B in the data area of 
the executing procedure's activation record. 

Global 

SLDO_l 232 Short load global word. For an instruction SLDO__x , fetch the word 
SLD0_2 233 with offset x in the data area of the activation record of the base 

procedure and push it. 
SLDO_l6 247 

LDO 169 B Load global word. Fetch the word with offset B in the data area of the 
activation record of the base procedure and push it. 

LAO 165 B Load global address. Fetch the address of the word with offset B in 
the data area of the activation record of the base procedure and push it. 

SRO 171 B Store global word. Store tos into the word with offset B in the data 
area of the activation record of the base procedure. 

Intermediate 

LOD 182 DB,B Load intermediate word. Fetch the word with offset B in the 
activation record found by traversing DB links in the static chain, and 
push it. 

LDA 178 DB,B Load intermediate ad.dress. Fetch address of the word with offset B 
in the activation record found by traversing DB links in the static chain, 
and push it. 

P-Machine Instructions IV-63 



STR 184 DB,B Store intermediate word. Store tos into the word with offset B in the 
activation record found by traversing DB links in the static chain. 

Indirect 

SIND_O 248 Load indirect word. Fetch the word pointed to by tos and push it (this 
is a special case of SIND_x, described below). 

SIND_l 249 Short index and load word. For an instruction SIND_x , index the 
SIND_2 250 word pointer tos by x words, and push the word pointed to by the 

result. 
SIND_7 255 

IND 163 B Static index and load word. Index the word pointer tos by B words, 
and push the word pointed to by the result. 

STO 154 Store indirect word. Store tos into the word pointed to by tos - 1 . 

Extended 

LDE 157 UB,B Load extended word. Fetch the word with offset B in the data segment 
number UB (of an Intrinsic Unit) and push it. 

LAE 167 UB,B Load extended address. Fetch the address of the word with offset B in 
the data segment number UB (of an Intrinsic Unit), and push it. 

STE 209 UB,B Store extended word. Store tos into the word with offset B in the data 
segment number UB (of an Intrinsic Unit). 

Multiple-Word Loads and Stores (Sets and Reals) 

LDC 179 UB,<data> Load multiple-word constant. Fetch the word-aligned <data> 
of UB words in reverse word order, and push the data. 

LDM 188 UB Load multiple words. Fetch UB words of word-aligned data in reverse 
order, whose beginning is pointed to by tos , and push the block. 

STM 189 UB Store multiple words. Transfer UB words of word-aligned data in 
reverse order, whose beginning is pointed to by tos , to the location block 
pointed to by tos - 1 . 

JV-64 Chapter 4: The P-Machine Instruction Set 



LDB 190 

STB 191 

LSA 166 

Byte A.rray Handling 

Load byteo Index the byte pointer tos - 1 by the integer index tos , and 
push the byte (after zeroing high byte) pointed to by the resulting byte 
pointer. 

Store byteo Index the byte pointer tos-2 by the integer index tos-1 , 
and push the byte tos into the location pointed to by the resulting byte 
pointer. 

UB,<chars> 

String Handling 

Load constant string addresso ( 64K system): Push a byte 
pointer to the location containing UB, then skip IPC past 
<chars>. (128K system): Push a word pointer to the constant 
character string UB, <chars> onto the evaluation stack. As the 
constant string is contained in the code segment, not in the 
stack/heap space, a copy of the string is pushed onto the program 
stack. If this string has not previously been pushed onto the stack 
during the currently active procedure, copy UB<chars> onto the 
program stack (add one space to the end of the string if 
UB<chars> is an even number of characters); push a 16-bit 
integer onto the program stack that points to the first byte of the 
string in the procedure code; push a 16-bit linkage pointer onto the 
program stack that points to the string or packed array most 
recently pushed onto the program stack (the linkage pointer is 0 if 
no other string or packed array has yet been pushed onto the stack); 
push a pointer onto the evaluation stack that points to the string 
length byte UB on the program stack. If UB<chars> has been 
pushed onto the stack during the currently active procedure, push a 
pointer onto the evaluation stack that points to the string length 
byte UB on the program stack. The contents of the program stack 
are not changed. In either case, advance the IPC register past the 
original copy of the string in the code space. 

P-Machine Instructions IV-65 



SAS 170 UB String assign. tos is either a source byte pointer or a character. 
(Characters always have a high byte of zero, while pointers never do.) 
tos-1 is a destination byte pointer. UB is the declared size of the 
destination string. If the declared size is less than the current size of the 
source string, give an execution error; otherwise transfer all bytes of 
source containing valid information to the destination string. 

IXS 155 Index string array. tos - 1 is a byte pointer to a string. tos is an index 
into the string. Check to see that the index is in the range 1..current string 
length. If so, continue execution; if not, give an execution error. 

Record and Array Handling 

MOV 168 B Move words. Transfer a source block of B words, pointed to by byte 
pointer tos , to a similar destination block pointed to by byte pointer 
tos-1. 

INC 162 B Increment field pointer. Index the word pointer tos by B words and 
push the resultant word pointer. 

IXA 164 B Index array. tos is an integer index, tos - 1 is the array base word 
pointer, and B is the size (in words) of an array element. Compute a word 
pointer ( tos - 1 ) + ( B * tos ) to the indexed element and push the 
pointer. 

IXP 192 UB1,UB2 Index packed array. tos is an integer index, tos - 1 is the array 
base word pointer. UBl is the number of elements per word, and 
UB2 is the field width (in bits). Compute a packed field pointer to 
the indexed field and push the resulting pointer. 

IV66 Chapter 4: The P-Machine Instruction Set 



LPA 208 

LDP 186 

STP 187 

NEW 1581 

MRK 158 31 

RLS 158 32 

UB,<chars> Load a packed array. (64K system): Push a byte pointer to the 
first location following the one that contains UB , and then skip IPC 
past <chars>. (128K system): Push a word pointer to the packed 
array <chars> onto the evaluation stack. As the packed array is 
contained in the code segment, not in the stack/heap space, a copy 
of the array is pushed onto the program stack. If this array has not 
previously been pushed onto the stack during the currently active 
procedure, copy <chars> onto the program stack (add one space 
to the end of the array if <chars> has an odd number of 
characters); push a 16-bit integer onto the program stack that points 
to the first byte of the array in the procedure code; push a 16-bit 
linkage pointer onto the program stack that points to the string or 
packed array most recently pushed onto the program stack (the 
linkage pointer is 0 if no other string or packed array has yet been 
pushed onto the stack); push a pointer onto the evaluation stack 
that points to the first byte of the packed array on the program 
stack. If the same packed array has been pushed onto the stack 
during the currently active procedure, push a pointer onto the 
evaluation stack that points to the first byte of the array on the 
program stack. The contents of the program stack are not changed. 
In either case, advance the IPC register past the original copy of the 
array in the code space. 

Load a packed field. Fetch the field indicated by the packed field 
pointer tos , and push it. 

Store into a packed field. Store the data tos into the field indicated by 
the packed field pointer tos - 1 . 

Dynamic Variable Allocation 

Note that the NP register points to the current top of the heap (one byte 
beyond the last byte in use). GDIRP is a SYSCOM field that points to the top 
of a temporary directory buffer above the heap. 

New variable allocation. tos is the size (in words) to allocate for the 
variable, and tos- 1 is a word pointer to a pointer variable. If the GDIRP 
field is non-NIL, set GDIRP to NIL. Store the NP register into the word 
pointed to by tos- 1 , and increment the NP register by tos words. 

Mark heap. Set the GDIRP field to NIL, then store the NP register into 
the word indicated by the word pointer tos . 

Release heap. Set the GDIRP field to NIL, then store the word indicated 
by the word pointer tos into the NP register. 

P-Machine Instructions IV-67 



To1N>f-Stack Arithmetic 

These operations perform arithmetic on values at the top of the stack. 

integers 

Note: Overflows do not cause an execution error; they are ignored and the 
results are undefined. 

ABI 128 Absolute value of integer. Push the absolute value of the integer tos . 
The result is undefined if tos is initially - 32768. 

ADI 130 Add integers. Add tos and tos - 1 , and push the resulting sum. 

NGI 145 Negate integer. Push the two's complement of tos. The result is 
undefined if tos is intially -32768. 

SBI 149 Subtract integers. Subtract tos from tos - 1 , and push the resulting 
difference. 

MPI 143 Multiply integers. Multiply tos and tos- 1 , and push the resulting 
product. 

SQI 152 Square integer. Square tos , and push the result. 

DVI 134 Divide integers. Divide tos- 1 by tos and push the resulting integer 
quotient (any remainder is discarded). Division by zero causes an 
execution error. 

MODI 142 Modulo integers. Divide tos- 1 by tos and push the resulting 
remainder. 

CHK 136 Check against subrange bounds. Insure that 
tos - 1 < = tos - 2 < = tos , leaving tos - 2 on the stack. If conditions 
are not satisfied, give an execution error. 

EQUI 195 tos-l=tos. 
NEQI 203 tos-1 <> tos. 
LEQI 200 tos-1 <= tos. 
LESI 201 tos-1 < tos. 
GEQI 196 tos-1 >= tos. 
GRTI 197 tos-1 > tos. 

Integer comparisons. Compare tos- 1 to tos and push the result, 
TRUE or FALSE. 

IV-68 Chapter 4: The P-Machine Instruction Set 



EQU 
NEQ 
LEQ 
LES 
GEQ 
GRT 

FLT 

FLO 

TNC 

RND 

ABR 

ADR 

NGR 

SBR 

175 
183 
180 
181 
176 
177 

138 

137 

158 22 

158 23 

129 

131 

146 

150 

UB 
UB 
UB 
UB 
UB 
UB 

Noninteger Comparisons 

The next six instructions are nonspecific noninteger comparisons. 
Comparisons using specific values of UB are given in later sections. 

tos-l=tos. 
tos-1 <> tos. 
tos-1 <= tos. 
tos-1 < tos. 
tos-1 >= tos. 
tos-1 > tos. 
Compare tos- 1 to tos , and push the result, TRUE or FALSE. The type of 
comparison is specified by UB : 

Contents oftos-1 & tos Value ofUB for Comparison 

reals 2 
strings 4 
booleans 6 
sets 8 
byte arrays 10 
words 12 

Reals 

Float top-of-staclk. Convert the integer tos to a floating-point number, 
and push the result. 

Float next to top-of-stack. tos is a real, tos- 1 is an integer. Convert 
tos-1 to a real number, and push the result. 

Truncate real. Truncate (as defined by Jensen and Wirth) the real tos 
and convert it to an integer, and push the result. 

Round real. Round (as defined by Jensen and Wirth) the real tos , then 
truncate and convert to an integer, and finally push the result. 

Absolute value of real. Push the absolute value of the real tos . 

Add reals. Add tos and tos-1, and push the resulting sum. 

Negate real. Negate the real tos , and push the result. 

Subtract reals. Subtract tos from tos - 1 and push the resulting 
difference. 

P-Machine Instructions IV-69 



MPR 144 Multiply reals. Multiply tos and tos- 1 and push the resulting product. 

SQR 153 Square real. Square tos , and push the result. 

DVR 135 Divide reals. Divide tos - 1 by tos , and push the resulting quotient. 

POT 158 35 Power often. I(the integer tos is in the range 0 <= tos <= 38, push 
the real value 10 tos . If the integer tos is not in this range, give an 
execution error. 

EQUREAL 175 2 tos-1 = tos. 
NEQREAL 183 2 tos-1 <> tos. 
LEQREAL 180 2 tos-1 <= tos. 
LES REAL 1812 tos-1 < tos. 
GEQREAL 176 2 tos-1 >= tos. 
GTRREAL 177 2 tos-1 > tos. 

Real comparisons. Compare the real tos- 1 to the real tos , and push 
the result, TRUE or FALSE. 

Strings 

EQUSTR 175 4 tos-l=tos. 
NEQSTR 183 4 tos-1 <> tos. 
LEQSTR 1804 tos-1 <= tos. 
LESS TR 1814 tos-1 < tos. 
GEQSTR 176 4 tos-1 >= tos. 
GRTSTR 177 4 tos-1 > tos. 

String comparisons. Find the string pointed to by word pointer tos- 1 , 
compare it alphabetically to the string pointed to by word pointer tos , and 
push the result, TRUE or FALSE. 

logical 

LAND 132 Logical AND. Push the result of tos- 1 AND tos . This is a bitwise AND 
of two 16-bit words. 

LOR 141 Logical OR. Push the result of tos-1 OR tos . This is a bitwise OR of two 
16-bit words. 

IV-70 Chapter 4: The P-Machine Instruction Set 



LNOT 147 Logical NOT. Push the one's complement of tos. This is a bitwise 
negation of one 16-bit word. 

EQUBOOL 175 6 tos-1 = tos. 
NEQBOOL 183 6 tos-1 <> tos. 
LEQBOOL 180 6 tos-1 <= tos. 
LESBOOL 1816 tos-1 < tos. 
GEQBOOL 176 6 tos-1 >= tos. 
GRTBOOL 177 6 tos-1 > tos. 

· Boolean comparisons. Compare bit 0 of tos- 1 to bit 0 of tos and push 
the result, TRUE or FALSE. 

Sets 

ADJ 160 UB Adjust set. Force the set tos to occupy UB words, either by expansion 
(putting zeros "between" tos and tos- 1 ) or by compression (chopping 
high words off the set), discard the length word, and push the resulting 
set. 

SGS 151 Build a one-member set. If the integer tos is in the range 
0 <= tos <= 511, push the set [tos]. If not, give an execution error. 

SRS 148 Build a subrange set. If the integer tos is in the range 
0 < = tos < = 511 , and the integer tos- 1 is in the same range, push 
the set [tos- l..tos] (push the set [ ] if tos - 1 > tos ). If either integer 
exceeds the range, give an execution error. 

INN 139 Set membership. If integer tos - 1 is in set tos , push TRUE. If not, 
push FALSE. 

UNI 156 Set union. Push the union of sets tos and tos - 1 . ( tos OR tos - 1 ) 

INT 140 Set intersection. Push the intersection of sets tos and tos-1 . 
( tos AND tos-1) 

DIF 133 Set difference. Push the difference of sets tos-1 and tos. 
( tos- 1 AND NOT tos ). 

EQUPOWR 175 8 tos-l=tos. 
NEQPOWR 183 8 tos-1 <> tos. 
LEQPOWR 180 8 tos - 1 < = (is a subset of) tos . 
GEQPOWR 176 8 tos - 1 > = (is a superset of) tos . 

Set comparisons. Compare set tos - 1 to the set tos , and push the 
result, TRUE or FALSE. 

P-Machine Instructions IV-71 



Byte Arrays 

EQUBYT 17510 B tos-l=tos. 
NEQBYT 18310 B tos-1 <> tos. 
LEQBYT 18010 B tos-1 <= tos. 
LESBYT 18110 B tos-1 < tos. 
GEQBYT 17610 B tos-1 >= tos. 
GRTBYT 17710 B tos-1 > tos. 

Byte a:rray comparisons. Compare byte array tos - 1 to byte array 
tos and push the result, TRUE or FALSE. Note:<=,<,>=, and> 
must be used with packed arrays of characters only. B specifies the 
number of bytes to compare. 

Records and Word Anay Comparisons 

EQUWORD 17512 B tos-l=tos. 
NEQWORD 18312 B tos-1 <> tos. 

Word or multiword structure comparisons. Compare word structure 
tos- 1 to word structure tos , and push the result, TRUE or FALSE. B 
gives the number of bytes to compare. 

Jumps 

The JT AB register points to the highest word of the attribute table in the 
currently executing procedure. The IPC register points to the next 
instruction to be executed in the currently activating procedure. 

UJP 185 SB Unconditional jump. SB is a jump offset. If this offset is nonnegative (a 
jump less than 128 bytes forward), it is simply added to the IPC register. 
(A value of zero for the jump offset will make any jump a two-byte NOP.) 
If SB is negative (a jump backward or more than 127 bytes forward), 
then SB is used as a byte offset into the jump table within the attribute 
table pointed to by the JTAB register, and the IPC register is set to the 
byte address ( JT AB[SB]) - contents of ( JT AB[SB]) . 

FJP 161 SB False jump. Jump (as described for UJP) if tos is FALSE. 

IV-72 Chapter 4: The P-Machine Instruction Set 



XJP I72 

CLP 206 

WI,W2, <case table> ,W3 

UB 

Case jump. WI is word-aligned and the minimum case selector of the 
case table. W2 is the maximum case selector. W3 is an unconditional jump 
offset past the case table. The case table is ( W2 - WI + I ) words long, 
and contains self-relative pointers. 

If tos , the case selector expression, is not in the range Wl..W2 , then 
point the IPC register at W3 . Otherwise, use ( tos - WI ) as an index into 
the case table, and set the IPC register to the byte address 
( casetable[ tos - WI ]) minus the contents of ( casetable[ tos - Wl ]), and 
continue execution. 

Procedure and Function Calls 

Here is the general method of procedure/function invocation: 

1. Find the procedure code of the called procedure. 
2. From the DAT A SIZE and PARAMETER SIZE fields of the attribute 

table of the called procedure, determine the size (in bytes) of the needed 
activation record, and extend the program stack by that number of 
bytes. 

3. Copy the number of bytes specified by the PARAMETER SIZE field from 
the top of the evaluation stack (tos) to the beginning of the space just 
allocated on the program stack. This passes parameters to the new 
procedure from its calling procedure. 

4. Build a markstack, saving the SP, IPC, SEG, JTAB, STRP, MP, and a 
static link pointer (MSST AT) to the most recent activation record of the 
procedure that is the lexical parent of the called procedure. 

5. Calculate new values for the SP, IPC, JTAB, and MP registers; if 
necessary, calculate a new value for the SEG register. Issue an 
execution error if the program stack overflows. 

6. If the called procedure has a lexical level of - I or 0 (in other words, if 
it is a base procedure) save the value of the BASE register on the 
evaluation stack and then equate the BASE register with the MP 
register. 

7. Save the value of the KP register on the program stack. 
8. Calculate a new value for the KP register. 

Call local procedure. Call procedure number UB , which is an 
immediate child of the currently executing procedure and in the same 
segment. The MSST AT field (static link) of the markstack is set to the 
value of the old MP register. 

P-Machine Instructions IV-73 



CGP 207 UB Call global procedure. Call procedure number UB , which is at lexical 
level 1 and in the same segment as the currently executing procedure. The 
MSSTAT field (static link) of the markstack is set to the value of the 
BASE register. 

CIP 174 UB Call intermediate procedure. Call procedure number UB in the same 
segment as the currently executing procedure. The MSST AT field (static 
link) of the markstack is set by looking up the dynamic chain (MSDYN 
fields) until an activation record is found whose caller had a lexical level 
one less than the procedure being called. Use that activation record's 
MS STAT field (static link) as the static link of the new markstack. 

CBP 194 UB Call base procedure. Call procedure number UB , which is at lexical 
level -1or0. The MSSTAT field (static link) of the markstack is set to 
the MSST AT field in the activation record of the procedure pointed to by 
the BASE register. The value of the BASE register is saved on the 
evaluation stack, after which it is set to point to the MSST AT field of the 
activation record just created. 

CXP 205 UB1,UB2 Call external procedure. Call procedure number UB2 , in segment 
UBl . Used to call any procedure not in the same segment as the calling 
procedure, including base procedures. If the desired segment is not 
already in memory, it is read from disk. Build an activation record. 
Calculate the static link for the markstack (if the called procedure has a 
lex level of - 1or0, set as in the CBP instruction; otherwise set as in the 
CIP instruction). 

CSP 158 UB Call staJll.dard procedure. Used to call standard procedures built into 
the P-machine. 

RNP 173 DB Return from nonbase procedure. DB is the number of words that 
should be returned as a function value (0 for procedures, 1 for nonreal 
functions, and 2 for real functions). Copy DB words from the higher 
addresses of the current procedure's activation record, and push them 
onto the evaluation stack. Then copy the information in the current 
procedure's markstack fields into the pseudoregisters to restore the calling 
procedure's correct environment. 

RBP 193 DB Return from base procedure. Move the value of the BASE register 
saved on the evaluation stack by a CBP, back into the BASE register, and 
then proceed as in the RNP instruction. 

IV-74 Chapter 4: The P-Machine Instruction Set 



EXIT 158 4 Exit from procedure. tos is the procedure number, tos-1 is the 
segment number. First, set the MSlPC field to point to the exit code of the 
currently executing procedure. 

If the current procedure is not the one to exit from, change the MSIPC field 
of each markstack to point to the exit code of the procedure that invoked 
it, until the desired procedure is found. Then continue execution. 

If at any time the saved MSIPC field of the main body of the operating 
system is about to be changed, give an execution error. 

System Support Procedures 

FLC 15810 Fmchar. tos is the source character. tos- 1 is the number of bytes in the 
source character that are to be filled. tos - 2 is a byte pointer to the first 
byte to be filled in the destination. Copy the character tos into tos- 1 
characters of the destination. 

SCN 15811 Scan. tos is a two-byte quantity (usually the default integer 0) that is 
pushed, but later discarded without being used in this implementation. 
tos - 1 is a byte pointer to the first character to be scanned. tos - 2 is the 
character against which each scanned character of the array is to be 
checked. tos-3 is 0 if the check is for equality, or 1 if the check is for 
inequality. tos - 4 specifies the maximum number of characters to be 
scanned (scan to the left if negative). If a character check yields TRUE, 
push the number of characters scanned (negative, if scanning to the left). 
If tos - 4 characters are scanned before character check yields TRUE, 
push tos-4. 

MVL 158 02 Moveleft. tos specifies the number of bytes to move. tos- 1 is a byte 
pointer to the first destination byte. tos- 2 is a byte pointer to the first 
source byte. Copy tos bytes from the source to the destination, 
proceeding from left to right through both source and destination. 

MVR 158 03 Moveright. tos specifies the number of bytes to move. tos - 1 is a byte 
pointer to the first destination byte. tos- 2 is a byte pointer to the first 
source byte. Copy tos bytes from the source to the destination, 
proceeding from right to left through both source and destination. 

P-Machine Instructions IV-75 



TIM 

XIT 

BPT 
NOP 

158 09 

214 

213 B 

215 

Miscellaneous 

Time. Pop two pointers to two integers, and place zero in both integers. 

Exit the operating system. Do a cold start of the system, as the 
operating system's Quit command. 

Breakpoint. Not used (acts as a NOP). 

No operation. Sometimes used to reserve space in the code for later 
additions. 

Numerical listing of Opcodes 

For your convenience in finding a given P-code instruction, here they are in 
the numerical order of their opcodes. 

Table 4-1. P-Codes in Numerical Order 

Decimal 
Opcode Mnemonic Full Name Location in Main Listing 

0 SLDC_O Short-load one-word constant One-Word Loads and Stores 
1 SLDC_l Short-load one-word constant One-Word Loads and Stores 

127 SLDC_l27 Short-load one-word constant One-Word Loads and Stores 
128 ABI Absolute value of integer Top-of-Stack Arithmetic 
129 ABR Absolute value of real Top-of-Stack Arithmetic 
130 ADI Add integers Top-of-Stack Arithmetic 
131 ADR Add reals Top-of-Stack Arithmetic 
132 LAND Logical AND Top-of-Stack Arithmetic 
133 DIF Set difference Top-of-Stack Arithmetic 
134 DVI Divide integers Top-of-Stack Arithmetic 
135 DVR Divide reals Top-of-Stack Arithmetic 
136 CHK Range check Top-of-Stack Arithmetic 
137 FLO Float TOS-1 Top-of-Stack Arithmetic 
138 FLT Float TOS Top-of-Stack Arithmetic 
139 INN Set membership Top-of-Stack Arithmetic 
140 INT Set intersection Top-of-Stack Arithmetic 
141 LOR Logical OR Top-of-Stack Arithmetic 
142 MODI Modulo integers Top-of-Stack Arithmetic 
143 MPI Multiply integers Top-of-Stack Arithmetic 

IV-76 Chapter 4: The P-Machine Instruction Set 



Decimal 
Opcode Mnemonic Full Name Location in Main Listing 

144 MPR Multiply reals Top-of-Stack Arithmetic 
145 NGI Negate integer Top-of-Stack Arithmetic 
146 NGR Negate real Top-of-Stack Arithmetic 
147 LNOT Logical NOT Top-of-Stack Arithmetic 
148 SRS Build a subrange set Top-of-Stack Arithmetic 

149 SBI Subtract integers Top-of-Stack Arithmetic 
150 SBR Subtract reals Top-of-Stack Arithmetic 
151 SGS Build a one-member set Top-of-Stack Arithmetic 
152 SQ! Square integer Top-of-Stack Arithmetic 
153 SQR Square real Top-of-Stack Arithmetic 
154 STO Store indirect word One-Word Loads and Stores 
155 IXS Index string array String Handling 
156 UNI Set union Top-of-Stack Arithmetic 
157 LDE Load extended word One-Word Loads and Stores 
158 CSP Call standard procedure Procedure and Function Calls 
1581 NEW New variable allocation Dynamic Variable Allocation 
158 2 MVL Moveleft System Support Procedures 
158 3 MVR Moveright System Support Procedures 
158 4 EXIT Exit from procedure Procedure and Function Calls 
158 9 TIM Time Miscellaneous 
15810 FLC Fill char System Support Procedures 
15811 SCN Scan System Support Procedures 
158 22 TNC Truncate real Top-of-Stack Arithmetic 
158 23 RND Round real Top-of-Stack Arithmetic 
158 31 MRK Mark heap Dynamic Variable Allocation 
158 32 RLS Release heap Dynamic Variable Allocation 
158 35 POT Power-of-ten Top-of-Stack Arithmetic 
159 LDCN Load constant NIL One-Word Loads and Stores 
160 ADJ Adjust set Top-of-Stack Arithmetic 
161 FJP False jump Jumps 
162 INC Increment field pointer Record and Array Handling 
163 IND Static index and load word One-Word Loads and Stores 
164 IXA Index array Record and Array Handling 
165 LAO Load global address One-Word Loads and Stores 
166 LSA Load constant string address String Handling 
167 LAE Load extended address One-Word Loads and Stores 
168 MOV Move words Record and Array Handling 
169 LDO Load global word One-Word Loads and Stores 
170 SAS String assign String Handling 
171 SRO Store global word One-Word Loads and Stores 
172 XJP Case jump Jumps 

Numerical Listing of Opcodes IV-77 



Decimal 
Opcode 

173 
174 
175 
175 2 
175 4 
175 6 
175 8 
17510 
17512 
176 
176 2 
1764 
176 6 
176 8 
17610 
177 
177 2 
177 4 
177 6 
17710 
178 
179 
180 
1802 
1804 
180 6 
1808 
18010 
181 
1812 
1814 
1816 
18110 
182 
183 
183 2 
1834 
183 6 
183 8 
18310 
18312 
184 
185 
186 

IV-78 

Mnemonic 

RNP 
CIP 
EQU 
EQUREAL 
EQUSTR 
EQUBOOL 
EQUPOWR 
EQUBYT 
EQUWORD 
GEQ 
GEQREAL 
GEQSTR 
GEQBOOL 
GEQPOWR 
GEQBYT 
GRT 
GTRREAL 
GRTSTR 
GRTBOOL 
GRTBYT 
LDA 
LDC 
LEQ 
LEQREAL 
LEQSTR 
LEQBOOL 
LEQPOWR 
LEQBYT 
LES 
LES REAL 
LESS TR 
LESBOOL 
LESBYT 
LOD 
NEQ 
NEQREAL 
NEQSTR 
NEQBOOL 
NEQPOWR 
NEQBYT 
NEQWORD 
STR 
UJP 
LDP 

Full Name 

Return from nonbase procedure 
Call intermediate procedure 
Equal 
Real comparison 
String comparison 
Boolean comparison 
Set comparison 
Byte array comparison 
Word or multiword structure comparison 
Greater than or equal 
Real comparison 
String comparison 
Boolean comparison 
Set comparison 
Byte array comparison 
Greater than 
Real comparison 
String comparison 
Boolean comparison 
Byte array comparison 
Load intermediate address 
Load multiple-word constant 
Less than or equal 
Real comparison 
String comparison 
Boolean comparison 
Set comparison 
Byte array comparison 
Less than 
Real comparison 
String comparison 
Boolean comparison 
Byte array comparison 
Load intermediate word 
Not equal 
Real comparison 
String comparison 
Boolean comparison 
Set comparison 
Byte array comparison 
Word or multiword structure comparison 
Store intermediate word 
Unconditional jump 
Load a packed field 

Chapter 4: The P-Machine Instruction Set 

Location in Main Listing 

Procedure and Function Calls 
Procedure and Function Calls 
Top-of-Stack Arithmetic 
Top-of-Stack Arithmetic 
Top-of-Stack Arithmetic 
Top-of-Stack Arithmetic 
Top-of-Stack Arithmetic 
Top-of-Stack Arithmetic 
Record and Word Array Comparisons 
Top-of-Stack Arithmetic 
Top-of-Stack Arithmetic 
Top-of-Stack Arithmetic 
Top-of-Stack Arithmetic 
Top-of-Stack Arithmetic 
Top-of-Stack Arithmetic 
Top-of-Stack Arithmetic 
Top-of-Stack Arithmetic 
Top-of-Stack Arithmetic 
Top-of-Stack Arithmetic 
Top-of-Stack Arithmetic 
One-Word Loads and Stores 
Multiple-Word Loads and Stores 
Top-of-Stack Arithmetic 
Top-of-Stack Arithmetic 
Top-of-Stack Arithmetic 
Top-of-Stack Arithmetic 
Top-of-Stack Arithmetic 
Top-of-Stack Arithmetic 
Top-of-Stack Arithmetic 
Top-of-Stack Arithmetic 
Top-of-Stack Arithmetic 
Top-of-Stack Arithmetic 
Top-of-Stack Arithmetic 
One-Word Loads and Stores 
Top-of-Stack Arithmetic 
Top-of-Stack Arithmetic 
Top-of-Stack Arithmetic 
Top-of-Stack Arithmetic 
Top-of-Stack Arithmetic 
Top-of-Stack Arithmetic 
Record and Word Array Comparisons 
One-Word Loads and Stores 
Jumps 
Record and Array Handling 



Decimal 
Opcode Mnemonic Full Name Location in Main Listing 

187 STP Store into a packed field Record and Array Handling 
188 LDM Load multiple words Multiple-Word Loads and Stores 
189 STM Store multiple words Multiple-Word Loads and Stores 
190 LDB Load byte Byte Array Handling 
191 STB Store byte Byte Array Handling 
192 IXP Index packed array Record and Array Handling 
193 RBP Return from base procedure Procedure and Function Calls 
194 CBP Call base procedure Procedure and Function Calls 
195 EQUI Equals integer Top-of-Stack Arithmetic 
196 GEQI Greater than or equal integer Top-of-Stack Arithmetic 
197 GRTI Greater than integer Top-of-Stack Arithmetic 
198 LLA Load local address One-Word Loads and Stores 
199 LDCI Load one-word constant One-Word Loads and Stores 
200 LEQI Less than or equal integer Top-of-Stack Arithmetic 
201 LESI Less than integer Top-of-Stack Arithmetic 
202 LDL Load local word One-Word Loads and Stores 
203 NEQI Not equal integer Top-of-Stack Arithmetic 
204 STL Store local word One-Word Loads and Stores 
205 CXP Call external procedure Procedure and Function Calls 
206 CLP Call local procedure Procedure and Function Calls 
207 CGP Call global procedure Procedure and Function Calls 
208 LPA Load a packed array Record and Array Handling 
209 STE Store extended word One-Word Loads and Stores 
213 BPT Breakpoint Miscellaneous 
214 XIT Exit the operating system Miscellaneous 
215 NOP No operation Miscellaneous 
216 SLDL_l Short load local word One-Word Loads and Stores 
217 SLDL_2 Short load local word One-Word Loads and Stores 

231 SLDL_l6 Short load local word One-Word Loads and Stores 
232 SLDO_l Short load global word One-Word Loads and Stores 
233 SLD0_2 Short load global word One-Word Loads and Stores 

247 SLD0_16 Short load global word One-Word Loads and Stores 
248 SIND_O Load indirect word One-Word Loads and Stores 
249 SIND_l Short index and load word One-Word Loads and Stores 
250 SIND_2 Short index and load word One-Word Loads and Stores 

255 SIND_7 Short index and load word One-Word Loads and Stores 

Numerical Listing of Opcodes IV-79 





Appendix4A Memory Maps 

IV81 



IV-82 

64K System Memory 

External Language l 
Card (Apple II or 
Apple II Plus) or 
Main Memory 
(Apple Ile or 

Apple Ile) 

Main 
Memory 

P-code 
Interpreter 

and 
part of the 
Operating 
System 

'-~~~~~~~--' 

1/0 Device 
Addresses & ROMs 

SYSCOM 

part of the 
Operating System 

Program Stack 
(builds down) 

P-code, 6502 code 
and data 

+ r----------------

Free Memory 

r----------------

I 
Heap 

(builds up) 

Text Screen 

Disk & Console 
Buffers 

Evaluation Stack 
(builds down) 

+ r----------------

Zero Page 

Appendix 4A: Memory Maps 

$FFFF 64K 

$DOOO 52K 

$CFFFF 
$COOOO 48K 

-- KP (Top of Program Stack) 

-+-- NP (Top of Heap) 

$0800 2K 

$0400 lK 

$0200 0.5K 

-+-- SP (Top of Evaluation Stack) 

$0100 0.25K 

$0000 OK 



128K System Main Memory 

Main 
Memory 

P·code 
Interpreter 

and 
part of the 
Operating 
System 

1/0 Device 
Addresses & ROMs 

SYSCOM 
t---· 

Program Stack 
(builds down) 

data and 
6502 code 

t 
r---------------~ 

Free Memory 

r-------,-------~ 
Heap 

(builds up) 

Text Screen 

Disk & Console 
Buffers 

Evaluation Stack 
(Builds down) 

+ 
~---------------~ 

Zero Page 

128K System Main Memory 

$FFFF 64K 

$DOOO 52K 
$COOO 48K 

- KP (Top of Program Stack) 

- NP(TopofHeap) 

$0800 2K 

$0400 lK 

$0200 0.5K 

- SP (Top of Evaluation Stack) 

$0100 0.25K 

$0000 OK 

IV-83 



IV-84 

128K System Auxiliary Memory 

Auxiliary 
Memory 

Reserved 
for 

System 
Use 

1/0 Device 
Addresses & RO Ms 

Part of the 
Operating System 

P-code 
(builds down) 

+ 
~---------------~ 

Free Memory 

Text Screen 

System Use 

Appendix 4A: Memory Maps 

...,.. __ CODEP 

$FFFF 64K 

$D00052K 

$COOOO 48K 

$0800 2K 

$0400 lK 

$OOOOOK 



Code Segments in a Codefile 

high disk addresses 

first segment 

sixteenth segment 

fifteenth segment 

third segment 

second segment 

segment dictionary 

low disk addresses 

Code Segments in a Codefile IV-85 



IV-86 

Blocks in a Code Segment 

high disk addresses 

Second Code Segment 
Block 6 Interface text 

Block 5 Linker information 

Block 4 code part 

Block 3 

Block 2 interface text 
(unit segments only) 

First Code Segment 
Block 1 

Block 0 segment dictionary 

low disk addresses 

Appendix 4A: Memory Maps 

byte 511 

byteO 



Correlation Between Programs and Codefiles 

Source text files 

PROGRAM MA!H; 
USES MA!NLIBIU,REGUNIT; 
SEGMENT FUNCTION DIVID; 
BEGIN 

END; 
SEGMENT PROCEDURE BYFOUR; 
BEGIN 

END; 

FUNCTION MUL T2; 
BEGIN 

END; 

PROCEDURE STOR; 
BEGIN 

END; 

BEGIN 

END 

UNIT REGUNIT; 
BEGIN 

END. 

UNIT MAINLIBIU;INTRINSIC 
CODE 40 DATA41; 
BEGIN 

END 

Correlation Between Programs and Codefiles 

Segments in codefile 
after linking 

REGUNIT code segment 

MAIN "outer" code segment 

MUL T2 function 

STOR procedure 

BYFOUR code segment 

DIVID code segment 

Seg:nent in library 

MAINLIBIU code segment 

IV-87 



IV-88 

Segment Dictionary 

DISK INFO 

SEGNAME 

SEGKIND 

TEXTADDR 

SEGINFO 
bit 

INTRINS-SEGS bit 

FILLER 

COMMENT 

low disk addresses 
high byte low byte 

CODEADDR(block number) 

CODELENG(in bytes) 

1st character 

3rd character 
(seg 0) 

5th character 

7th character 

SEGKIND 

TEXTADDR 

I VERSION MTYPE 

15 14 13 12 11 10 9 8 

15 14 13 12 11 10 9 8 7 

(segmentO) 

(segments 1-15) 

0th character 

2nd character 

4th character 

6th character 

(segments 1-15) 

(segmentO) 

(segments 1-15) 

(segment 0) 

(segments 1-15) 

SEGNUM 

6 5 4 3 2 

(segments 1-15) 

6 5 4 3 2 

1 0 

1 0 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 

j 1st character 0th character 

I 79th character 78th character 

high disk addresses 

Appendix 4A: Memory Maps 

word 0 

32 

33 

34 

35 

96 

112 

128 

144 

145 

146 

147 

148 

216 

255 



Interface Text in a Codefile 

page n 
block n 

block n+l 

page n+ 1 
block n+2 

block n+3 

page n+2 
block n+4 

block n+5 

Source Textfile 

INTERFACE 
USES APPLESTUF 

USES TRANSCEND 
CONSTANT Pl=3 
CONSTANT E=2.7 
TYPE ARRAYSIZE 
VAR INRECORD:I 
VAR CURRENT:CH 
PROCEDURE A; 
PROCEDURE B; 
PROCEDURE C; 
FUNCTION D(IN 
FUNCTION E(AS 

FUNCTION F(PA 
IMPLEMENTATION 
PROCEDURE A; 

Interface Text in a Codefile 

Interface Text in Codefile 

USES APPLESTUF 
garbage 

USES TRANSCEND 
CONSTANT Pl=3 
CONSTANT E=2.7 
TYPE ARRAYSIZE 
VAR INRECORD:I 
VAR CURRENT:CH 
PROCEDURE A; 
PROCEDURE B; 
PROCEDURE C; 
FUNCTION D (IN 
FUNCTION E (AS 

FUNCTION F (PA 
IMPLEMENTATION 

unit info 

blockm 

block m+ 1 

block m+2 

blockm+3 

blockm+4 

IV-89 



IV-90 

Code Part of a Code Segment 

high disk or memory addresses 
high byte low byte 

number of procedures 1 segment number 

~ 

. . 
r--

'-" 

. . 
~ 

I 
CODEADDR 
block boundary 

in this segment of this segment 

pointer to procedure # 1 

pointer to procedure #2 

pointer to procedure #n 

attribute table procedure # 1 

code (highest procedure) 

attribute table procedure #n 

code (lowest procedure) 

attribute table 
procedure #2 

code 

low disk or memory addresses 

Appendix 4A: Memory Maps 

. 

. . . 

l 
Procedure 

J~"Y 
CODELENG 

bytes 



Procedure Code Structure 

high disk or memory addresses 
high byte low byte 

attrib~e table 
(with optional jump table) 

procedure 
c~e 

low disk or memory addresses 

P~Code Procedure Attribute Table 

high disk or memory addresses 
high byte low byte 

LEX LEVEL l PROCEDURE NUMBER 

ENTER IC 

EXIT IC 

PARAMETER SIZE(in bytes) 

DATA SIZE(in bytes) 

optional jump table 

low disk or memory addresses 

P-Code Procedure Attribute Table 

1----i 

r---i 

self-relative 
pointers to code 

IV-91 



IV-92 

6502 Procedure Attribute Table 

high disk or memory addresses 
high byte low byte 

RELOCSEG l PROCEDURE 

base-
relative 
relocation table 

segment
relative 
relocation table 

procedure
relative 
relocation table 

interpreter
relative 
relocation table 

Appendix 4A: Memory Maps 

NUMBER NUMBER(=O) 

ENTER IC 

number of pointers( n) 

. n self-. relative . pointers 

number of pointers( m) 

0 m self-. relative . pointers 

number of pointers(p) 

p self-. relative . pointers 

number of pointers( q) 

q self-. relative . pointers 

low disk or memory addresses 

n nter pOl 
to s tart of 

cedure code pro 



Bytes and Words 

higher, odd addresses lower, even addresses 

bit: 15 14 13 12 11 10 g 8 7 6 5 4 3 2 0 

one word 

Bytes and Words IV-93 



Program Stack 

high memory addresses 

SYSCOM 

code segment (64K only) 

PASCALSYSTEM 
activation record 

r--------------------~ - BASE register 
marks tack 

code segment (64K only) 

MAINPROG 
activation record r---------------------

marks tack 

code segment (64K only) 

UNITPROC 
activation record 

r---------------------
markstack 

code segment (64K only) 

ALPHAPROCDRE 
activation record 

r---------------------
mark stack 

--- MP and KP registers 

free memory 

..,.__ NP register 
HEAP 

low memory addresses 

IV-94 Appendix 4A: Memory Maps 



Segment Table 

high memory addresses 

entry 63 (information about 
segment number 63) 

entry 62 

entry 1 

entry 0 (information about 
segment number 0) 

low memory addresses 

Segment Table IV-95 



IV-96 

Activation Record 

data area 

high memory addresses 

local 
variables 

passed 
parameters 

function 
value 

MSSP 

MSIPC 

MSSEG 

MSJTAB 

MSDYN 

MSSTAT 

low memory addresses 

DATA SIZE 

PARAMETER SIZE 

MARKSTACK 

Variable Allocation in an Activation Record 

For the declaration 

VAR I, J : INTEGER; 

BOOL : BOOLEAN; 

the local variable portion of an activation record is constructed like this: 

high memory addresses 

BOOL 

J 

low memory addresses 

Appendix 4A: Memory Maps 







PartV Bibliography, Glossary, and Index 



V-ii 

Contents 

Bibliography 
Reference Books 1 
General Pascal Textbooks 2 
Programming Methodology 2 
6502 Assembly-Language Programming 3 

Glossary 

Workbench Products 

Licensable Products 

Developer Relations 

Index 

Contents 

1 

5 

19 

19 

21 

23 



Bibliography 

A number of excellent books have been written about Pascal. Here are a few 
that range from entry-level instruction to complete and thorough 
descriptions of the language. A brief list of 6502-programming references is 
included at the end. 

Reference Books 

These books are the sources that define "standard Pascal." 

Jensen, Kathleen, and Niklaus Wirth. Pascal User Manual and Report. 
New York, N.Y.: Springer-Verlag, 1974. 

This book is the original documentation for the language as provided 
by Niklaus Wirth. The first section of the book ("User Manual") 
presents some of the main theories behind structured programming. 
The second section ("Report") is the formal description of the 
language. 

Ledgard, Henry, ed. TheAmericanPascal Standard (with 
Annotations). New York, N.Y.: Springer-Verlag, 1984. 

The American National Standards Institute brings together opposing 
factions in the computer world to decide what defines a "standard" 
implementation of a language. The annotations (by Henry Ledgard) 
explain some of the more difficult points and offer enlightening 
examples. 

Reference Books V-1 



V-2 

General Pascal Textbooks 

Clancy, Michael, and Doug Cooper. Oh! Pascal!. New York, N.Y.: W.W. 
Norton and Company, 1982. 

One of the most thorough and entertaining introductions to Pascal. 

Grogono, Peter. Programming in Pascal. Reading, Mass.: Addison Wesley 
Publishing Company, Inc., 1978. 

Another comprehensive and well-written textbook, used in many 
introductory Pascal college courses. 

Programming Methodology 

Bowles, Kenneth L. Microcomputer Problem Solving Using Pascal. New 
York, N.Y.: Springer-Verlag, 1977. 

Kenneth Bowles was head of the project at the University of 
California at San Diego that created what is now known as UCSD 
Pascal. The first widely used implementation of Pascal for small 
computers, UCSD Pascal brings the Pascal language together with a 
complete programming environment for microcomputers. This book 
discusses how Pascal's unique structures can be used to solve 
common types of programming problems. 

Kerhighan, Brian W., and P. J. Plauger. Software Tools in Pascal. 
Reading, Mass.: Addison-Wesley Publishing Company, Inc., 1981. 

A guide to good programming practice, based on actual examples of 
Pascal programs. 

Ledgard, Henry F., et al. Pascal With Style (Programming Proverbs). 
Rochelle Park, N. J.: Hayden Book Company, Inc., 1979. 

An excellent set of rules to code by. Written around a real-world 
design problem, this book leads you gently into good programming 
style. 

Bibliography 



6502 Assemblyalanguage Programming 

A few of the books on 6502 assembly-language programming are listed here, 
along with the programming reference manual published by the 
manufacturers of the 6502 microprocessor. 

Barden, William, Jr. How to Program Microcomputers. Indianapolis, 
Ind.: Howard W. Sams, 1977. 

de Jong, Marvin L. Programming and Interfacing the 6502, With 
Experiments. Indianapolis, Ind.: Howard W. Sams, 1980. 

Foster, Caxton C. Programming a Micro-computer: 6502. Reading, 
Mass.: Addison-Wesley, 1978. 

Inman, Don, and Kurt Inman. Apple Machine Language. Reston, Va.: 
Reston Publishing Company, Inc., 1981. 

Leventhal, Lance A. 6502 Assembly Language Programming. Berkeley, 
Calif.: Osborne/McGraw-Hill, 1979. 

MOS Technology, Inc. MCS6500 Microcomputer Family Programming 
Manual. Norristown, Pa.: MOS Technology, Inc., 1975. (Also 
published by Synertek, Santa Clara, Calif., 1976.) 

Scanlon, Leo J. 6502 Software Design. Indianapolis, Ind.: Howard W. 
Sams, 1980. 

Weller, W. J. Practical Microcomputer Programming: the 6502. 
Evanston, Ill.: Northern Technology Books, 1980. 

Zaks, Rodnay. Programming the 6502. Berkeley, Calif.: Sybex, 1980. 

--. ProgrammingExercisesfor the 6502. Sybex, 1980. 

--. 6502 Applications Book. Sybex, 1980. 

6502 Assembly-Language Programming V-3 





Glossary 

activation: The execution of a 
segment of code. Normally a 
segment will have either no 
activations (if it is not currently 
being executed) or one activation (if 
it is being executed). A segment 
that is recursive may have more 
than one activation at a time. 

activation record: Memory space 
on the program stack that stores the 
markstack, function value, passed 
parameters, and local variables for 
an active procedure. Activation 
records are created by procedure 
calls and removed as a procedure is 
terminated. 

actual parameter: A variable or 
constant within a program that is 
passed to a procedure for 
processing. Compare formal 
parameter. 

algorithm: A step-by-step 
procedure for solving a problem or 
accomplishing a task. 

allocate: To reserve space in 
memory. 

arithmetic operator: A symbol 
used in mathematical calculations. 

array: A collection of variables that 
are declared with a common name 
in a single variable declaration. The 
variables all have the same type, 
which is called the base type of the 
array. Each variable is identified by 
means of an index, which is given 
in square brackets after the name of 
the variable. The index indicates 
the position of the variable in the 
array. 

array element: An individual 
member of an array. 

ASCII: Acronym for American 
Standard Code for Information 
Interchange, pronounced Ask' ee, a 
code in which the numbers from 0 
to 127 stand for text characters 
including the letters of the alphabet, 
the digits 0 through 9, punctuation 
marks, special characters, and 
control characters. ASCII is used to 
represent text. 

assembly language: A low-level 
programming language in which 
individual machine-language 
instructions are represented in a 
symbolic form more easily 
understood by a programmer than 
machine language itself. 

assignment: The process of giving 
a value to a variable or function. 

Glossary 

attribute table: A table associated 
with each procedure that contains 
information needed to execute the 
procedure. Attribute tables grow 
toward lower addresses. 

autostart ROM: A part of the 
Apple computer's specially 
programmed circuitry that is 
responsible for checking disk 
devices until it finds one with a 
bootable disk in it. 

BASE: BASE procedure pointer. A 
16-bit pointer on zero page that 
points to the MSST AT field of the 
activation record of the most 
recently invoked base procedure. 

base procedure: A procedure of 
the Pascal system at lexical level 0 
or -1. 

base-relative relocation table: A 
table of addresses, within an 
assembly-language procedure, each 
address to be relocated relative to 
the address contained in the BASE 
pseudoregister. 

base type: The type of the 
potential values of a set or dynamic 
variable. 

V-5 



big: AP-machine instruction 
parameter that is one byte long 
when used to represent values in 
the range 0 through 127, and two 
bytes long when used to represent 
values in the range 128 through 
32767. 

BIOS: The Basic I/O System of the 
interpreter; it handles all low level 
Pascal I/O. 

bit: A single binary digit, having a 
value of 0 or 1. 

block: A unit of storage of 512 
contiguous bytes on a disk. 

block boundary: The boundary 
between byte 511 of one block and 
byte 0 of the next block. 

block structure: The way in 
which Pascal programs are written 
using modules of code that function 
independently within the program. 

block-structured device: A 
device that stores and retrieves 
blocks of data, as opposed to a 
character device. A disk drive is a 
block-structured device. 

BOOLEAN type: A Pascal data 
type whose members may have the 
values true or false. 

V-6 

boot: See startup. 

bootable disk: A disk with a 
startup routine on it that can be 
used to start up the system. 

byte: Eight bits of data. 

byte-aligned: An instruction or 
structure starting at any byte, not 
necessarily an even-numbered byte 
(see word-aligned). 

BYTESTREAM type: An Apple II 
Pascal data type that corresponds to 
an array of bytes with a single 
dimension of undefined size. 

call: To invoke a procedure or 
function. Also, the Pascal statement 
that does so. 

cardinality: The number of 
distinct values contained within an 
ordinal type. 

caret: The symbol 'used with 
dynamic variables. 

chaining: A technique by which 
one program can initiate the 
execution of another program. 

character: A letter, digit, 
punctuation mark, or other symbol 
used in printing, displaying, or 
transferring information. 

Glossary 

character device or 
non-block-structured device: A 
device that sends or receives a 
stream of single characters (as 
opposed to sending and receiving a 
block of characters at a time). The 
keyboard and printer are both 
character devices. 

CHAR type: The data type that is 
used to hold ASCII character 
values. 

code: Instructions that are read and 
executed by a computer. 

codefile: A file containing a 
segment dictionary and code 
segments; either P-code, the 
compiled version of a Pascal 
program, or 6502 machine code, the 
assembled version of an 
assembly-language program, or 
both. 

code part: A portion of a code 
segment that consists of a group of 
procedures together with 
descriptive information about the 
procedures (the procedure 
dictionary). 

code segment: A portion of a 
codefile containing P-code and/or 
6502 code. Code segments may have 
three parts: interface text, code 
part, and Linker information. 



cold start: A startup procedure 
that is equivalent to turning off, 
then turning on the system. 
Pressing CONTROL-RESET or 
6-CONTROL-RESET and using Quit 
from the Command level are ways 
to perform a cold start of the 
system. 

Command. level: The outermost 
level of the Pascal operating system. 

comment: An explanatory note in a 
Pascal program that is ignored by 
the Compiler. Comments are written 
to convey information about the 
content and purpose of a program to 
human readers. 

Compiler: A language translator 
that converts a program written in a 
high-level programming language 
(such as Pascal) into an equivalent 
program in some lower-level 
language (such as P-code) for later 
execution. Compare Interpreter. 

Compiler option: An instruction to 
the Pascal Compiler that is written 
in the source text being compiled. 

complete file specification or 
complete filename: A complete 
filename includes a volume name or 
number followed by a colon and a 
local filename, including its 
suffix. 

compound statement: A series of 
statements enclosed within a 
BEGIN and an END that form a unit 
and are treated as one statement. 

concatenate: Literally, "to chain 
together." To combine two or more 
strings into a single, longer string 
containing all the characters in the 
original, individual strings. 

conditional statement: A 
statement that will execute only 
when certain specified conditions 
are met. 

congruent type: A type that is 
identical to or a subset of another 
type. 

constant: An identifier in a 
program that represents a fixed, 
unchanging value. Compare 
variable. 

control character: A character, 
such as ESCAPE or CONTROL-C, 
that tells a computer or external 
device to do something instead of 
conveying data. 

controlling expression: An 
expression the value of which 
determines the number of times an 
iterative statement is executed. 

Glossary 

cursor: The highlighted rectangle 
that is displayed on the screen and 
that indicates your position in a file 
or is displayed by a program that is 
prompting you to make a choice or 
answer a question. 

data area: The upper addresses of 
an activation record that contain 
space for local variables, passed 
parameters, and returned function 
value of a procedure. 

data segment: A portion of 
memory set aside at execution time 
as storage space for data of Intrinsic 
Units. In disk codefiles, data 
segments are simply an entry in the 
segment dictionary, as they have no 
interface text, code part, or Linker 
information. 

DATA type: The type that defines 
the range of values that are possible 
for an expression. 

declaration: A Pascal construct 
that is used to announce the 
attributes of an identifier. 

decrement: To decrease a value by 
a set amount. Opposite of 
increment 

V-7 



default: The value used by the 
system when the user has a choice 
but does not exercise it. 

delimiter: In Pascal, a symbol that 
acts as punctuation to separate 
symbols, statements, or expressions 
from each other. An operator may 
also be a delimiter. In the Editor, a 
single character that marks both the 
beginning and end of a text string 
but that is not part of the text string. 

device: A piece of hardware used 
for data input or output. A video 
monitor, printer, and disk drives are 
commonly used devices. 

dimension: An ordered quantity by 
which the elements of an array are 
identified. An array may have more 
than one dimension. 

directory: A section on a disk that 
contains information about the files 
on that disk, including filenames, 
each file's length, last modification 
date, and file type. Each time a file 
is created or modified, information 
about the file is recorded in the disk 
directory. 

disk: A generic term for mass 
storage devices using rotating 
magnetic storage media. This 
includes flexible disk and rigid disk 
storage. 

V-8 

disk file: A collection of data on a 
disk, listed by name in the disk 
directory. 

don't-care byte: Represents a 
nonnegative integer less than 128; 
thus it can be treated as SB (signed 
byte) or UB (unsigned byte). 

dynamic allocation: The process 
of reserving storage space in 
memory while a program is 
executing. 

dynamic chain: A series of 
dynamic links. The dynamic chain 
describes the "route" by which a 
procedure was called. 

dynamic link: A pointer in a called 
procedure's markstack that points 
to the markstack of the calling 
procedure. 

dynamic variable: A variable 
explicitly allocated by the program. 
Dynamic variables are allocated on 
the heap. 

embedded: Contained within. 

evaluation stack: A data structure 
used to pass parameters, to return 
function values, and as an operand 
source for many P-machine 
instructions. The evaluation stack 
grows downward. 

Glossary 

execute: To perform the actions 
specified by a program command or 
sequence of commands. 

execution time: The period of time 
during which a program is 
executing. 

exponent: In scientific notation, 
the number that denotes the power 
of ten to which a number is raised. 
Otherwise, the number that 
indicates the power to which 
another number is raised. 

expression: Any representation of 
a value. This can be a single 
identifier, such as a constant or 
variable, or a more complex form 
that includes operators and several 
operands. 

external device: A device such as 
a keyboard, disk drive, or printer, 
that supplies or receives data to or 
from a computer. See device. 

external file: A character device, a 
block-structured device, or a named 
disk file. 

factor: A part of a term. 

field: One discrete variable within a 
record. 



file: See disk file, external file, 
file variable. 

filename or local filename: The 
name given to a disk file. A legal file 
specification can consist of up to 15 
characters (not including the 
volume name). Most local filenames 
end with a suffix such as . TEXT or 
. CODE. 

file size specifier: A specification 
enclosed in square [brackets] and 
given at the end of a filename to 
control how much disk space the 
system will allocate to that file. A 
file size specification may be a 
numeric value, indicating the 
number of blocks to be allocated, or 
it may be either of two shorthand 
specifications; [OJ to allocate all of 
the largest unused area on the disk, 
or [ *] to allocate all of the 
second-largest area or half of the 
largest area, whichever is larger. 

file variable: A structured 
variable, generally used to send or 
receive information. 

flag: A memory value that carries 
information about the software or 
hardware currently being used. 

floating point: A method of 
representing real numbers where 
the position of the decimal point is 
recorded as part of the value. 

flow of control: The order in 
which Pascal statements within a 
program are executed. 

formal parameter: In the 
declaration of a procedure, the 
parameter that will receive 
information passed to the procedure 
for processing. Compare actual 
parameter. 

forward declaration: A 
declaration that allows a procedure 
to be called (as in indirect 
recursion) before it is formally 
defined. 

free-form: A characteristic of 
Pascal source text that allows it to 
be arranged in lines so that it is 
most easily read. 

free union variant: A kind of 
variant record type in which the tag 
field is omitted. 

function: A block of code in a 
Pascal program that performs a 
specific task and then returns a 
single value. 

Glossary 

global: An entity accessible to all 
procedures within the scope of the 
procedure that declares it. 

global procedure: A procedure of 
lexical level 0. 

global variable: A variable that is 
available for use throughout an 
entire program . 

graphics: The screen 
representation of forms other than 
the standard character set. 

heap: The memory space used by 
the Pascal system to store dynamic 
variables. The heap grows toward 
the stack. 

high byte: Bits 8 to 15 of a word. 

host program global data area: 
The data area in the host program's 
global activation record that holds 
variables declared at the outermost 
lexical level of the host program 
(level -1 or 0). 

identifier: The name given to a 
variable, constant, data type, 
label, procedure, or function and 
declared in the declaration part of a 
block. 

V-9 



IMPLEMENTATION: The 
portion of a Program Unit following 
the INTERFACE. The 
IMPLEMENTATION contains 
declarations of private constants, 
types, and variables, private 
procedures, and functions, and the 
actual code of the procedures and 
functions declared in the 
INTERFACE. 

incamation: Any one execution of 
a recursive procedure or function. 

increment: To increase a value by 
a set amount. The opposite of 
decrement. 

index value: The value used to 
access one element of an array. 

indirect recursion: A situation in 
which a routine calls a second 
routine, which in turn calls the first 
routine. See recursion. 

initialization section: Part of a 
Program Unit, which is executed at 
the beginning of of program 
execution. 

initialize: To set to an initial state 
or value in preparation for some 
computation. For example, to set 
the value of a variable at the 
beginning of a program. 

V-10 

INTEGER type: The data type 
that is the set of all whole numbers 
between -32768 and 32767. 

interactive type: An Apple II 
Pascal file variable type used 
primarily with character devices. 

INTERFACE: The portion of a 
Program Unit following the unit 
heading. The INTERFACE contains 
declarations of constants, types, 
variables, procedures, and functions 
that are made available to programs 
that USE the unit. 

interface text: The portion of a 
code segment that contains the 
ASCII text of the INTERFACE from 
the source text of a unit. 

Interpreter: A pseudomachine 
that reads code and immediately 
executes it. 

lrnterpreter-relative relocation 
table: A table of addresses, within 
an assembly-language procedure, 
each address to be relocated relative 
to a table within the Interpreter. 

Intrinsic Unit: A unit whose code 
remains in its library codefile until 
the host program is executed. The 
Linker is not needed for Intrinsic 
Units; they are "prelinked." 

Glossary 

I/O: The abbreviation for 
input/output. A general term for 
the transfer of information. 

IPC: Interpreter Program Counter. 
A pointer on zero page that contains 
the address of the next instruction 
to be executed in the currently 
executing procedure. 

iteration: One repetition of a 
statement or block. 

JTAB: Jump TABle pointer. A 
16-bit pointer on zero page that 
points to the highest word of the 
attribute table of the currently 
executing procedure. 

jump table: A section of 
self-relative pointers to addresses 
within the procedure code used by 
jump instructions. Jump tables are 
located at the bottom of attribute 
tables. 

KP: Program stacK Pointer. A 16-bit 
pointer on zero page that points to 
the current top of the program 
stack. 

label: An identifier that consists of 
an integer in the range 0 .. 9999, used 
only with the GOTO statement. 



length attribute: The part of a 
long integer declaration that defines 
the maximum number of decimal 
digits in its value. 

lexical level: The level of 
procedure nesting within a program. 
The user program is lexical level O; 
a procedure nested n levels deep 
within the user program has lexical 
level n. 

library: A codefile containing the 
code of one or more Program Units 
or assembly-language routines. 

Library Name File: A textfile that 
allows a program to access up to 
five specified libraries. 

limit expression: The expression 
that controls the number of times a 
FOR statement is executed. 

linked file: A codefile that results 
from linking a host program with its 
referenced units and External 
procedures and functions. 

linker information: The portion 
of a code segment that enables the 
Linker to resolve references and 
definitions of identifiers between 
separately compiled or assembled 
code. 

Linker information type: A 
record within Linker information 
that indicates the specific kind of 
reference or declaration that the 
Linker must resolve. 

local filename: Distinguished from 
the complete filename because it 
does not include the volume 
specification. See filename. 

local variable: A variable that is 
available for use only within the 
block in which it is declared. 

logical operator: An operator, 
such as AND, that combines logical 
values to produce a logical result. 
Compare arithmetic operator, 
relational operator. 

LONG INTEGER type: A Pascal 
data type used to represent integers 
outside the range of values of the 
integer type. 

low byte: Bits 0 to 7 of a word. 

machine language: The form in 
which instructions to a computer 
are supplied for direct execution by 
the computer's processor. Each 
model of computer processor (such 
as the 6502 microprocessor used in 
the Apple II family of computers) 
has its own form of machine 
language. 

Glossary 

macro: A named sequence of 
assembly-language statements that 
can be inserted into an 
assembly-language program 
wherever needed, simply by using 
the name of the sequence as an 
operation. 

main procedure: The lowest level 
procedure in a segment. 

main program: The compound 
statement that constitutes the 
outermost block of a Pascal 
program. 

marlrntack: The lower part of an 
activation record that contains 
addressing context information and 
information on a calling procedure's 
environment. 

member: One element of an array 
or set. 

modulus reduction: The process 
of dividing one number by another, 
then returning only the remainder. 

MP: Markstack Pointer. A 16-bit 
pointer on zero page that holds the 
address of the MSSTAT field in the 
topmost markstack on the program 
stack. 



native code: Assembled code for a 
microprocessor. See 6502 code. 

nested: Characterizing an element 
(such as a statement or a block) 
that is contained within a 
like-structured element. For 
example, an IF statement contained 
within another IF statement. 

non-block-structured device: See 
character device. 

non-structured variable: A 
variable belonging to a simple data 
type. 

NP: New Pointer. 16-bit pointer on 
zero page that points to the current 
top of the heap (one byte above the 
last byte in use). 

null set: The set containing no 
members. 

one-stage boot: A startup process 
that is accomplished in one stage 
because all the necessary system 
files are loaded from the same disk. 

opcode: A single 
assembly-language or P-code 
instruction. 

operand: A value to which an 
operator is applied. 

V-12 

operating system: System 
software that performs such tasks 
as loading programs into memory 
and managing external devices. 

operator: A symbol (such as + or 
mod) that stands for an operation to 
be performed on values. 

ordinality: The quality of an 
ordered, linear relationship. 

overflow: The condition that exists 
when an attempt is made to put 
more data into a memory area than 
it can hold. 

packed: A method of allocating 
memory space for a variable such 
that the least possible amount of 
space is required. 

page: A unit of storage comprising 
two blocks, or 1024 contiguous 
bytes. 

parameter: A special kind of 
variable used by a procedure or 
function. 

parameter list: The variables 
declared in the heading of a 
procedure or function. 

Glossary 

Pascal: A high-level programming 
language with statements that 
resemble English sentences. Pascal 
was designed to teach programming 
as a systematic approach to problem 
solving. Named after the 
philosopher and mathematician, 
Blaise Pascal. 

Pascal system disk: A disk that 
contains the file SYSTEM.PASCAL. 
The same Pascal system disk should 
be in the startup drive each time the 
system returns to the main 
Command level. 

P-code or pseudocode: The 
compiled form of a Pascal program. 
Pseudocode is a 
machine-independent intermediate 
code that is interpreted by a specific 
machine-dependent interpreter at 
execution time. 

physical addresses: Binary or 
hexadecimal references to memory 
locations. 

P-machine: See pseudomachine. 

pointer: A variable whose value 
consists of the memory address of 
some other item. Also, a data type 
that allows the programmer to 
allocate memory dynamically. 



POINTERLIST: A list of pointers 
in Linker information, each of 
which points to a location within 
the code segment where there is a 
reference to a variable, identifier, or 
constant that must be fixed up by 
the Linker. 

precedence: The order in which 
operators are applied in evaluating 
an expression. 

precision: The number of digits 
allowed to the right of the decimal 
place in a real number. 

predecessor: In an ordinal type, 
the element of the type that comes 
before the current element. 

predeclared procedures and 
functions: Specialized routines 
that are included as part of a 
language. 

prefix: A shorthand specification 
for a volume name. Prefixes are 
used to prevent your having to 
specify a complete filename each 
time you want to refer to files on a 
particular disk. 

procedure: A block of code that 
performs a specific task as part of a 
larger program. 

procedure body: The executable 
statements within a procedure. 

procedure code: A sequence of 
6502 code or P-code instructions. 

procedure definition: The 
heading, declaration, and statement 
parts of a procedure. 

procedure dictionary: The upper 
section of a segment's code part, 
containing a list of pointers to the 
procedures in the code part. 

procedure heading: The first line 
of a procedure definition that 
contains the procedure's name and 
formal parameter list. 

procedure number: A number 
assigned to a procedure by the 
Compiler. 

procedure-relative :relocation 
table: A table of addresses, within 
an assembly-language procedure, 
each to be relocated relative to the 
lowest address in the procedure. 

program library: A library 
associated with a specific Pascal 
program. 

Glossary 

program stack: A portion of 
memory used to store variables and 
information about procedure and 
function calls. 

Program Unit: A separately 
compiled collection of types, 
variables, procedures, and/or 
functions, which are not executable 
by themselves but which may be 
used by executable Pascal 
programs. 

pseudocode: See P-code. 

pseudomachine or P-machlne: A 
software-emulated machine that 
executes P-code as its native code. 
The P-machine has an evaluation 
stack, several registers, and a user 
memory. 

pseudo.register: AP-machine 
pointer composed of one word on 
the zero page. 

real number: A number that may 
include a fractional part; 
represented inside the computer in 
floating-point form. 

REAL type: One of the set of 
Pascal data types that are used to 
represent real numbers. Compare 
INTEGER type. 

V-13 



record: A structured variable that 
contains discrete fields that can be 
operated on using the WITH 
statement. See also variant 
record. 

record linki.ng: A technique in 
which each record in a sequence 
contains a field that points to the 
next record. 

recursion: A situation in which a 
procedure or function calls itself 
before it finishes execution. See 
indirect recursion. 

reference parameter: See 
variable parameter. 

Regular Unit: A Program Unit 
whose code is incorporated into a 
Pascal codefile. 

relational operator: The 
operators used to form expressions 
that compare one operand to 
another. Compare arithmetic 
operator, logical operator. 

relocation table: A sequence of 
records that contain information 
necessary to relocate any 
relocatable addresses, within a 
6502-code procedure, whenever the 
segment containing the procedure is 
loaded into memory. 

V-14 

repetition statements: The 
statements in Pascal that cause an 
action to be repeated until a 
condition is met. 

reserved word: A word or 
sequence of characters reserved by 
a programming language for some 
special use, and therefore 
unavailable as a variable name in a 
program. 

round: To change a real value to its 
nearest integer value. 

scalar type: A data type whose 
members belong to an ordered range 
of values. Synonymous with 
ordinal type. 

scientific notation: The method 
of writing a numerical quantity as a 
decimal followed by an exponent. 

scope: The range in a program in 
which Pascal can recognize a 
particular identifier. 

scroll window: A concept that 
describes how your video display 
provides a bounded view into your 
file in the Editor and how your file 
can move in and out of view as 
though it were scrolling back and 
forth behind a window. 

Glossary 

SEG: SEGment pointer. A 16-bit 
pointer on zero page that holds the 
address of the highest word of the 
procedure dictionary of the segment 
to which the currently executing 
procedure belongs. 

segment: An independent, 
contiguous block of code that can be 
swapped in and out of memory. 

segment dictionary: Block 0 of a 
codefile that contains information 
needed by the Pascal system to load 
and execute the segments in the 
codefile. 

segment number: A unique 
number assigned to each segment. 
Used as an index into the segment 
table. 

SEGMENT procedm·e: A 
procedure that comprises its own 
unique segment. The code of 
SEGMENT procedures is not loaded 
into memory until the procedure is 
called; as soon as it terminates, the 
space occupied by the code can be 
used for something else. 

segment-relative relocation 
table: A table of addresses, within 
an assembly-language procedure, 
each to be relocated relative to the 
lowest address in the segment. 



segment table: A section of the 
higher addresses of SYSCOM that 
comprise a list containing 
information needed by the 
P-machine to read code segments 
into memory or to allocate space for 
data segments. 

self-relative pointer: A pointer 
that points to an address, relative to 
the location of itself. To find the 
address referred to by a self-relative 
pointer, subtract the pointer from 
the address of its location. 

semicolon: The delimiter used in 
Pascal to separate statements. 

set: A Pascal structured type that is 
a non-ordered group of up to 512 
members, each of which must be of 
the same base type. 

set constructor: A Pascal 
expression that defines a set of fixed 
membership. 

simple data types: The Pascal 
data types INTEGER, CHAR, 
BOOLEAN, LONG INTEGER, 
REAL, and user-defined scalar 
types. Compare structured types. 

6502 code: The instructions 
executed by the microprocessor in 
all Apple II computers. See 
machine language. 

size specifier: See file size 
specifier. 

slot: One of the 16 entries in a 
segment dictionary. There is one 
slot for each segment in the codefile. 
Also, referring to the row of 
numbered, hardware slots in many 
models of the Apple II computer. 

source text: The text that a Pascal 
programmer writes. 

SP: Evaluation Stack Pointer. An 
8-bit pointer to the current top of 
the evaluation stack. It is actually 
the hardware stack pointer. 

stack/heap space: A portion of 
memory used exclusively by the 
program stack and heap. 

startup or boot: The initial loading 
of system software into the 
computer's memory. 

startup drive: The disk drive that 
held your bootable disk when you 
started up. Whenever you return to 
the Pascal Command level, your 
Pascal system disk should be in 
your startup disk drive, that is, the 
disk drive you booted from last. 

Glossary 

startup protocol: The order the 
autostart ROM uses to check for a 
bootable disk in the system's disk 
drives. The startup protocol 
generally begins at high-numbered 
slots and moves down to 
lower-numbered slots. 

statement: A piece of a program in 
Pascal that specifies an action for 
the computer to perform. 

static chain: A series of static 
links. A static chain describes the 
lexical nesting levels of a 
procedure. 

static link: A pointer in a called 
procedure's markstack that points 
to the markstack of the procedure's 
lexical parent. 

static variable: A variable whose 
storage space in memory is 
allocated at the start of program 
execution, as opposed to a dynamic 
variable. 

string: An item of information 
consisting of a sequence of text 
characters. A special data type in 
Pascal used to store sequences of 
characters. 

strong typing: The characteristic 
of Pascal in which a type is assigned 
to every data value. 

V-15 



STRP: STRing Pointer. A 16-bit 
pointer on zero page that points to 
the top of the linked list of packed 
arrays of characters and strings on 
the stack. 

structured data types: The 
Pascal data types string, array, 
set, record, and file. Compare 
simple data types. 

subrange type: A type that 
consists of a set of values that is a 
subset of the values of another 
scalar type. 

successor: In an ordinal type, the 
element of the type that comes after 
the current element. 

swapping: A technique in which 
certain parts of the 
operating-system code remain on 
disk until needed, so the memory 
space they would normally occupy 
can be used by an executing 
program. 

symbol: The smallest meaningful 
element of Pascal source text. 

syntax: The rules governing the 
structure of statements or 
instructions in a programming 
language. 

V-16 

syntax diagram: A representation 
of a statement or structure that 
specifies all the possible forms the 
structure can take. 

SYSCOM: A section of memory 
used by the operating system and 
the P-machine to exchange 
information. 

tag field: In a variant record, the 
field that indicates which group of 
variant fields is being used at any 
one time. 

term: A part of an expression. 

termination: The completion of 
the execution of a block. 

text: Information presented in the 
form of characters readable by 
human beings. Also a Pascal 
predefined file type. 

textfile: A file containing 
human-readable text, such as a 
source program; opposed to a 
codefile. 

tos: The operand on the top of the 
evaluation stack. 

truncate: To shorten by discarding 
a part; specifically, to convert a real 
number to the next-lower integer. 

Glossary 

two-stage boot: A startup process 
that requires two disks. The first 
stage of booting Pascal loads 
SYSTEM.APPLE and the second 
stage loads SYSTEM.PASCAL and 
SYSTEM.MISCINFO. 

type: The kind of quantity 
represented by a data value; for 
example, integer, character, string, 
and so on. 

type compatibility: The condition 
that results when two variables or 
expressions represent values of the 
same underlying type (or different 
subranges of the same underlying 
type). 

underflow: The attempt to assign a 
value to an expression of type real 
that is not zero, but too close to zero 
to be expressible. 

unit info: The last ten characters 
in an interface text, necessary for 
the Compiler to compile a code 
segment that uses the interface 
text. 

user program global data area: 
An area of memory that holds 
variables declared at the outermost 
lexical level of the user program 
(level 0). 



USES declaration: The part of a 
Pascal program that specifies the 
Program Units used by that 
program. 

value: The meaning or quantity 
assigned to an expression. 

value parameter: A parameter 
that is passed to a procedure by 
value, rather than by address. 

variable: The symbol used in a 
program to represent a location in 
the computer's memory where a 
value can be stored. Compare 
constant. 

variable parameter: A parameter 
that is passed to a procedure by 
address, rather than by value. 

variant record: A record in which 
the number and type of fields may 
change during the course of 
program execution. 

volume: A character device or a 
block-structured device, including 
disks and disk drives. 

volume name: The name given to a 
Pascal volume. The volume name of 
a disk drive containing a flexible 
disk is the same as the disk's name. 
The names of character devices 
such as PRINTER: or CONSOLE: are 
standard Pascal volume names 
assigned specifically to standard 
hardware. 

volume number: A number 
assigned by Apple Pascal to each 
I/O device on the system. 

warm start: The equivalent of 
reinitializing the system by using 
the Initialize command from the 
Command line. A warm start 
performs only the second stage of 
the startup process, that is, the 
second stage of a two-stage boot. 

wild.card: In the Editor, a symbol 
used to represent a sequence of 
characters. When specifying 
filenames, a symbol used in place of 
a volume name or a sequence of 
characters within a filename. 

Glossary 

word: Two bytes, or a collection of 
16 bits. 

word-aligned: An instruction or 
structure starting at an even byte 
(see byte-aligned). 

WORDSTREAM type: An Apple 
II Pascal data type that corresponds 
to an array of word-sized elements 
with a single dimension of 
undefined size. 

workfile: The default file for 
Editing, Compiling, Assembling, and 
Running. The workfile refers to two 
separate files named 
SYSTEM.WRK.TEXT and 
SYSTEM.WRK.CODE. 

zero page: Memory locations $00 
through $FF. 

v 17 





Workbench Products 

The Workbench series is designed to meet the needs of advanced users and 
commercial developers. Workbench products provide solutions for very 
specific or technical needs and address technical topics that are not 
addressed by other Apple II products. The products that may interest you in 
conjunction with Apple II Pascal are described below. 

o Apple Pascal SANE (A2W0012) The SANE (Standard Apple 
Numeric Environment) package makes extended-precision math possible 
on the Apple II. 

q Apple II Pascal Device Support Tools (A2W0014) This product 
includes Attach Tools, ProDOS Access Unit, and Volume Manager Unit. 

o Apple II Assembly Language SANE (A2W0015) This version of 
the Standard Apple Numeric Environment allows assembly-language 
programmers to use the extended-precision math that SANE provides. 

licensable Products 

The following products are available for licensing from Apple 
Computer, Inc. Product descriptions, and information about pricing and 
terms can be obtained from Apple Licensing. Unless otherwise stated, the 
products below are supported under Version 1.3 of Apple II Pascal. 

Runtime systems permit the "turnkey" execution of application software 
that has been developed using Apple Pascal. If your program chains to the 
Filer or needs to exit to the Pascal Command line, you should license the 
development system instead. 

The following products are intended for use in the production of commercial 
software. 

Licensable Products V-19 



V-20 

o 48K Runtime System (Version 1.2 only) This product allows 
programs to run on a 48K Apple II but is available only for Version 1.2 of 
Apple Pascal. 

o 64K Rm1.time System 
o 128K Runtime System 
o 64K Operating System and Interpreter You can license the 

development system files SYSTEM.APPLE, SYSTEM.PASCAL, 
SYSTEM.LIBRARY, SYSTEM.MISCINFO, and SYSTEM.CHARSET. This 
package allows programs to exit to the Pascal Command line. 

o 128K Operating System and Interpreter You can license the 
development system files 128K.APPLE, 128K.PASCAL, 
SYSTEM.LIBRARY, SYSTEM.MISCINFO, and SYSTEM.CHARSET. This 
package allows programs to exit to the Pascal Command line. 

o Formatter This product makes it possible for your software to format 
blank or recycled disks directly. The source text of the disk formatter is 
supplied so that it can be integrated into your software. 

o SHORTGRAPHICS This is a subset of TURTLEGRAPHICS. It does not 
set the heap pointer above the first page of high-resolution graphics; thus 
it allows more program space than does the full TURTLEGRAPHICS 
Unit. 

o Filer You can license the development system Filer. 
o Attach Tools You need to license this package only if you are putting 

out a product under the development system and if you are using device 
drivers. 

o ProDOS Access Unit This package allows Pascal programs to access 
ProDOS files. 

o Volume Manager Unit This package allows you to manage multiple 
Pascal volumes on a large storage device. 

o TREESEARCH and IDSEARCH These assembly-language routines 
were once built-in Pascal routines. TREESEARCH is a fast function for 
searching a binary tree. IDSEARCH is a fast procedure that scans Apple 
Pascal source text for identifiers and reserved words. 

Licensable Products 



Developer Relations 

To find out about the Apple developer relations program, you may contact 

Developer Relations 
Apple Computer, Inc. 
20525 Mariani A venue 
Cupertino, Ca. 95014 
( 408) 996-1010 

Developer Relations V-21 





Index 

Cast of Characters 
*(asterisk) II-28, II-31, III-79-80, 

III-99-100, III-162 
' (caret) III-170 
$ (dollar sign), for Compiler options 

III-240-242 
i (Down-Arrow key) II-92, III-267-268 
80-column mode IV-5, IV-7, IV-9 
= (equal to) II-32, II-92, III-87, III-89 
40-colurnn displays I-14 
> (greater than) III-87,III-89 
>= (greater than or equal to) III-87, 

III-89 
<(less than) III-87, III-89 
<=(less than or equal to) III-87, 

III-89 
- (minus sign) III-79-80, III-99-100 
<>(not equal to) III-87, III-89 
128K Pascal system I-27, III-244-248 
128K.APPLE I-27 
128K.PASCAL I-27 
o (Open-Apple key) III-189, III-269, 

III-270 
()(parentheses), using III-105 
% (percent sign) III-162, III-235-236 
+(plus sign) III-79-80, III-99-100 
; (semicolon) III-18 
64K Pascal system I-20-21, II-273 
/(slash), in division II-80-82 
fi (Solid-Apple key) III-189, III-269 
t (Up-Arrow key) II-92, III-267-268 

A 
ABS (absolute value) function 

III-82-83 
.ABSOLUTE II-181, II-190 
activation records IV-37, IV-51-55, 

IV-96 
markstacks and IV-53-55 
recursion and IV-52 
variable storage and IV-59-61 

actual parameters III-132 
addition III-79-80 
ADDR III-263-265 
addressing mode 

assembly language II-179-180 
Adjust command II-118-120 
.ALIGN II-189 
alternative system configurations 

I-8-10 
starting up I-10 

AND III-90, III-102 
antilog function 

See EXP ( antilog) function 
APPLESTUFF II-7, II-208, III-216, 

III-229, III-357 
Apple II 

keyboard I-21-22 
keyboard commands summary 

II-135 
.MISCINFO I-21 
replacing .MISCINFO I-27-29 
using I-21 

Index 

Apple II Plus 
keyboard I-21-22 
keyboard commands summary 

II-135 
.MISCINFO I-21 
replacing .MISCINFO I-27-29 
using I-21 

Apple Ile, with ROM enhancement I-9 
APPLEO: 

See system disk 
APPLE!: 

See system disk 
APPLE2: 

See system disk 
APPLES: 

See system disk 
arithmetic operations III-79-87 
array( s) III-43-50, IV-66-67 

assignment statements and III-78 
comparing III-88-89 
congruent III-48-49 
declarations III-43, III-44 
dimensions of III-43 
dynamic text III-64, III-285-287 
elements III-43, III-44, III-77, III-78 
indexing III-43 
multidimensional III-44, III-47 
one-dimensional III-48, III-78 
packed III-175, III-45-48 
packed character III-43 
size of III-324-325 
storage of III-328, IV-61 
type III-43, III-293 

arrow keys II-83 
.ASCII II-187 
ASCII codes III-38, III-354 
ASCII CR II-246 

V-23 



Assemble command, from Command 
level II-15 

Assembler II-15, II-158, IV-33 
Assembler directives II-184-202, 

III-149, III-150, IV-37 
conditional-assembly II-194-195 
.CONST IV-41 
data II-187-189 
.DEF IV-40 
external-reference II-197-199 
file II-202 
.FUNG IV-40 
host-communication II-195-197 
label-definition II-189-190 
listing-control II-199-201 
macro II-190-194 
.PRIVATE IV-41 
.PROC IV-40 
.PUBLIC IV-41 
.REF IV-40 
routine-delimiting II-185-186 
summary II-203-205 

Assembler errors II-163-164, 
II-320-322 

Assembler information II-175-184 
Assembler source files, syntax 

II-175-176 
assembly language III-16, III-26, 

III-246, III-342-352 
communication with Pascal 1.3 

III-149 
evaluation stack and III-144-149 
macros III-330-340 
statements II-176-177 
using III-142 

assembly-language routines II-158, 
II-165-167 

linking to II-183 

V-24 

assembly listing II-168-172 
assembly process summary II-203 
assignment statement III-77-78, 

III-299 
* (asterisk) 

default size specification II-31 
in multiplication III-79-80 
in set intersection III-99-100 
system disk specification II-28 
wildcard III-162 

AT AN (arctangent) function III-83-84, 
III-229 

attribute tables IV-33-37, IV-91 
audio output III-269 
"Auto-follow" mode II-18 
Auto-indent 

and Filling false II-101 
and Filling true II-100 
Editor Environment II-123 

autostart ROM I-8 

B 
backspace III-354 
backup copies I-17-18, II-42 
bad blocks 

causes II-67 
fixing II-68-69 
marking II-69 

bad block scan II-56 
Bad-blocks command II-65-67 
BAD files II-69 
BALANCED demonstration program 

II-307-308 
BASE IV-47 
BASEOFFSET IV-41 
base procedures IV-37 
BASE register IV-37, IV-54-55 

Index 

base type III-40 
pointer III-62 
set III-40 

BASIC I-9 
Pascal 1.3 and III-4 

BASIC command I-10 
BEGIN ... END III-18-19 
binary operators 

assembly language II-181 
on disk II-25 

binary-to-decimal conversion III-319 
binary tree III-287-288 
BINDER.CODE II-243-244 
BINTREE III-287 
BITBRANCH macro III-338 
bit operations III-100-103 
bit pattern logic III-102-103 
BLACKl III-200 
BLACK2 III-200 
.BLOCK II-188, III-150 
block counts II-39 
block device II-27 
block length II-38 
blocknumber expression III-181, 

III-184 
BLOCKREAD function III-181-182, 

III-309 
blocks (code) III-11 

size limits of III-359 
syntax III-13 

block structure III-2, III-8, III-10 
block-structured devices I-12, III-150, 

III-160, III-181, III-183 
BLOCKWRITE function III-181-182, 

III-309 
BOMBIPC field IV-50 
BOMBP field IV-50 
boolean logic III-89-90 



booleans 
assignment statements and III-78 
comparing III-88 
size of III-322 
storage of III-327, IV-59 

BOOLEAN type III-28, III-33 
boot disk I-11 
booting I-9-10 
bootstrap loading I-9 
Breakpoint IV-76 
BS III-354 
built-in data operations III-72 
built-in data types III-26 
BUTTER III-205 
BUTTON III-229, III-269 
.BYTE II-184, II-187, III-150 
byte operations III-92-95 
bytes IV-93 
BYTESTREAM II-6, III-49-50 

c 
CALLASM III-151 
calling functions III-75 
' (caret) III-170 
carriage return III-354 
CASE statement II-6, III-113, 

III-117-118, III-247, III-302 
chaining III-275-281 
CHAINSTUFF III-216, III-229, III-357 
Change, from Editor Quit command 

II-133 
Change command (Filer) II-51-54 
character devices III-156, III-160, 

III-183 
character file input/ output operations 

III-173-180 
character file operations III-169 

characters III-22 
assignment statements and III-78 
comparing III-88 
size of III-322 
storage of III-327, IV-60 
with string operations III-99 

character sets, creating III-207-208 
CHAR type III-28-29, III-34, III-40 
CHARTYPE procedure III-206-207 
CHAR variables III-327 
checking 

input/output III-260 
range III-260 
varstring III-260 

CHR function III-34, III-90, III-270 
clear 

See New command 
clipping, graphics III-199 
CLOSE procedure III-166-167, III-248, 

III-306 
closing files III-163 
CODEADDR field IV-25-26, IV-32, 

IV-38 
"codefile comment" Compiler option 

II-149 
codefiles II-3, III-2, IV-2, IV-17-43, 

IV-85-96 
segment dictionaries and IV-21-27 

CODEFLOW pointer IV-6, IV-7-8 
CODELENG field IV-25, IV-32, IV-38 
code parts IV-30-32 
CODEP pointer IV-5, IV-6, IV-7-8 
code segments IV-18 

code parts and IV-30-32 
cold boot I-11 
cold start I-11, II-19 
color graphics III-200 

Index 

Command character II-126 
Editor Environment II-124-125 

Command level I-15, II-10-17 
Command line I-14 
options II-11-17 
summary II-253-254 

command summaries II-251-261 
comment field, assembly-language 

II-176 
comments III-23 

nesting III-23 
comparisons IV-69, IV-72 

array III-88 
boolean III-88 
character III-88 
one-dimensional array III-88 
records III-89 
set III-88 
string III-88 

compilation III-242 
program III-2 

Compile command, from Command 
level II-14, II-138, II-140 

Compiler II-138-155, III-2, III-239, 
III-248, IV-33 

listing III-236 
using II-140-145 

Compiler errors II-144-145, II-323-328 
Compiler messages II-143-144 
Compiler options II-147-155, III-23, 

III-240-242 
"codefile comment" option II-149 
"GOTO" option II-152 
"include" option II-154 
"I/O check" option II-150 
"listing" option II-148-149 
"listing page" option II-149 

V-25 



"next segment" option II-152, 
III-251-252 

"no load" option II-152-153, III-223, 
III-254-255 

"quiet compiling" option II-150 
"range-check" option II-151 
"resident" option II-153, III-223, 

III-255-257 
"swapping" option II-148 
"user program" option II-155 
"using" option II-153, III-211, 

III-236-237 
"varstring" option II-151 

compiling 
large programs III-244-245 
Program Units III-213, III-222 
Program Units with 64K system 

III-215 
complete filename II-30 
complete file specification II-30 
complexity limits III-136-137 
compound statements III-11, III-18-19, 

III-110, III-219 
computer type flag IV-9-10 
CONCAT function III-97, lll-300 
conditional-assembly directives 

II-194-195 
conditional statements III-114-118 
congruent 

arrays III 48-49 
records III-57-58 

CONST III-28 
constants III-11, III-27-29, III-255 

assembly language II-179 
declarations III-14, IIl-28, III-290 
NIL III-65 
P-code formats of IV-61 
predeclared III-29 
string III-38, III-39 
unsigned III-75, III-298 

V-26 

.CONST Assembler directive II-196, 
III-149, IV-41 

CONSTREF IV-40-42 
contiguous blocks II-38 
CONTROL-@ II-18, II-291, III-270 
CONTROL-A I-14, II-18, II-291, III-270 
CONTROL-C II-44, II-80, III-168, 

III-178, III-185, 
control characters III-185, III-270-275 

Apple II I-22-23 
Apple II Plus I-22-23 
GET procedure and III-271-272 
PUT procedure and III-271-272 
READ procedure and III-273-275 
READLN procedure and III-273-275 
WRITE procedure and III-273 
WRITELN procedure and III-273 

CONTROL-E III-270 
CONTROL-F II-19, II-291, II-292, III-270 
CONTROL-J III-267 
CONTROL-K III-267 
control key information II-235-237 
CONTROL-L II-162, III-267 
controlling expression III-114-116, 

III-118 
CONTROL-M III-271-275 
CONTROL-0 III-267 
CONTROL-P II-162, III-271-275 
CONTROL-RESET I-11, II-10, II-19 

See also 6-CONTROL-RESET 
CONTROL-S II-19, II-291, II-292, III-270 
control variable III-110 
CONTROL-W III-270 
CONTROL-X II-27, II-36, II-80, II-104 
CONTROL-Z II-18, II-291, III-270 

Index 

conventions, assembly language in 
Pascal environment II-184 

coordinates 
graphic III-202 
screen III-197 

copy (as Filer function) 
See Transfer command 

copy buffer II-96, II-102, II-106-107, 
II-129 

affected by II-107 
Copy command (Editor) II-96, 

II-104-107 
from a file II-104-106 
from the copy buffer II-106-107 

COPY function III-97 
copying 

an entire disk II-4 7 -50 
from a file II-104-106 
from the copy buffer II-106-107 

copyright notice II-149, II-222-223 
COS (cosine) function III-83-84, 

III-229 
count expression III-181 
CR III-271-275, III-354 
create (as Filer function) 

See Make 
CROSSREF demonstration program 

II-308-309 
crunch II-25, Il-56 
CRUNCH option III-166-167 
csegnum III-215-216 
cursor II-79, III-266 

behavior, in the Editor II-89-93 
direction indicators II-91 
moving II-83-84 
repeat-factors II-90-91 

cursor moves II-89, II-92, II-134, II-258 



D 
DATA III-215 
data directives II-187-189 
DATASEG IV-26 
data segment(s) II-219, IV-18 
data structures, local III-3 
data type(s) III-3, III-14-15, III-26, 

III-76 
array III-43, III-293 
BOOLEAN III-33 
built-in III-26 
BYTESTREAM III-49-50 
CHAR III-34, III-40 
declarations III-27 
declaring III-290 
INTEGER III-31 
long integer III-32-33, III-291 
pointer III-294 
REAL III-31-32, III-176, III-314-319 
record III-50-60, III-293-294 
scalar III-26, III-34-35, III-101 
SCREENCOLOR III-200 
set III-40-42, III-292 
string III-38-40, III-292 
subrange III-35-36, III-291 
user-defined III-26, III-34-35, III-42, 

III-291 
WORDSTREAM III-49-50 

Date command II-55, II-257 
delimiters II-55 

debugging, with HALT III-123 
DEBUGSTR macro III-331-332 
decimal place expressions III-175-176 
decimal-to-binary conversion III-318 

declaration(s) III-11, III-14-15, 
III-218-219 

array III-43, III-44 
constant III-14, III-28, III-290 
label III-14, III-217 
parameter III-128 
record III-51 
set III-40-41 
type III-14-15, III-27, III-290 
USES III-210-211, III-217, III-219 
variable III-15, III-291 

declaring parameters III-304 
DEC VT52 II-233 
.DEF Assembler directive II-198, 

III-149, IV-40 
default directory 

See Prefix 
default volume II-28 

See also Prefix 
defining 

functions III-304 
procedures III-303 

delete (as Filer function) 
See Remove command 

Delete command (Editor) II-101-104 
DELETE key II-80 
DELETE procedure III-98 
deleting text II-86-87 
delimiters II-55, II-114-115, III-11, 

III-20 
demonstration programs II-295-314 
device actions, external III-169-170 
device input/output operations 

III-183-193 

Index 

device(s) I-12 
block-structured I-12, III-156, 

III-160, III-181, III-183 
character III-156, III-160, III-183 
non-block-structured I-12 

difference between sets ( - ) 
III-99-100 

dimensions, array III-43 
direction II-114 

Find command II-109 
Replace command II-109 

direction indicators, in the Editor II-91 
directories (disk) II-3, II-25, II-30, 

III-161 
erasing 

See Zero 
sizes I-26 
reading IV-14-16 

disk directories II-3, II-25, II-30, III-161 
disk drives I-5, I-24-26, III-170 

5~-inch I-8, I-24-25 
one 5~-inch II-76-77 
ProFile I-25-26 
3112-inch II-78 
two 5~-inch II-74-76 
UNITSTATUS and III-188 

diskfile commands Il-256 
disk files II-3, III-156, III-160, III-181 

See also files 
disk file types Il-32 
DISKINFO array IV-25 
DISKIO demonstration program 

II-312-314 
disks 

copying II-4 7 -50 
erasing 
formatting I-16-17, II-230-232 
maintenance II-65-70 

V-27 



disk sectors II-25 
disk size I-26 
disk space II-38 
disk upkeep commands II-257 
DIV III-80-82 
division III-80-82 

by zero III-316 
OLE IV-16 
OLE option III-186, III-271-275 
DO III-109-111 
document mode II-99-100 
$ (dollar sign), for Compiler options 

III-240-242 
$BF21 flag IV-6, IV-8 
$BF22 flag IV-6, IV-8 
$BF31 flag IV-6, IV-9 
$BFOE flag IV-6, IV-8 
$C III-242 
$G III-242 
$! III-242 
$L III-242 
$N III-242 
$NS III-242 
$P III-242 
$Q III-242 
$R III-242 
$8 III-242 
$U III-242 
$V III-242 
HDown-Arrow key) II-92, III-267-268 
DOWNTO III-109 
DRAWBLOCK procedure III-203-205 
dsegnum III-215-216 
dumping screens III-283-284 
dynamic 

chain IV-54 
variables IV-67 

V-28 

dynamic text arrays III-64 
creating III-285-287 

dynamic variables III-29-30, III-62-70, 

E 

III-77, III-246 
finding III-263 
heap and III-68 
memory management with III-67 -70 
using III-63-64 
variant records and III-66-67 

Edit command, from Command level 
II-13 

editing 
large programs III-244 
with a 3Y2-inch disk drive II-78 
with one 5!4-inch disk drive 

II-76-77 
without workfiles II-77 
with two 5!4-inch disk drives 

II-74-76 
Editor III-244, IV-16 

command line II-80 
commands II-93-133 

summary II-258-261 
entering II-81 
Environment II-86, II-97-101 
Quit command II-87 -89 
saving files II-87 
special commands summary 

II-134-135 
window II-78-80 

SO-column mode IV-5, IV-7, IV-9 
elements 

array Ill-43, III-44, III-77, III-78 
string III-77 

ELSE III-115-116 

Index 

.ELSE II-194-195 

.END II-186 

.ENDC II-194-195 

.ENDM II-191-194 
enhanced Apple Ile I-6, I-9 
ENTER IC field IV-34, IV-36 
environment II-86 

Editor II-122-126 
settings II-97-101 

EOF III-167-168, III-170, III-172, 
III-177-178, III-180, III-182, III-306 

EOFMAK IV-43 
EOF recognition III-185 
EOLN function III-178, III-179-180, 

III-308 
.EQU II-189 
=(equal to) III-87, III-89 
equivalence III-89 
erase 

See Delete command 
error-checking options II-150-152 
error messages II-317-328 
errors 311-313 

input/output III-168-169, III-358 
procedure length III-137 
range III-105 
rounding III-32, III-317 

ESC (escape) II-80, III-354 
ESCAPE-D III-268 
ESCAPE-U III-268 
evaluation stack II-183, III-144-149, 

IV-47 
variable storage and IV-59-61 

Examine command II-66, II-68-69 
Exchange command II-108 
exclusive-or operations III-89, III-102 
exec files II-17, II-289-294 

terminator II-290 



Execute command, from Command 
level 11-14-15, 11-230 

executing 
large programs III-246-248 
programs IV-2, IV-21, IV-46 

execution error messages 11-147, 
11-318-319 

execution speed, improving 
III-260-261 

Exit IV-76 
from Editor 11-130 

EXIT IC IV-34 
EXIT procedure III-122, III-303 
EXP ( antilog) function III-84, III-229 
exponential functions III-83 
exponents III-314 
expressions III-11, III-42, III-72-73, 

III-296 
assembly language 11-180-182 
blocknumber III-181, III-184 
controlling III-114-116, III-118 
count III-181 
decimal places III-175-176 
length III-184 
limit III-110 
mode III-184-187 
simple III-296, III-73 
syntax III-19 
unitnurn III-184 
value III-175 
width III-175-176 

Extended-directory command 11-40-41 
EXTERNAL III-131, III-143-149 
external device actions III-169-170 
external files III-156, III-160-162 

wildcards and III-162 
EXTERNAL procedures IV-43 

external-reference directives 
11-197-199 

EXTERNAL routines 11-183, 11-210 
external terminal I-26 

configuration 11-241-242 
control key information 11-235-237 
general information 11-234-238 
GOTOXY communication 11-243-244 
requirements 11-233 
setup for Hazeltine 1500 11-244-245 
setup parameters 11-238-240 
using 11-233-246 
video screen control characters 

II-237-238 
EXTFUNC IV-43 
EXTPROC IV-43 

F 
factors III-74, III-298 
FALSE III-29, III-33 
FF III-354 
fields III-50-52, III-293 

assignment statements and III-78 
BOMBIPC IV-50 
BOMBP IV-50 
GDIRP IV-50 
IORSLT IV-50 
record III-77 
SYSUNIT IV-50 
XEQERR IV-50 

FILE III-158 
File command, from Command level 

11-12 
file directive 11-202 

Index 

filenames II-30-31, III-160-162 
changing II-51-54 
conventions II-255 

FILE OF CHAR III-172, III-173 
file operations, character III-169 
Filer 

accessing from a program 
III-280-281 

commands II-22-23, II-36-70 
summary 11-254-257 

functions II-22-23 
using 11-26-27 

files 11-3-6 
BAD 11-69 
changing from Editor II-133 
closing III-163 
consolidating on disk II-25-26, 11-56 
copying II-41-50 
disk III-156, III-160, III-181 
external III-156, III-160-162 
how stored II-24-26 
input/output operations (character) 

III-173-180 
input/output operations (general) 

III-162-169 
input/output operations (typed) 

III-169-180 
input/output operations (untyped) 

III-180-182 
INTERACTIVE III-173 
kinds of 11-32 
moving II-41-50 
new II-82-83 
opening III-163 
removing II-50-51 
specifying II-30-36 

V-29 



file size II-31 
as shown in Editor Environment 

II-126 
defaults II-31 
specification II-31 

summary II-255 
file space 

in the Assembler II-159-160 
in the Compiler II-142 
reserving II-57-58 

file specification summary II-70-71, 
II-254-255 

file type III-305 
file variables III-156, III-158-159 

FILE III-158 
INTERACTIVE III-158 
size of III-325 
storage of III-328 
TEXT III-158 

file window II-79 
Fillchar IV-75 
FILLCHAR procedure III-93-94 
FILLER array IV-27 
Filling, in Editor Environment 

ll-123-124 
FILLSCREEN procedure III-201 
Find command II-108-113 

delimiters II-110 
direction II-109 
repeat-factor II-109-110 
same-string option II-111-113 
target string II-110 
unease option II-110 

finding variables III-263-265 
514-inch disk drive I-8, I-24-25 

V-30 

flags IV-8-10 
computer type IV-9-10 
$BF21 IV-6 
$BF22 IV-6 
$BF31 IV-6 
$BFOE IV-6 
"ignore external terminal" IV-10 
Interpreter version IV-8-9 
Pascal system version IV-8 
screen mode IV-8 

floating-point numbers III-31, III-314 
format of III-178, III-317 

FLUTTER III-205 
formal parameters III-131-132 
Formatter II-230-232 
FORMATTER.CODE II-230 
FORMATTER.DATA II-230 
formatting 

disks I-16-17, II-230-232 
text II-122-126, III-23-24 

FORM FEED III-180, III-354 
for statement III-108, III-109-111, 

III-301 
FOR. .. TO ... DO III-109-111 
FORTRAN, Pascal 1.3 and III-5 
FORWARD procedure III-137-138, 

III-219 
40-column displays I-14 

with Extended 80-Column Text Card 
II-247-249 

40-column mode III-187, IV-5, IV-7, 
IV-10 

40-column screen commands II-135 
40-column video display I-18-19 
fraction III-314 
free-form text III-3, III-10, III-23-24 

Index 

free union variant records III-55-56, 
III-100, III-323 

congruency and III-58 
.FUNG Assembler directive II-186, 

IV-40, IV-43 
FUNCTION III-127 
functions III-12, III-15-16, III-128, 

III-145, III-299, IV-73-75 
ABS III-82-83 
ATAN III-83-84 
BLOCKREAD III-181-182, III-309 
BLOCKWRITE III-181-182, III-309 
BUTTON III-269 
calling III-75, III-131-133 
CHR III-90, III-270 
CONCAT III-97, III-300 
COPY III-97 
COS III-83-84 
defining III-127-131 
definitions III-12, III-304 
EOF III-167-168, III-306 
EOLN III-179-180, III-308 
EXP III-84 
EXTERNAL III-143-149 
FORWARD III-137-138 
IORESULT III-168 
KEYPRESS III-268 
LENGTH III-96 
LN III-84 
LOG III-84 
MEMA VAIL III-63-64 
nesting III-244 
ODD III-90 
ORD III-91 
PADDLE III-269 
PEEK IV-6 
POS III-96 
PRED III-91 



G 

PWROFTEN III-83 
RANDOM III-85 
ROUND III-82 
SCAN III-93 
SEGMENT III-137 
SIN III-83-84 
size limits of III-359 
SIZEOF III-92 
SQR III-83 
SQRT III-83 
SUCC III-91 
syntax III-13 
TRUNC III-82 

GAME connector III-269 
game-paddle mod I-23 
GDIRP field IV-50 
Get command II-59-60 
GETCVAL procedure III-277 
GET procedure II-292, III-165, 

III-170-171, III-248, III-271-275 
control characters and III-271-272 
swapping and II-17 

GLOBDEF IV-40 
GLOBREF IV-40-42 
"GOTO" option II-152 
GOTO statement III-120, III-242, 

III-303 
GOTOXY communication II-243-244 
GOTOXY procedure II-243, III-266 
GRAFCHARS demonstration program 

II-311-312, III-206 
GRAFDEMO demonstration program 

II-311 
GRAFDEMO.TEXT III-205 

GRAFMODE procedure III-198-199 
graphics III-196-208 

adding text to III-206-207 
clipping III-199 
color III-200 
coordinates III-202 
image III-197-199 
memory and III-203-205 

graphics demonstration program 
II-296-304 

> (greater than) III-87, III-89 
>=(greater than or equal to) III-87, 

III-89 

H 

HALT procedure III-123 
hand controls III-188 
hardware III-3 
HAZELGOTO.TEXT II-243-244 
HAZEL.MISCINFO II-233 
Hazeltine 1500 II-233 
heap III-198, IV-5, IV-7, IV-11, IV-48-49 

dynamic variables and III-68 
high character bit, setting III-270 
HILBERT demonstration program 

II-310-311 
HOMEPROC IV-40 
horizontal tab III-354 
host-communication directives 

II-195-197 
host file II-210 
host program, using 11-172.,.175 
HOSTSEG IV-25 
HT III-354 

Index 

ICOFFSET IV-41 
identifiers III-11, III-20-21, III-290 

assembly-language II-177 
predeclared III-21, III-355-357 
redefinition of III-133-136 

IDSEARCH 11-7 
.IF II-194-195 
IF statement(s) III-114-116, III-302 
"ignore external terminal" flag IV-10 
IMPLEMENTATION IV-30 
implementation section (Program 

Unit) III-214, III-218-219, III-312 
implication III-89 
incarnation III-138-139 
.INCLUDE Assembler directive 11-163, 

II-202 
"include file" Compiler option II-154, 

III-218, III-242 
indexed addressing 11-180 
indexing 

arrays III-43 
string III-39-40 

indirect addressing 11-180 
inexact result III-316 
Infofile 11-160 
initialization section (Program Unit) 

III-214, III-219-220, III-254 
Initialize command, from Command 

level 1-11, II-16 
INITTURTLE procedure III-198 
IN operator III-42 
INPUT III-159 
input files, Librarian II-219 

V-31 



input/output checking III-169, III-242, 
III-260 

input/output errors III-168-169, 
III-358 

input/ output operations 
device III-183-193 
file (character) III-173-180 
file (general) lII-162-169 
file (typed) III-169-180 
file (untyped) lII-180-182 

Insert command II-96-97 
inserting text II-84-86 
INSERT procedure III-97 
integers lII-21, IV-68 

assignment statements and III-78 
size limits of III-359 
size of lII-322 
storage of III-326, IV-59 

INTEGER type lII-28, lII-31 
INTERACTIVE III-158, III-168, lII-171, 

lII-172, lII-173 
INTERFACE section (Program Unit) 

lII-214, lII-216-218, III-311 
INTERFACE text IV-18, IV-28-30 
.INTERP II-190 
Interpreter lII-2, IV-2, IV-21 

addresses IV-10-11 
Interpreter version flag IV-8-9 
intersection of sets(*) lII-99-100 
Intrinsic Units II-208, lII-211-212, 

lII-226, III-237-238, III-245, IV-18 
heading III-311 
nesting lII-222 

invalid operations III-316 

V-32 

I/O 
See also input/output 

"I/O check" option II-150 
I/O devices II-316 
I/O error messages II-319-320 
IORESULT function lII-168, III-172, 

lII-183, lII-185, III-187 
values for III-358 

IORSL T field IV-50 
IPC IV-47, IV-54 

J 

JTAB pseudoregister IV-35, IV-47, 
IV-54 

Jump command II-118 
jumps IV-72-73 
jump tables IV-35 

K 
keyboard I-21, III-159 

UNITSTATUS and III-188 
KEYPRESS function II-292, III-229, 

III-268 
KP pointer IV-5, IV-6, IV-7, IV-48, IV-55 
Krunch command II-56 

L 

label-definition directives II-189-190 
label(s) 

assembly-language II-176, II-177 
declarations III-14, III-217 

Left Margin II-124 
length attribute III-32 
length expression III-184 

Index 

LENGTH function III-96 
uses of III-39-40 

< (less than) III-87, III-89 
<=(less than or equal to) III-87, 

III-89 
lexical level IV-34 
LF option III-187, III-354 
LIBMAP III-217, IV-28 
LIBMAP.CODE II-223 
Librarian 

system utility II-216-217 
using II-218-223 

libraries II-152-154, II-216, III-226-238 
128K systems and III-227-228 
searching III-237-238 
64K systems and III-227-228 
SYSTEM.LIBRARY III-229 

LIBRARY.CODE II-217 
library files II-210-211 
Library Mapper II-223-227 

summary II-228 
using II-224-227 

Library Name Files III-226, 
III-231-236, III-237 

creating III-232 
% (percent sign) and III-235-236 
using Pascal prefix in III-234 
using several with one program 

III-234 
using several with several programs 

III-235 
using with two programs III-233 

limit expression III-110 
LINE FEED III-17 4, III-187, III-354 
LINEFEED.CODE II-246 
line feeds I-26 
Linefeed utility II-246-247 



Link command, from Command level 
II-14, II-209-212 

linkage to assembly-language routines 
II-183 

LINKED IV-25 
LINKED-INTRINS IV-26 
linked record variables III-281-283 
Linker II-208, III-245, III-248 
LINKER.INFO II-159 
Linker information IV-18 

types IV-38-43 
linking 

large programs III-245 
records III-281-283 

.LIST II-200 
List directory command II-38-40 
"listing" Compiler option II-148-149 
listing-control directives II-199-201 
listing file II-142, II-159 
"listing page" Compiler option II-149 
Literal default 

See Literal search 
literals, P-code formats of IV-61 
Literal search II- lll, II-114, II-125 

Find command II-111 
Replace command II-111 

LN (natural logarithm) function III-84, 
III-229 

loading 
of Program Unit segments III-254 
programs III-250-257, IV-2, 

IV-11-12, IV-21 
SEGMENT procedures III-253 

local data structures III-3 
local filename II-30 
locallabels, assembly language II-178 
local scope III-9, III-10, III-16 

location counter, assembly language 
II-179 

LOCK option III-166-167 
LOG (logarithm) function III-84, 

III-229 
logarithmic functions III-84 
logic 

bit pattern III-102-103 
boolean III-89-90, IV-70-71 
relational III-89 

logical operators III-102 
long integers III-98 

assignment statements and III-78 
parameter lists and III-130 
P-code formats of IV-61 
size limits of III-359 
size of III-322 
storage of III-327, IV-59 

long integer type III-28, III-32-33, 
III-291 

LONGINTIO II-216, III-216, III-229, 
III-357, IV-30 

loop control III-113 

M 

machine language 
See assembly language 

.MACRO II-191-194 
macro directives II-190-194, 

III-330-340 
BITBRANCH III-338 
DEBUGSTR III-331-332 
MOVE III-331 
MOVEDATA III-336-337 
MOVEDINC III-337 
NOTBITBR III-339-340 

Index 

POP III-330 
PUSH III-330 
RESET III-335 
RESTREGS III-333-334 
RMVBIAS III-331 
SAVEREGS III-332-333 
SET III-334-335 
SWITCH III-335-336 

.MACROLIST II-200 
main Command line 

See Command level 
main program III-13, III-16, III-248 
Make command II-31, II-57-58 
Make exec command II-17, II-290 
map file II-211 
Margin command II-126-127 
margins 

left II-124 
paragraph II-124 
right II-124 

mark bad blocks 
See Examine 

MARK procedure III-68-70, III-247, 
III-248, III-295 

uses of III-64, III-67 
markstacks IV-53-55 
masking III-102-103 
MAXINT III-29 
MEMA VAIL function III-67 -68 

uses of III-63-64, III-67 
members, set III-40 

V33 



memory III-150 
auxiliary, 128K system IV-84 
auxiliary, pointers IV-7-8 
direct access to III-262-265 
formats III-326-328 
graphics and III-203-205 
main, pointers IV-7 
128K system and IV-2, IV-4-6, IV-83 
scratchpad III-150 
64K system and IV-2-3, IV-5-6, 

IV-82 
64K versus 128K III-246 

memory management III-246-248, 
III-253-257 

assembly-language routines and 
III-150 

with dynamic variables III-67 -70 
- (minus sign) 

in set difference III-99-100 
in subtraction III-79-80 

.MISCINFO I-21 
MOD III-80-82 
mode expression III-184-187 
modes 

SO-column IV-5, IV-7, IV-9 
40-column III-187, IV-5, IV-7, IV-10 

modulus reduction III-80-82 
MOVEDATAmacro III-336-337 
MOVEDINC macro III-337 
MOVELEFT procedure III-94-95, IV-75 
MOVE macro III-331 
MOVE procedure III-201-202 
MOVERIGHT procedure III-94-95, 

IV-75 
MOVETO procedure III-201-202 

V-34 

moving commands II-259 
moving files II-41-50 
moving the cursor II-83-84 
MP IV-47, IV-54 
MSDYN IV-54 
MSIPC IV-54 
MSJTAB IV-54 
MSSEG IV-54 
MSSP IV-54 
MSSTAT field_ IV-47 
MSSTRP IV-54 
MTYPE IV-26 
multidimensional arrays III-44, III-47 
multiplication III-79-80 

N 
native code 

See assembly language 
natural logarithm function III-84, 

III-229 
negation III-79-80 
nested IF statements III-115-116 
nesting III-244 

comments III-23 
limits III-136-137 
procedures III-359 
Program Units III-214, III-222 

New command II-64-65 
new file, writing from Editor II-132 
NEW procedure III-65-67, III-248, 

III-282, III-295 
NEXTBASELC IV-43 
"next segment" Compiler option II-152, 

III-251-252 

Index 

NIL III-28, III-65, III-282 
.NOLIST II-200 
"no load" Compiler option II-152-153, 

III-223, III-242, III-254-255 
.NOMACROLIST II-200 
non-block-structured I-12 
non-startup drive II-74 
no operation IV-76 
.NOPATCHLIST II-201 
normalized numbers III-315 
NORMAL option III-166-167 
NOT III-90, III-102 
notation, system prompts II-80 
NOTBITBR macro III-339-340 
NOTE procedure III-229, III-269 
< > (not equal to) III-87, III-89 
NP pointer IV-5, IV-6, IV-7, IV-48, 

IV-54-55 
NREFS IV-40 
NUL IV-16 
number of characters, file size in bytes 

II-126 
numbers III-21-22 

floating point III-31, III-178, III-314 
integers III-21 
normalized III-309 
procedure IV-31, IV-34 
real III-176, III-314-319, III-326, 

IV-60 
scientific notation and III-21, III-28, 

III-178 
segment III-216, III-230, III-242, 

III-250-251, IV-26, IV-27-28 
unsigned III-75, III-299 

NWORDS IV-40 



0 
ODD function III-90 
OF III-117-118 
one-dimensional arrays III-48 

assignment statements and III-78 
comparing III-88 

one-stage boot 1-10 
128K.APPLE 1-27 
128K.PASCAL 1-27 
128K Pascal system 1-27, III-244-248 

auxiliary memory and IV-84 
compared with 64K system 1-20-21 
INTRINS-SEGS field and IV-27 
libraries and III-227-228 
Library Name Files and III-231-236 
memory and III-246, IV-2, IV-4-6, 

IV-83 
Program Libraries and III-230 
program loading and IV-11-12 
program stack and IV-48 
segment table and III-250, IV-51 

!PASCAL: 
See system disk 

opcode(s) Il-176 
P-code IV-76-79 

6 (Open-Apple key) III-189, III-269, 
III-270 

6-CONTROL-RESET 1-11, II-10, ll-19 
opening files III-163 
operand field II-176 
operations 

arithmetic III-79-87 
bit III-100-103 
built-in III-72 
byte III-92-95 
invalid III-316 
precedence of 104-105 
set III-99-100 
string III-96-99 

operators ll-180-181, III-11 
IN III-42 
relational Ill-87-89 

options 
"codefile comment" (Compiler) 

ll-149 
Compiler Ill-23, Il-147-155, 

Ill-240-242 
CRUNCH III-166-167 
DLE III-186 
"GOTO" (Compiler) II-152 
"include" (Compiler) II-154 
"1/0 check" (Compiler) ll-150 
LF III-187 
"listing" (Compiler) ll-148-149 
"listing page" (Compiler) II-149 
LOCK Ill-166-167 
"next segment" (Compiler) II-152, 

Ill-251-252 
"no load" (Compiler) II-152-153, 

III-254-255, III-223 
NORMAL III-166-167 
PURGE Ill-166-167 
"quiet compiling" (Compiler) II-150 
"range check" (Compiler) Il-151, 

III-105-106 
"resident" (Compiler) II-153, III-223, 

III-255-257 
"swapping" (Compiler) II-148 
"user program" (Compiler) II-155 
"using" (Compiler) II-153, 

III-236-237, Ill-242 
"varstring" (Compiler) II-151, 

III-105-106 
OR III-90, III-102 
ORD function III-91, Ill-263 
ordinality Ill-91 
.ORG II-189 
OTHERWISE II-6, Ill-117-118 

Index 

OUTPUT Ill-159, Ill-168, Ill-175 
output, audio Ill-269 
output file II-212 

Librarian ll-218 
overflow Ill-315 

p 

pack 
See Krunch command 

PACKED III-46 
packed arrays III-45-48, III-175 
packed character arrays Ill-43 
packed records III-56-57 

congruency and III-58 
PADDLE function III-229, III-269 
.PAGE Assembler directive II-201 
Page command, in the Editor II-93 
PAGEprocedure III-180 
paragraph delimiter II-125 
Paragraph Margin ll-124 

in Editor Environment II-124 
parameter lists III-131-132 

long integers and III-130 
parameters Ill-9, III-129-131, III-145, 

III-304 
declarations III-128 
list III-128 
passing III-131, IV-53 
procedures and III-128 
untyped Ill-143 
value III-128-129, III-130-131 
variable III-128-129, III-130-131 

( ) (parentheses), using III-105 
Pascal III-2 

earlier versions 1-8 
Pascal Formatter II-230-232 
PASCALIO II-216, III-216, Ill-229, 

III-357, IV-30 

V-35 



Pascal 1.2 I-8 
Pascall.3 and III-5 
running under l,.'ascall.3 11-6-7 

Pascal 1.3 
compared with Pascal 1.2 11-6-7 

Pascal operating system 11-2 
Pascal system disks I-11 

customizing I-26-30 
files on I-30-32 

Pascal system version flag IV-8 
passing 

parameters III-131, IV-53 
values III-130 

.PATCHLIST 11-201 
PATTERNS 11-296-304 
P-code 11-3, 11-14, II-138, III-2, III-244, 

III-246, IV-2, IV-5, IV-58-79 
formats of constants in IV-61 
opcodes IV-76-79 

PEEK function III-262-263, III-283, 
IV-6 

PENCOLOR procedure III-201 
% (percent sign) 

as wildcard III-162 
Library Name Files and Ill-235-236 

+ (plus sign) 
in addition Ill-79-80 
in set union Ill-99-100 

P-machine 11-14, II-138, III-2, IV-2, 
IV-46 

POINTERLIST IV-40-42 

V-36 

pointers Ill-257 
auxiliary memory IV-7-8 
base type Ill-62 
CODEFLOW IV-6, IV-7-8 
CODEP IV-5, IV-6, IV-7-8 
KP IV-5, IV-6, IV-7 
main memory IV-7 
NIL III-28 
NP IV-5, IV-6, IV-7 
self-relative IV-32 
size of III-322 
storage of III-327, IV-60 

pointer type III-294 
pointer variables III-64-65, III-69-70 
POKE procedure III-262-263, lll-283, 

IV-6 
polygons, drawing III-202 
POP macro III-330 
POS function III-96 
precedence of operations III-104-105 
predeclared constants Ill-29 
predeclared file variables III-159 
predeclared identifiers III-21, 

III-355-357 
PRED (predecessor) function III-91 
prefix II-37 

using in Library Name File III-234 
Prefix command 11-28, 11-54-55 
Prefix directory name 11-16 
prefix volume 11-28, 11-54-55 
Printer Linefeed Utility 11-246-247 
printer(s) I-26 

double-spaced lines 11-246 
UNIT STATUS and Ill-188 

.PRIVATE Assembler directive 
11-196-197, III-150, IV-41 

PRIVDATASEG IV-43 
PRIVREF IV-40-42 

Index 

.PROC Assembler directive II-186, 
IV-40, IV-43 

PROCEDURE Ill-127 
procedure call statement Ill-131 
procedure dictionary IV-32 
procedure numbers IV-31, IV-34 
procedures Ill-12, III-15-16, III-128, 

IV-32-37, IV-73-75 
base IV-37 
calling III-131-133, III-305 
CHARTYPE III-206-207 
CLOSE III-166-167, III-248, III-306 
defining III-127-131 
definition III-12, III-130, Ill-303 
DELETE III-98 
DRA WBLOCK III-203-205 
EXIT lll-122, Ill-303 
EXTERNAL III-143-149, IV-43 
FILLCHAR III-93-94 
FILLSCREEN III-201 
FORWARD III-137-138, lll-219 
GET Ill-170-171, III-248, III-271-275 
GETCV AL III-277 
GOTOXY III-266 
GRAFMODE Ill-198-199 
HALT III-123 
INITTURTLE III-198 
INSERT IIl-97 
MARK III-64, lll-248, Ill-295 
MOVE III-201-202 
MOVELEFT lll-94-95 
MOVERIGHT Ill-94-95 
MOVETO Ill-201-202 
nesting lll-244, III-359 
NEW III-65-67, III-248, Ill-295 
NOTE Ill-269 
PAGE III-180 



parameters for III-130 
PENCOLOR III-201 
POKE IV-6 
PUT III-170-171, III-248, III-271-275 
RANDOMIZE III-85 
READ III-31, III-173, III-176-179, 

III-248, III-271-275, III-308 
READLN III-173, III-176-179, III-248, 

III-271-275, III-308 
RELEASE III-64, III-248, III-295 
RESET III-170, III-173, III-248, 

III-306 
REWRITE III-163-164, III-248, 

III-305 
SCREENBIT III-203 
SEEK III-171-172 
SEGMENT III-24, III-137, III-214, 

III-216, III-245, III-253, III-248, 
IV-18 

SETCHAIN III-276-277 
SETCVAL III-277 
size limits of III-359 
STR III-98 
SWAPGPON III-278 
SWAPOFF III-278 
SWAPON III-278 
syntax III-13 
TEXTMODE III-198-199 
TURN III-201-202 
TURNTO III-201-202 
TURTLEANG III-203 
TURTLEX III-203 
TURTLEY III-203 
UNITCLEAR III-187 

UNITREAD III-183-187, III-271, 
III-309 

UNITSTATUS III-187-192 
UNITWRITE III-183-186, III-271, 

III-309 
VIEWPORT III-199 
WCHAR III-206, III-207-208 
WRITE III-17 4-176, III-248, 

III-271-275, III-307, III-319 
WRITELN III-174-176, III-248, 

III-271-275, III-307, III-319 
WSTRING III-206, III-207-208 

ProFile I-17, I-25-26 
as a Pascal device I-5-6 
running ProDOS I-3 

program heading III-13 
Program Library II-152-154, III-226, 

III-230, III-237 
program listing II-141, II-145-146 
program listing request II-141-142 
program preparation stages, an 

overview II-271-285 
program preparation tools II-2-7 
program segments II-152-154 
program stack IV-5, IV-48-49, IV-94 

128K system and IV-48 
64K system and IV-48 

programming 
structured III-8 
syntax III-13-22 

programming mode (in the Editor) 
II-98-99 

Index 

programs III-12 
accessing Filer from III-280-281 
chaining III-275-281 
compilation of III-2 
debugging with HALT III-123 
executing IV-2, IV-21, IV-46 
large, compiling III-244-245 
large, editing III-244 
large, executing III-246-248 
large, linking III-245 
loading III-244-251, IV-2, IV-11-12, 

IV-21 
segmenting III-248-257 
syntax III-13 

Program Units III-12, III-16, 
III-210-224, IV-18 

changing III-223 
compiling III-213, III-222, III-310 

with 64K system III-215 
implementation section III-214, 

III-218-219 
initialization section III-214, 

III-219-220 
interface section III-214, III-216-218 
loading III-223-224 
loading of segments III-254 
nesting III-214, III-222 
64K system and III-224 
syntax III-310 
unit heading III-214, III-215-216 
writing III-213-221 

pseudocode 
See P-code 

pseudomachine 
See P-machine 

pseudo-ops II-176, II-184 
pseudoregisters 

See registers 

V-37 



PUBLDEF IV-41 
.PUBLIC Assembler directive II-196, 

III-149, IV-41 
PUBLREF IV-40-42 
PURGE option III-166-167 
PUSH macro III-330 
PUT procedure III-170-171, III-248, 

III-271-275 
control characters and III-271-272 
swapping and II-17 

PWROFTEN (power of ten) function 
III-83 

Q 

"quiet compiling" Compiler option 
II-150 

Quit command (Editor) II-130-133 
Quit command (Filer) II-59, II-257 
Quit command, from Command level 

II-17 
Quit screen, Editor II-87 -89 

R 

RADAR III-200 
RANDOM function III-85, III-229 

using III-85-87 
RANDOMIZE procedure III-85, III-229 
"range check" Compiler option II-151, 

III-105-106, III-254 
reading disk directories IV-14-16 
READLN procedure II-292, III-173, 

III-176-179, III-229, III-248, 
III-271-275 

control characters and III-273-275 
decimal-to-binary conversion and 

III-318 

V-38 

READ procedure II-292, III-30, III-173, 
III-176-179, III-229, III-248, 
III-271-275 

control characters and III-273-275 
decimal-to-binary conversion and 

III-318 
real numbers III-176, III-314-319 

storage of III-326 
REAL type III-28, III-31-32, III-176, 

III-229, IV-64, IV-69-70 
assignment statements and III-78 
P-code formats of IV-61 
size limits of III-359 
size of III-322 
storage of IV-60 

recommended system configurations 
I-2-6 

Apple II I-2-4 
Apple Ile I-4-5 
Apple Ile I-2-4 
Apple II Plus I-2-4 

reconfiguration utility I-26, II-241-242 
record type III-50-60, III-293-294, 

IV-66-67 
activation IV-37, IV-51-55, IV-96 
comparing III-89 
congruent III-57-58 
declarations III-51 
fields III-77 
free union variant III-55-56, III-58, 

III-100, III-323 
linking III-281-283 
packed III-56-57, III-58 
size of III-322-324 
storage of III-328, IV-61 
variant III-51, III-53-55, III-58, III-60, 

III-66-67, III-294 

Index 

recursion III-138-139, III-241, III-287 
activation records and IV-52 
example II-310-311 

.REF Assembler directive II-199, 
III-149, IV-40 

reference symbol table II-164-165 
registers IV-47-48 

6502 III-150 
Regular Units II-210, III-211-213, 

III-226, III-248 
heading III-310 
nesting III-222 

relational operators III-87 -89 
logic using III-89 

RELEASE procedure III-68-70, III-247, 
III-248, III-295 

uses of III-64, III-67 
relocation tables IV-37 
RELOCSEG field IV-36 
remote devices, UNITSTATUS and 

III-188 
Remove command II-50-51 
rename (as Filer function) 

See Change 
renaming files I-29 

system disk I-29 
3V2-inch disk I-29 

repeat-factors II-114, II-134, II-259 
Find command II-109 
in the Editor II-90-91 
Replace command II-109 

repeat statement III-108, III-112, 
III-301 

REPEAT ... UNTIL III-112 
repetition statements III-109-114, 

III-247 



Replace command ll-113-117 
delimiters ll-114-115 
direction ll-114 
Literal search ll-114 
repeat-factor ll-114 
same-string option ll-116-117 
target strings ll-114-115 
Token search II-114 
unease option ll-110, ll-114 
Verify option ll-115 

replacing 
128K.APPLE I-27 
128K.PASCAL I-27 

reserved words III-10, III-21, 
III-355-356 

RESET macro III-335 
RESET procedure III-170-171, III-173, 

III-248, III-306 
"resident" Compiler option ll-153, 

III-223, III-255-257 
RESTREGS macro III-333-334 
RETURN ll-80, III-20, III-17 4, III-178, 

III-271-275, IV-16 
Return, to Editor from Quit Command 

ll-133 
REVERSE III-200 
REWRITE procedure III-163-164, 

III-170, III-248, III-305 
Right Margin ll-124 
RMVBIAS macro III-331 
rounding III-314 
rounding errors III-32, III-317 
ROUND (rounding) function III-82 
routine-delimiting directives 

ll-185-186 
Run command, from Command level 

ll-13, ll-138, ll-140 
linking and ll-213-214 

s 
same-string option 

Find command ll-lll-113 
Replace command ll-116-117 

sample program ll-272-285 
SANE III-32 
Save, from Editor ll-131 
Save command (Filer) II-60-64 
SAVEREGS macro III-332-333 
saving files ll-87 
scalar functions III-90-91 
scalars 

assignment statements and III-78 
P-code formats of IV-61 

scalar types III-26, III-101 
SCAN function III-93, IV-75 
scientific notation III-21, III-28, III-178 
scope 

local III-3, III-9, III-10, III-16 
rules of III-133-136 

scratch pad memory III-150 
screen 

controls III-266 
coordinates III-197 
dumping III-283-284 

SCREENBIT procedure III-203 
SCREENCOLOR type III-200 
SCREENDUMP III-284 
screen mode flag IV-8 
scroll window II-78-80 
search, Literal or Token II-111, ll-114 
searching libraries III-237'-238 
SEEK procedure III-168, III-171-172, 

III-229 
SEG IV-47, IV-54 
SEGINFO array IV-26-27 
SEGKIND array IV-25 

Index 

segment dictionaries III-249, IV-18, 
IV-21-27, IV-88 

segment loading III-242 
segment numbers II-220, III-216, 

III-230, III-242, III-250-251, IV-26, 
IV-27-28 

SEGMENT procedures III-137, III-214, 
III-216, III-245, III-247, III-248, 
III-250, IV-18 

loading III-253 
size limits of III-359 

segmenting programs ll-152-154, 
III-248-257, IV-11 

segment table III-249-250, IV-26, 
IV-50-51, IV-95 

128K system and IV-51 
64K system and IV-51 

SEGNAME array IV-25 
SEGPROC IV-25 
self-relative pointers IV-32 
; (semicolon) III-18 
SEPFUNC IV-43 
SEPPROC IV-43 
SEPRTSEG IV-26 
serial interface card III-268 
SETCHAIN procedure II-6, III-276-277 

wildcards and III-276-277 
Set command ll-120-126 

Environment II-122-126 
Marker II-120-121 

SETCVAL procedure III-277 
set direction II-135, ll-259 

in the Editor II-91 
Find command ll-109 
Replace command II-109 

Set Environment II-97-101, ll-122-126 
SET40COLS utility II-247-249, IV-10 

V-39 



SET40COLS.CODE II-247 
SET macro III-334-335 
Set Marker 11-104, 11-120-121 
set(s) IV-64, IV-71 

assignment statements and III-78 
comparing III-88 
constructor III-41-42, III-76, III-292 
declarations III-40-41 
operations III-99-100 
P-code formats of IV-61 
size limits of III-359 
size of III-325 
storage of III-328, IV-60-61 
type III-40-42, III-292 

SET type III-41 
SETUP.CODE 11-241 
setup for Hazeltine 1500 11-244-245 
SETUP parameters 11-238-240, 11-241 
SHIFT III-189 
shift-key modification III-189 

Apple II I-23 
Apple II Plus I-23 

64K Pascal system 11-273, III-244-248 
compared with 128K I-20-21 
compiling Program Units with 

III-215 
INTRINS-SEGS field and IV-27 
libraries and III-227-228 
memory and III-246, IV-2-3, IV-5-6, 

IV-82 
program loading and IV-11-12 
program stack and IV-48 
Program Units and III-224 
segment table and III-250, IV-51 

6502 assembly language 
See assembly language 

6502.ERRORS 11-159 
6502.0PCODES 11-158, III-142 
6502 registers III-150 

V-40 

significand III-314 
simple expressions III-296, III-73 
SIN (sine) function III-83-84, III-229 
size 

limits III-136-137, III-359 
of arrays III-324-325 
of directories I-26 
of free union variant records III-323 
of records III-322-324 
of sets III-325 
of variables III-322 
of variant records III-323 

SIZEOF functions III-92, III-265 
uses of III-68 

size specification 11-31 
size specifiers 11-58 

in the Compiler II-142-143 
/(slash), in division III-80-82 
slot numbers, for hardware I-5 
slots 

hardware II-27 
library 11-219-222 

slot table 11-220 
software tools 11-2-7 
ti1 (Solid-Apple key) III-189, III-269 
Soroc IQ120 11-233 
source 

parameters III-132 
text III-2 

SP III-354, IV-47, IV-54 
space III-20, III-354 
specifying files 11-30-36 
SPIRODEMO demonstration program 

11-309-310 
SQR(square) function III-83 
SQRT (square root) function III-83 
stack management III-145-149 
stack overflow 11-144, 11-145 

during assembly 11-164 

Index 

standard devices 11-29 
standard notation, 6502 11-179-180 
standard volumes II-29-30 
starting a new file II-82-83 
starting up I-6-8, I-10 

alternative configurations I-10 
enhanced Apple Ile I-6 
one 5~-inch disk drive I-7 
Pascal-formatted ProFile I-8 
3\12-inch disk drive I-7 
two 5 ~-inch disk drives I-6 

startup levels I-11 
startup protocol I-8-10 

Apple Ile I-4-5 
statement(s) III-8, III-11, III-108 

assignment III-77-78, III-299 
case III-114, III-117-118, III-247, 

III-302 
compound III-11, III-18-19, III-109, 

III-219 
conditional III-114-118 
for III-109-lll, III-301 
GOTO III-120, III-303 
if III-114-116, III-302 
procedure call III-131 
repeat III-109, III-112, III-301 
repetition III-109-114, III-247 
syntax III-17-19 
while III-109, III-lll, III-301 
WITH III-58-60, III-294 

static chain IV-54 
static variables III-29-30, III-62 

finding III-263 



storage 
of arrays III-328 
of booleans III-327 
of characters III-327 
of file variables III-328 
of integers III-326 
of long integers III-327 
of pointers III-327 
of real numbers III-326 
of records III-328 
of sets III-328 
of strings III-328 

string delimiters (in the Editor) 
Find command II-110 
Replace command II-114-115 

string(s) III-22, III-28-29, III-38, III-162, 
III-169, IV-61, IV-65-66, IV-70 

assignment statements and III-78 
comparing III-88 
constants III-38, III-39 
elements III-77 
indexing III-39-40 
operations III-96-99 
size III-38-39, III-322 
size limits of III-359 
storage of III-328, IV-61 
type III-292, III-38-40 
variables III-38 

strong typing III-26, III-56, III-95, 
III-261 

STRP IV-48, IV-54 
STR procedure III-98, III-229 
structured programming III-8 
STUFF III-205 
subrange type(s) III-35-36, III-291 
subranges, assignment statements and 

III-78 

substitute string II-113, II-114-115 
subtraction III-79-80 
SUCC (successor) function III-91 
suffix II-31 

See file type 
super swapping II-16-17 
Swap command, from Command level 

II-16-17 
SWAPGPON procedure III-278 
SWAPOFF procedure III-278 
SWAPON procedure III-278 
swapping III-242, IV-6 

Command level III-278 
levels of II-16-17 

"swapping" Compiler option II-148 
SWITCH macro III-335-336 
symbol reference II-225 
symbols III-10 
SYMBOL TABLE DUMP II-164 
syntax III-13-22 

Assembler source files Il-175-176 
block III-13-14 
diagrams III-17-18, Ill-290-312 
expression Ill-19 
function III-13 
procedure III-13 
program III-13 
statement III-17-19 
symbol III-19-22 

SYSCOM IV-49-51 
SYSTEM.APPLE I-10-11, IV-2 
SYSTEM.CHARSET Il-311, III-196, 

Ill-206, Ill-207 
system commands II-18-19, II-252-253 
SYSTEM.COMPILER II-138 
system disk(s) I-11, III-162 

backups I-16-18 
specifying II-28 

Index 

SYSTEM.EDITOR II-74 
SYSTEM.FILER II-10, Il-24 
system files II-263-269 

as required by Pascal commands 
II-264-266 

by disk II-268-269 
by filename II-266-267 

SYSTEM.INFO II-142 
System Librarian, summary 

II-227-228 
SYSTEM.LIBRARY Il-138, III-211, 

III-226, Ill-229, Ill-231, III-236-238 
units contained in Il-269 

SYSTEM.LINKER II-11 
SYSTEM.MISCINFO II-233, III-267 
system notes I-18-26 
SYSTEM.PASCAL III-229, III-230 
system prompts, notation II-80 
SYSTEM.STARTUP II-288 
SYSTEM.SYNTAX II-145 
system utilities II-15 
SYSTEM.WRK II-59 
SYSTEM.WRK.CODE Il-5, II-132, II-141 
SYSTEM.WRK.TEXT Il-5, II-14, II-15, 

II-132 
SYSUNIT field IV-50 

T 

tab III-20 
tag field III-53-54 
target strings (in the Editor) Il-108, 

II-114-115 
Find command II-110 

Teach command, reconfiguration 
utility II-241 

television set II-247 
temporary file Il-159 
temporary variables II-184 

V-41 



terminator character II-290 
terms III-74, III-297 
TestStuff III-191-192 
text 

adding to graphics III-206-207 
deleting II-86-87, II-101-104 
editing II-78 
free form III-3, III-10, III-23-24 
image III-197-199 
inserting II-84-86 
interface IV-28-30 
source III-2 

TEXTADDR IV-26, IV-30 
text-changing commands II-259-260 
textfiles II-3 

structure of IV-16-17 
text formats II-97-101 

Auto-indent and Filling false II-101 
Auto-indent and Filling true H-100 
document mode II-99-100 
programming mode II-98-99 

text-formatting commands II-260 
TEXTMODE procedure III-198-199 
TEXT type III-158, III-172, III-173, 

III-180 
THEN III-114-116 
3Y2-inch disk 1-29 
3Y2-inch disk drive I-25 
Time IV-76 
.TITLE II-201 
TO III-109 
Token default II-109 

V-42 

Token search II-lll, II-114 
Editor Environment II-125-126 
Find command II-111 
Replace command II-111 

tools II-2-7 
TRANSCEND II-208, III-216, III-229, 

III-357 
Transfer command ll-41-50 

wildcards II-45 
tree, binary III-287-288 
tree demonstration program 

II-305-307 
TREESEARCH II-7 
trigonometric functions III-83-84 
TRUE III-29, III-33 
TRUNC (truncating) function III-82 
turnkey disk, making II-287-288 
TURN procedure III-201-202 
TURNTO procedure III-201-202 
turtle III-196 
TURTLEANG procedure III-203 
TURTLEGRAPHICS II-309, II-311, 

III-196-208, III-216, III-229, III-357, 
IV-6, IV-7 

TURTLEX procedure III-203 
TURTLEY procedure III-203 
two-stage boot I-10 
TYPE III-27 
type-ahead buffer III-187, III-189 
type conversions III-101 

binary to decimal III-319 
decimal to binary III-318 
integer to boolean III-90 
integer to character III-90 
scalar to integer III-91 

types 
See data types 

Index 

u 
UCSD Adaptable Assembler II-184 
UCSD Pascal III-2 
unary operators, assembly language 

II-180 
Unease option II-114 

Find command II-110 
Replace command II-110 

underflow III-316 
union of sets ( +) III-99-100 
UNITBUSY operation III-193 
UNITCLEAR procedure III-187, III-268 
unit heading (Program Unit) III-214, 

III-215-216 
unitnum expression III-184 
UNITREADprocedure III-183-187, 

III-271, III-309 
modes III-185-186 

UNITREF IV-40-42 
Units 

Intrinsic III-211-213, III-226, 
III-237-238, III-245, III-311, 
IV-18 

Program III-12, III-16, III-210-224, 
III-310, IV-18 

Regular III-211-212, III-226, III-248, 
III-310 

UNITSEG IV-25 
UNITSTATUS procedure I-24, II-6, 

Ill-187-192 
UNITW AIT operation III-193 
UNITWRITE procedure III-183-187, 

III-271, III-309 
modes III-186-187 



UNLINKED-INTRINS IV-26 
unsigned 

constants III-75, III-298 
numbers III-75, III-299 

UNTIL III-112 
untyped file input/ output operations 

III-180-182 
untyped parameters III-143 
t (Up-Arrow key) II-92, III-267-268 
Update, from Editor II-132-133 
user devices II-29 
user-defined data types III-26 
user-defined scalars III-42 
user-defined scalar types III-34-35 
user-defined type III-291 
user-defined variables, storage of 

IV-59 
"user program" Compiler option II-155 
User restart command, from Command 

level II-15 
USES declaration III-12, III-210-211, 

III-217, III-219 
"using" Compiler option II-140, Il-150, 

II-205, III-236-237, III-242 
using the Assembler II-161-163 
using the Compiler II-140-145 
utility programs II-230 

v 
value expressions III-175 
value parameters III-128-129, 

III-130-131 
values III-19, III-76, III-307 

passing III-130 
value specifier III-17 4 

variable(s) III-260, III-300 
assignment statements and 

III-77-78 
control III-110 
declaring III-15, III-291 
dynamic III-29-30, III-62-70, III-77, 

III-246, III-263, IV-67 
file III-156, III-158-159, III-299, 

III-325, III-328 
finding III-263-265 
linked record III-281-283 
parameters III-128-129, III-130-131 
pointer III-64-65, III-69-70 
predeclared file III-159 
sizes of III-322 
static III-29-30, III-62, III-263 
STRING III-38 
subrange, size of III-322 
user-defined 

size of III-322 
storage of IV-59 

variant part III-53 
variant records III-51, III-53-55, 

III-66-67, III-323 
congruency and III-58 
WITH ... DO and III-60 

VAR parameters II-151, III-30, 
III-128-129, IIl-131 

varstring checking III-242, III-260 
"varstring" Compiler option II-151, 

III-105-106 
Verify command (Editor) II-128 
Verify option II-115 

Replace command II-115 
vertical tab III-354 

Index 

video screen control characters 
II-237-238 

viewport II-78-80 
VIEWPORTprocedure III-199 
volume I-12 
volume commands II-256, II-36-41 
Volume display II-37 
volume names 1-12, II-27-30, II-28, 

II-316, III-160-162 
volume numbers 1-12, II-27-30, II-316, 

III-160-162 
how assigned 1-12-13 

Volumes command 1-13, II-36-37 
volume specification II-27 
VT III-354 

w 
warm boot 1-11, II-16 
warm start 1-11 
WCHAR procedure III-206 

creating character sets for 
III-207 -208 

What command II-65 
WHILE ... DO III-lll 
while statement III-109, III-lll, III-301 
WHITEl III-200 
WHITE2 III-200 
width expressions III-175 
wildcards II-32-36, III-162 

in file specifications II-32-36 
% (percent sign) as III-235-236 
SETCHAIN procedure and 

III-276-277 
with the Transfer command II-45 

V-43 



window, of file II-78-80 
WITH statement III-58-60, III-294 
.WORD II-184, II-188, III-150 
words IV-93 
WORDSTREAM type II-6, III-49-50 
workfile(s) II-4-6, II-10 

clearing II-64-65 
commands II-59-65, II-257 
editing with II-75, II-76-77 
editing without II-75-76, II-77 
saving II-60 
status of II-65 
Update from Editor II-132-133 

Write, from Editor II-132 

V-44 

WRITELN procedure III-17 4-176, 
III-229, III-248, III-271-275, III-307 

control characters and III-273 
one-dimensional arrays and III-48 
REAL type and III-176 

WRITE procedure III-17 4-176, III-229, 
III-248, III-271-275, III-307 

binary-to-decimal conversion and 
III-319 

control characters and III-273 
one-dimensional arrays and III-48 
REAL type and III-176 

WSTRING procedure III-206 
creating character sets for 

III-207-208 

Index 

x 
XCOORD,YCOORD II-243 
XEQERR field IV-50 

Y,Z 
Zap command II-128-129 
Zap point II-128-129 
Zero command II-57 



I 



Apple Computer, Inc. 
20525 Mariani Avenue 
Cupertino, CA 95014 
(408) 996-1010 
TLX 171576 030-1206-A 


